Motivation	CDT and HG	ADM decomposition	Causal RGE	Conclusion

Causal RG equation for Quantum Einstein Gravity

Stefan Rechenberger

Uni Mainz

14.03.2011

arXiv:1102.5012v1 [hep-th] with Elisa Manrique and Frank Saueressig

Motivation	CDT and HG	ADM decomposition	Causal RGE	Conclusion
Outling	`			
Outline	<u>)</u>			

Motivation

2 Causal Dynamical Triangulations and Horava Gravity

3 ADM decomposition

4 Causal RG equation

5 Results

Motivation	CDT and HG	ADM decomposition	Causal RGE	Conclusion
Motivat	ion			

different approaches to a theory of QG

- String Theory
- Loop Quantum Gravity
- Causal Dynamical Triangulations
- Horava Gravity
- Asymptotic Safety

• ...

which one is correct?

Motivation	CDT and HG	ADM decomposition	Causal RGE	Conclusion

lack of experimental data

 \Rightarrow nobody helps us to decide which is the best approach \Rightarrow what to do?

lack of experimental data

 \Rightarrow nobody helps us to decide which is the best approach \Rightarrow what to do?

start crying and wait for data

OR

lack of experimental data

 \Rightarrow nobody helps us to decide which is the best approach \Rightarrow what to do?

start crying and wait for data

compare different approaches

Causal RGE for QEG

• discretization of gravitational path integral $\int Dg_{\mu\nu} e^{iS_{\text{grav}}}$ by summing over piecewise flat geometries

(b)

 modeling space-time geometries by gluing together simplices (higher dimensional generalizations of triangles)

(b)

(arXiv:hep-th/0105267v1)

 curvature introduced via deficit angles pos./neg. deficit angles correspond to pos./neg. curved space

(arXiv:hep-th/0509010v3)

• causal structure (equal-sided instead of equilateral triangles)

• different scaling of space and time

$$x \to bx, \quad t \to b^z t$$

- Lorentz invariance is broken in UV but reestablished in IR
- foliation-preserving diffeomorphism invariance infinitesimal generators: $\delta x^i = \zeta^i(t, \mathbf{x}), \quad \delta t = f(t)$
- Horava-like action:

$$S_{H} = rac{1}{16\pi G_{\mathrm{N}}}\int d^{3}x dt N \sqrt{g} \left[K_{ij}K^{ij} - \lambda K^{2} - \gamma R^{(3)} + 2\Lambda + V(g_{ij})
ight]$$

 maybe connection to CDT due to global time foliation (arXiv:1002.3298v2 [hep-th])

Causa

Result

Conclusior

- time function ... $t(x^{\mu})$
- $\partial_{\mu}t$... future-dir. timelike VF

Motivation

Causa

Results

Conclusion

- time function ... $t(x^{\mu})$
- $\partial_{\mu}t$... future-dir. timelike VF
- Σ_{t_i} ... spatial slices

Motivation

Causa

Resi

Conclusion

- time function ... $t(x^{\mu})$
- $\partial_{\mu}t$... future-dir. timelike VF
- Σ_{t_i} ... spatial slices
- coordinates y^a on Σ_{t_i}

Causa

Results

Conclusion

- time function ... $t(x^{\mu})$
- $\partial_{\mu}t$... future-dir. timelike VF
- Σ_{t_i} ... spatial slices
- coordinates y^a on Σ_{t_i}
- parametrized curve $\gamma(t)$

•
$$y^a(P_1) = y^a(P_2)$$

- time function ... $t(x^{\mu})$
- $\partial_{\mu}t$... future-dir. timelike VF
- Σ_{t_i} ... spatial slices
- coordinates y^a on Σ_{t_i}
- parametrized curve $\gamma(t)$

•
$$y^{a}(P_{1}) = y^{a}(P_{2})$$

• $t^{\mu} = \left(\frac{\partial \gamma^{\mu}}{\partial t}\right)_{y^{a}}, \quad e^{\mu}_{a} = \left(\frac{\partial \gamma^{\mu}}{\partial y^{a}}\right)_{t}$

- time function ... $t(x^{\mu})$
- $\partial_{\mu}t$... future-dir. timelike VF
- Σ_{t_i} ... spatial slices
- coordinates y^a on Σ_{t_i}
- parametrized curve $\gamma(t)$

•
$$y^{a}(P_{1}) = y^{a}(P_{2})$$

•
$$t^{\mu} = \left(\frac{\partial \gamma^{\mu}}{\partial t}\right)_{y^{a}}, \quad e^{\mu}_{a} = \left(\frac{\partial \gamma^{\mu}}{\partial y^{a}}\right)_{t}$$

•
$$t^{\mu} = N^2 \partial^{\mu} t + N^a e^{\mu}_a$$

- lapse function ... N
- shift vector ... N^a

change of coordinates: $x^{\mu} \leftrightarrow (\tau, y^{a})$

old coordinates: $ds^2 = \gamma_{\mu\nu} dx^{\mu} dx^{\nu}$

new coordinates: $ds^2 = N^2 d\tau^2 + \sigma_{ii} (dy^i + N^i d\tau) (dy^j + N^j d\tau)$

with induced spatial metric: $\sigma_{ii} = \gamma_{\mu\nu} e^{\mu}_i e^{\nu}_i$

$$\gamma_{\mu\nu} = \begin{pmatrix} N^2 + N_i N^i & N_j \\ N_i & \sigma_{ij} \end{pmatrix}$$

change of coordinates: $x^{\mu} \leftrightarrow (\tau, y^{a})$

old coordinates: $ds^2 = \gamma_{\mu\nu} dx^{\mu} dx^{\nu}$

new coordinates: $ds^2 = \epsilon N^2 d\tau^2 + \sigma_{ii} (dy^i + N^i d\tau) (dy^j + N^j d\tau)$

with induced spatial metric: $\sigma_{ii} = \gamma_{\mu\nu} e^{\mu}_i e^{\nu}_i$

$$\gamma_{\mu\nu} = \begin{pmatrix} \epsilon N^2 + N_i N^i & N_j \\ N_i & \sigma_{ij} \end{pmatrix}$$

 Motivation
 CDT and HG
 ADM decomposition
 Causal RGE
 Results
 Conclusion

 Causal RG equation
 Causal RG equation

Starting point: Einstein Hilbert action

$$S_{\mathrm{EH}} = rac{1}{16\pi G_{\mathrm{N}}}\int d^{D}x \sqrt{\gamma}\left(-R+2\Lambda
ight)$$

- $G_{\rm N}$... Newton constant
- D ... space-time dimension (D = d + 1)
- γ ... metric
- R ... curvature scalar of space-time
- Λ ... cosmological constant

 Motivation
 CDT and HG
 ADM decomposition
 Causal RGE
 Results
 Conclusion

 Causal RG equation
 Causal RG equation

Starting point: Einstein Hilbert action

$$S_{\mathrm{EH}} = rac{1}{16\pi G_{\mathrm{N}}} \int d^D x \sqrt{\gamma} \left(-R + 2\Lambda
ight)$$

- $G_{\rm N}$... Newton constant
- D ... space-time dimension (D = d + 1)
- γ ... metric
- R ... curvature scalar of space-time
- Λ ... cosmological constant

$$S_{\rm ADM} = \frac{\sqrt{\epsilon}}{16\pi G_{\rm N}} \int d\tau \int d^d x N \sqrt{\sigma} \left\{ \epsilon^{-1} K_{ij} \left[\sigma^{ik} \sigma^{jl} - \sigma^{ij} \sigma^{kl} \right] K_{kl} - R + 2\Lambda \right\}$$

background field method

first try: $\gamma_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}, \quad \Delta S_k \propto h_{\mu\nu} R_k^{\mu\nu\rho\sigma} h_{\rho\sigma}$ but split nonlinear in $N, N^i, \sigma_{ij} \Rightarrow \text{ cutoff non-quadratic in } N, N^i, \sigma_{ij}$

background field method

first try: $\gamma_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}, \quad \Delta S_k \propto h_{\mu\nu} R_k^{\mu\nu\rho\sigma} h_{\rho\sigma}$ but split nonlinear in $N, N^i, \sigma_{ij} \Rightarrow$ cutoff non-quadratic in N, N^i, σ_{ij}

second try: special background
$$ar{g}_{\mu
u} = \begin{pmatrix} \epsilon & 0 \\ 0 & ar{\sigma}_{ij} \end{pmatrix} \quad \leftrightarrow \quad ar{N} = 1, ar{N}^i = 0$$

⇒ gauge freedom can be fixed with $N = 0 = N^i$ (arXiv:hep-th/0103186v2) ⇒ purely spatial fluctuations h_{ii}

ghost action: $S_{\rm gh} = \sqrt{\epsilon} \int d\tau \int d^d x \sqrt{\bar{\sigma}} \left\{ \bar{C} \partial_{\tau} C + \bar{C}_i \partial_{\tau} C^i \right\}$

time direction \leftrightarrow circle S^1 with interval length T

$$\phi(\tau, x) = \sum_{n=-\infty}^{\infty} \phi_n(x) e^{2\pi i n \tau/T} \qquad \Rightarrow \qquad \phi_n(x) = \frac{1}{T} \int_0^T d\tau \phi(\tau, x) e^{-2\pi i n \tau/T}$$

$$\int_0^T d\tau \,\phi(x,\tau)^2 = T \sum_{n=-\infty}^\infty \phi_n(x)\phi_n^*(x),$$
$$\int_0^T d\tau \,\phi(x,\tau)\partial_\tau^2 \phi(x,\tau) = -T \sum_{n=-\infty}^\infty \phi_n(x) \left(\frac{2\pi n}{T}\right)^2 \phi_n^*(x)$$

regulator: purely spatial $\mathcal{R}_k(\Delta)$ with $\Delta = -\bar{\sigma}^{ij}\bar{D}_i\bar{D}_j$ $\mathcal{R}_k(\Delta)$ is given by implementing: $\Delta \to \Delta + R_k$ for simplicity optimized cutoff: $R_k = k^2 \left(1 - \frac{\Delta}{k^2}\right) \theta \left(1 - \frac{\Delta}{k^2}\right)$

further simplification:

transverse-traceless decomposition $h_{ij}(x) \mapsto \left\{ h_{ij}^{\mathrm{T}}(x), \xi_i^{\mathrm{T}}(x), \sigma(x), h(x) \right\}$ + field redefinition

 \Rightarrow no Jacobians

$$k\partial_k\Gamma_k = \frac{1}{2}\mathrm{STr}\left[\left(\Gamma_k^{(2)} + \mathcal{R}_k\right)^{-1}k\partial_k\mathcal{R}_k\right] = T^{\mathrm{TT}} + T^0$$

< 一型

Motivation CDT and HG ADM decomposition Causal RGE Results Conclusion
analytic structure

$$k\partial_k\Gamma_k = \frac{1}{2}STr\left[\left(\Gamma_k^{(2)} + \mathcal{R}_k\right)^{-1}k\partial_k\mathcal{R}_k\right] = T^{TT} + T^0$$

$$T^{TT} = \frac{\sqrt{\epsilon}k^d d_{2T}}{(4\pi)^{d/2}} \sum_n \int d^d x \sqrt{\sigma} \left[q_{d/2}^{1,0}(w_{2T}) + \bar{R}k^{-2}\left(\frac{1}{6}q_{d/2-1}^{1,0}(w_{2T}) - \frac{d^2 - 3d + 4}{d(d-1)}q_{d/2}^{2,0}(w_{2T})\right)\right]$$

$$T^0 = \frac{\sqrt{\epsilon}k^d}{2\pi} \sum_n \int d^d x \sqrt{\sigma} \left[q_{d/2-1}^{1,0}(w_n) + \frac{1}{2}\bar{R}k^{-2}\sigma^{1,0}(w_n)\right]$$

$$T^{0} = \frac{\sqrt{4\pi}}{(4\pi)^{d/2}} \sum_{n} \int d^{d}x \sqrt{\sigma} \left[q_{d/2}^{1,0}(w_{0}) + \frac{1}{6}Rk^{-2}q_{d/2-1}^{1,0}(w_{0}) + \frac{d-2}{2d\lambda_{k}}\bar{R}k^{-2} \left\{ q_{d/2}^{2,-1}(w_{0}) - q_{d/2}^{1,0}(w_{0}) + \left(\frac{3}{2\epsilon}m^{2}n^{2} - \frac{4(d-3)}{d-2}\lambda_{k} \right) q_{d/2}^{2,0}(w_{0}) \right\} \right]$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Motivation	CDT and HG	ADM decomposition	Causal RGE	Conclusion
analytic	structure			

$$\sum_{n} q_{d/2}^{1,0}(w_{2T}) \propto \sum_{n} \frac{1}{1 + \frac{1}{2\epsilon}m^2n^2 - 2\lambda_k}$$

Kaluza-Klein mass: $m = \frac{2\pi}{Tk}$

carry out sums analytically:

$$\sum_{n} \frac{1}{n^2 + x^2} = \frac{\pi}{x \tanh(\pi x)}, \quad x^2 > 0 \quad \text{(hyperbolic functions)}$$
$$\sum_{n} \frac{1}{n^2 + x^2} = \frac{\pi}{i \times \tan(\pi x)}, \quad x^2 < 0 \quad \text{(trigonometric functions)}$$

Motivation	CDT and HG	ADM decomposition	Causal RGE	Conclusion
flow equ	uation			

$$k\partial_k g_k = \beta_g(g, \lambda; m), \qquad k\partial_k \lambda_k = \beta_\lambda(g, \lambda; m)$$

$$m = \frac{2\pi}{Tk}$$

analytic structure depends on signature and on λ

ϵ	$\lambda < \lambda^{(1)} < 0$	$\lambda^{(1)} < \lambda < \lambda^{(2)} = 1/2$	$\lambda^{(2)} < \lambda$
+1	hyperbolic	mixture	trigonometric
-1	trigonometric	mixture	hyperbolic

Motivation	CDT and HG	ADM decomposition	Causal RGE	Results	Conclusion
Gaußian	fixed poin	t scenario			

$$m = \frac{2\pi}{Tk}$$
 $T = const$

$$\Rightarrow \quad k\partial_k m_k = -m_k \quad \Rightarrow \quad m_k^* = 0$$

in this limit all trigonometric functions diverge

ϵ	$\lambda < \lambda^{(1)} < 0$	$\lambda^{(1)} < \lambda < \lambda^{(2)} = 1/2$	$\lambda^{(2)} < \lambda$
+1	hyperbolic	mixture	trigonometric
-1	trigonometric	mixture	hyperbolic

 \Rightarrow NGFP only for $g_* < 0$ in Euclidean signature!

Motivation CDT and HG ADM decomposition Causal RGE Results Conclusion floating point scenario

$$m = const. \Rightarrow T \propto rac{1}{k}$$

if $m > \sqrt{5/2}$ trigonometric terms stay finite for $\lambda^{(1)} < \lambda < \lambda^{(2)}$

Example: $m = 2\pi \Rightarrow T = \frac{1}{k}$

Non-Gaußian Fixed Point in Euclidean and Lorentzian signature

ϵ	g _*	λ_*	$g_*\lambda_*$	$\theta_{1,2}$
+1	0.19	0.31	0.059	$1.07\pm 3.31i$
-1	0.21	0.30	0.063	$0.94\pm3.10i$

Motivation CDT and HG ADM decomposition Causal RGE **Results** Conclusion

Fixed Points depending on *m*

Fixed-Point values depending on m

Euclidean FP ... blue Lorentzian FP ... red both FPs converge for increasing Kaluza-Klein mass

Causal RGE for QEG

Stefan Rechenberger (Uni Mainz)

Causal RGE for QEG

14.03.2011 24 / 26

0.4

- FP for Euclidean and Lorentzian signature
- characteristics are similar
- also similar to covariant formulation
- time circle collapses toward UV
- signature does NOT matter in UV
- formulation prepares ground for comparison to other theories

Thank you for your attention!

Questions?

Stefan Rechenberger (Uni Mainz)

Causal RGE for QEG

14.03.2011 26 / 26