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Introduction

Quantum Einstein Gravity (QEG)

Quantum Einstein Gravity = Asymptotically Safe theory of
quantum gravity with the metric as fundamental degree of
freedom.

Asymptotic Safety = UV completion of a QFT at a non-Gaussian
fixed point of the RG flow with a finite dimensional UV critical
hypersurface SUV

I NGFP = FP of the flow with at least one non-zero coupling
I SUV = set of all points mapped onto the FP by the inverse

RG flow
I dimSUV = number of critical exponents with positive real

part ↔ predictivity of the theory
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Introduction

Quantum Einstein Gravity
How to find out whether such a theory exists?

Tool to analyze the RG flow: ERGE for Gravity

∂tΓk = 1
2

STr
[(

Γ(2)
k +Rk

(
∆
))−1

∂tRk
(
∆
)]

I exact equation suitable for non-perturbative calculations
I usually it can be only solved for truncations of Γk ⇒ can only

collect evidence for a NGFP in different truncations

Example for gravity: Einstein-Hilbert truncation

ΓEH
k [g]+Γgf

k +Sgh = ZN (k)
16πĜ

∫
d4x√g

(
−R(g) + 2λ̄(k)

)
+Γgf

k +Sgh
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Introduction

RG Flow of the Einstein-Hilbert Truncation

I we find a NGFP in the EH truncation
I its UV critical hypersurface is two dimensional
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QEG Corrections in Yang-Mills Theories

Truncation & Gauge Fixing

The Einstein-Yang-Mills System

Γk = ΓEH
k + ΓYM

k + Γgf
k + Sgh = Γ̆k + Sgh

with

ΓYM
k [g,A] = ZF (k)

4 ĝ2
YM

∫
d4x √g gµρgνσFa

µνFa
ρσ

Γgf
k [h̄, ā; ḡ, Ā] =

∫
d4x

√
ḡ
(ZN (k)

2αD
ḡµνFµFν + ZF (k)

2αYM
GaGa

)
Motivation:

I ΓEH
k contains the all essential features of gravity close to the

non-Gaussian fixed point (NGFP)
I in pure YM theory ΓYM

k approximates the perturbative 2-loop
result within a few percent
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QEG Corrections in Yang-Mills Theories

Truncation & Gauge Fixing

Gauge Fixing

Gauge conditions:

Fµ(h̄; ḡ) = 1√
16πĜ

(
δβµ ḡαγD̄γ −

1
2

ḡαβD̄µ

)
h̄αβ

Ga(ā; ḡ, Ā) = ĝ−1
YM ḡµνD̄µāa

ν

Gauge parameters chosen to αD = 1 = αYM

Notational remark: Different covariant derivatives
I ∇ = ∂ + A
I D = ∂ + Γ
I D = ∂ + Γ + A
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QEG Corrections in Yang-Mills Theories

Construction of the Ghost Action

Problems with Ghost Action

Standard ghost action is of the form (A = Ā + a, γ = ḡ + h):

Sgh[h, a, C, C̄,Σ, Σ̄; ḡ, Ā] = −
∫

d4x
√

ḡ
(
C̄ν ∂Fν
∂hρσ

δD(C)γρσ+

C̄ν ∂Fν
∂hρσ

δYM(Σ)γρσ + Σ̄a ∂Ga

∂ab
µ

δD(C)Ab
µ + Σ̄a ∂Ga

∂ab
µ

δYM(Σ)Ab
µ

)

Problem:

δD(C)Ab
µ = LCAb

µ = Cρ∂ρAa
µ + (∂µCρ)Aa

ρ

is not an SU(N )-vector ⇒ background gauge invariance is broken!
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Construction of the Ghost Action

Ward Operators
Ward operators that generate gauge transformations of the fields
Φ = (A, γ, C, C̄,Σ, Σ̄) are defined as

WD(v) = −
∫

d4x
(
δD(v)Φi(x) δ

δΦi(x)

)
WYM(λ) = −

∫
d4x

(
δYM(λ)Φi(x) δ

δΦi(x)

)
They satisfy the algebra

[WD(v1),WD(v2)] = WD([v1, v2])
[WYM(λ1),WYM(λ2)] = WYM(fλ1λ2)

[WD(v),WYM(λ)] = WYM(Lvλ)

Structure of full gauge group: G = Diff n SU(N)loc.
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QEG Corrections in Yang-Mills Theories

Construction of the Ghost Action

Back to the Ghost Action

YM gauge transformation of the problematic term:

δYM(λ)δD(C)Ab
µ =WYM(λ)WD(C)Aa

µ

= Cρ∂ρ(f abcλbAc
µ) + (∂µCρ)f abcλbAc

ρ

6= f abcλb
(
Cρ∂ρAc

µ + (∂µCρ)Ac
ρ

)
=WD(C)WYM(λ)Aa

µ

broken gauge invariance of ghost action
↔ non-vanishing commutator [WD(v),WYM(λ)]

Idea: reparametrize the gauge group such that the mixed
commutator vanishes.
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QEG Corrections in Yang-Mills Theories

Construction of the Ghost Action

Modified Diffeomorphisms

W̃D(v) ≡ WD(v) +WYM(A · v)

Definition of invariant functional F is unchanged

W̃D(v)F = 0 ∧ WYM(λ)F = 0
⇔WD(v)F = 0 ∧ WYM(λ)F = 0

Modified algebra:

[W̃D(v1), W̃D(v2)] = W̃D([v1, v2])−WYM(v1v2 · F)
[WYM(λ1),WYM(λ2)] = WYM(fλ1λ2)

[W̃D(v),WYM(λ)] = 0

With these modified generators we can construct a background
gauge invariant ghost action the standard way!
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QEG Corrections in Yang-Mills Theories

Construction of the Ghost Action

Background Gauge Invariant Ghost Action

Sgh[h, a, C, C̄,Σ, Σ̄; ḡ, Ā] = −
∫

d4x
√

ḡ
(
C̄ν ∂Fν
∂hρσ

δ̃D(C)γρσ+

C̄ν ∂Fν
∂hρσ

δYM(Σ)γρσ + Σ̄a ∂Ga

∂ab
µ

δ̃D(C)Ab
µ + Σ̄a ∂Ga

∂ab
µ

δYM(Σ)Ab
µ

)
Now we have

δ̃D(C)Ab
µ = LCAb

µ −∇µ(Ab
νCν)

= Cρ∂ρAb
µ + (∂µCρ)Aa

ρ − ∂µ(Ab
ρCρ)−f bcdAc

µAd
ρCρ

= Fb
ρµCρ

which manifestly transforms tensorial under SU(N )
transformations and diffeomorphisms!
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Computational Remarks

Some Computational Remarks
I Classical ghost sector (no evolution)

∂tΓk = 1
2 Tr

[
∂tRk

(
∆̆
)

Γ̆(2)
k +Rk

(
∆̆
)]− Tr

[
∂tRgh

k

(
∆gh
)

S(2)
gh +Rgh

k

(
∆gh
)]

I spectrally adjusted cutoff operator
∆̆ = Z−1

k Γ̆(2)
k ∆gh = Z−1

gh S (2)
gh

→ admits a simple spectral representation of the RHS

Different degrees of RG improvement:
I ∂t acts only on explicit k-dependence ↔ 1-loop calculation
I ∂t acts in addition on Zk-factors
I ∂t acts also on Γ̆(2)

k in ∆̆
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QEG Corrections in Yang-Mills Theories

Discussion of the Result

1-Loop Result

Switching to dimensionless couplings

g2
YM(k) ≡ ĝ2

YM
ZF (k)

, g(k) ≡ k2 Ĝ
ZN (k)

, λ(k) ≡ k−2λ̄(k)

we obtain the 1-loop result

∂tg2
YM = −6 Φ1

1(0)
π

g g2
YM−

11 N
24π2 g4

YM

where
Φ1

1(w) =
∫ ∞

0
dz R(0)(z)− zR(0)′(z)

z + R(0)(z) + w
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QEG Corrections in Yang-Mills Theories

Discussion of the Result

Classical Regime
Newton’s constant

G(k) ≈ G0 = const, g(k) = G0k2

For an Abelian field (N = 0) we obtain

∂tg2
YM = −6 Φ1

1(0)
π

G0 k2 g2
YM

with solution

g2
YM(k) = g2

YM(0) · exp
(
−ωYM(k/mPl)2

)
= g2

YM(0) ·
[
1− ωYM(k/mPl)2 +O(k4/m4

Pl)
]

where mPl = G−1/2
0 and ωYM = 3Φ1

1(0)/π.
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QEG Corrections in Yang-Mills Theories

Discussion of the Result

Asymptotic Safety
Free Maxwell field does not destroy NGFP of the EH truncation.
Therefore in the UV

g(k)→ g∗ =⇒ G(k) = g∗/k2 → 0 as k →∞

which implies

∂tg2
YM = −6 Φ1

1(0)
π

g∗ g2
YM

with solution

g2
YM(k) ∝ k−ΘYM , ΘYM = 6 Φ1

1(0)
π

g∗

I total system has a NGFP with (g∗YM = 0, g∗ > 0, λ∗ > 0)
I gravity speeds up approach of asymptotic freedom in the YM

sector (power law instead of logarithmic)
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QEG Coupled to QED
β-functions of the Coupled System

Gravity Correction to the β-function of QED

1-loop QED β-function with gravity correction:

∂tα = βα =
(

Ah(α)− 6
π

Φ1
1(0)g

)
α with A = 2

3π
nF

I fermionic and gravitational contributions compete in effect
I in the perturbative approach: g = G0k2. Gravitational

contributions will always dominate for large k, so that
α→ α∗ = 0 for k →∞

I in the Asymptotic Safety scenario we find a second fixed point:
As g → g∗, α can approach α∗ 6= 0 with Ah(α∗) = 6g∗

π Φ1
1(0)
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QEG Coupled to QED
β-functions of the Coupled System

Fermionic Contributions

Perturbative calculations in pure QED show

βα(α)|g=0 ≡ A h(α)α = α

[
2
3

(
α

π

)
+ 1

2

(
α

π

)2
+O(α3)

]

Properties of h(α):
I h′(α) > 0 ⇒ FP condition satisfied for some α∗

I h(α) ≈ α for α . 1

⇒ using the one-loop approximation h(α) = α will give a
qualitatively reliable picture of the full beta-function.
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QEG Coupled to QED
β-functions of the Coupled System

A Simple 2D Truncation

∂tg = [2 + B1(0)g]g

∂tα =
(

Aα− 6
π

Φ1
1(0)g

)
α

I backreaction to the gravitational β-function is neglected
I flow can be solved analytically
I results are in agreement with full EH-truncation in the gravity

sector
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QEG Coupled to QED

Flow of the 2D Truncation

Flow of the 2D Truncation

I Three kinds of possible UV behavior
I Enhanced predictivity of AS scenario w.r.t. NGFP2
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QEG Coupled to QED

Flow of the 2D Truncation

Asymptotically Safe Trajectory

βg can be solved in isolation:

g(k) = G0k2

1 + G0k2

g∗

G0 is the IR value of the running Newton constant.

Unique trajectory which is asymptotically safe w.r.t. NGFP2:

1
α(k)

= 1
α∗

(
1 + g∗

G0k2

)
2F1

(
1, 1, 1+ 3

π
Φ1

1g∗;− g∗

G0k2

)
α(k) is a prediction, when G0 was determined by experiment!

21/25



QEG Corrections in Yang-Mills Theories and QED
QEG Coupled to QED

Flow of the 2D Truncation

Asymptotically Safe Trajectory for k ≈ me

For k = me we have g∗
G0m2

e
= g∗

(
mPl
me

)2
≈ 1044 ⇒ expand 2F1 for

large arguments:

1
α(k)

= A
2

[
ln
( g∗

G0k2

)
− γ − ψ

( 3
π

Φ1
1g∗
)]

I in the IR the result is of the same form as in pure QED
α(k)−1 = −A ln(k) + const

I putting in numbers we obtain α−1
IR ≈ 10.91 nF

(cp. to α−1
IR ≈ 137 in real Nature).

⇒ for nF ≈ 13 prediction consistent with real value
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QEG Coupled to QED

Flow of the 2D Truncation

Including Other Charged Particles
Within the SM or MSSM the same argumentation holds true for
the weak hypercharge α1 with 1-loop β-function ∂tα1 = Aα2

1:

A α1(MZ )−1

SM 41
20π 25.7

MSSM 33
10π 41.3

αexp
1 (MZ )−1 ≈ 59.5

These estimates for α1 turn out too large compared to the
experimental value. Possible conclusions:

I Asymptotic Safety w.r.t. NGFP2 is possible if there exist
(not too many) more U (1) charged particles.

I the known particle content of the SM suggests Asymptotic
Safety w.r.t. NGFP1 when coupled to QEG.
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QEG Coupled to QED

Flow of the 3D Truncation

Einstein-Hilbert + QED: Numerical Results
SUV of NGFP2 in g-λ-α–coupling space:

I long classical regime needed to drive α to small values
I numerical result for “realistic trajectory”: α−1

IR ≈ 10.93
⇒ running of λ negligible
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Summary
Yang-Mills Theories

I we find a non-vanishing gravity contribution to the YM-beta
function setting in already at one-loop order

I the correction is consistent with the Asymptotic Safety
scenario of QEG and supports asymptotic freedom of YM

Quantum Electrodynamics
I Fermionic and gravitational contributions to the running of α

compete in effect
I for SM values the gravitational ones are dominant, resulting in

Asymptotic Safety w.r.t. NGFP1 ⇒ α is a free parameter
I an exact balancing of both contributions is possible ↔

Asymptotic Safety w.r.t. NGFP2 ⇒ α can be predicted
I coupling a theory to Asymptotically Safe gravity may provide

a mechanism able to reduce the number of free parameters.
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