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Motivations

The minimal realization of the SM would include only fundamental
particles already discovered (no Higgs boson).

EW symmetry implemented by coupling fermions and gauge
bosons to the corresponding Nambu-Goldstone bosons described
by a Nonlinear & Model.

Two strong arguments against this picture:
@ violation of unitarity;

@ EW precision measurements;

Both these arguments may be avoided if this EW symmetry
breaking sector is Asymptotically Safe.



The Nonlinear ¢ Model (NLoM)

The NLoM action describes the physics of the Goldstone bosons
(Gb) of a spontaneously broken symmetry (G — H):

&= 2f2/d @ ho3, 0% 0"

o f is the Gb coupling with mass dimension (2 — d)/2 .
@ the flow of %hag is governed by the Ricci tensor:

d (1 _
o (f?hag> = 2c4k"? Ry .

@ one-loop UV non-trivial fixed point (d > 2):
5 d—2 D =
2 - - = 2 — fd=2 72
= (f2 = K2 )

(R Ricci scalar) [A. Codello and R. Percacci, PLB 672 (2009) 280]
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Gauging the NLoM

Gauged SU(N) chiral NLoM Euclidean action (the left part of the
isometry group SU(N)p x SU(N)g is gauged):

1 U [
5= 2f2/d$haﬂD QD”S"ﬁﬂlg?/dxF‘z‘”ﬂw

@ g is the gauge coupling.
o D,p® = 0,p* + Al [ () is the gauge covariant derivative,
R{*-right invariant Kllllng vectors (a,i=1,.., N* —1).

o Fi, =0,A, —9,A! + f11AL, AL is the gauge field strength.
@ the action is invariant under local SU(N), infinitesimal
transformations

5™ = —€4 R () S Al = Opueh, + fjliAfLelL.



Background field expansion and gauge fixing

Expand the fieds around nonconstant backgrounds % and A:
1 . _ .
wa:@a+€a7§1ﬂﬁaﬂ/£ﬂf’r+”' AL:A:L+GL'

&* normal coordinates (preserve background invariance).
Functional Taylor series expansion of the action:

S(p, A) = S(¢, A) + SV (@, 4;€,a) + SD (@, 4;€,a) +
The second order piece is:
1 _
S = 3 / d%z €% (—=D?hap — D@ DF@" Reang) &°
+ i d'zd}, < D?%8;;6M + DY DH65 + F* fpi5 + fz%(’“”
+ —/ddm (hayD*@*V 3R] + hagRIDH) €7,

where D, £% = V,£* + AL VgR3EP

)l
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Background gauge fixing term:

2
i

1 » .
Sgf = 2077 diz dis X' X’ with X' = DHd’ +Bf

The second order piece becomes:
(2) 1 d a 2 €M, N ﬂQ g2 B
3 1
el Kt G (o J%Dw 2P fus + St ) o)
+27 / d%z a** D, hary Vs RI P + ( ) / d'z Da},6;; R¢°

+Sgh.

where S, is the ghost action.
The case « = 3 = 1 is the generalization of the 't Hooft-Feynman gauge
fixing to the background field method.

6
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Functional RG study

RG study is done by using ERGE and heat-kernel techniques:

o dly 1 (8T o\ 5Fk AN

where 07 = (¢%,a’)) and t = log(k/ko).

u
Optimized cutoff kernels Ra and Ri:

1 2
=R (—Dg) 0
0 _ 1?2 3 c _ N2
R ( 0 g%Rk(_Dg) ) k Rk( Dc)
The t-derivative of the cutoff is
ary _ [ & [&Rk(—DE) +W§Rk(—D§)} 0
it 0 L [0, Ri(~D2) + nuRi(~D2)]

where 1 = —20;log f and 1, = —20;logg.



(B-functions in d = 4

System of linear equations for the 3 functions:

d 1 N 8 (1+na) 1<9+2 +1 > 1
7o T 2 2 =) 3\ Na T Mg 2
dt g (4m)? | (1 + %)3 6 3\4 8 1+ %2

2
d1 N K 1 4% +
dtf2 " (4m2 4 (14 L2 1+7§+J092(2+n§6%>
(1+ fz) 1+ %
One loop flow equations for g% < f2:
do_ _ N 29,

at? T 4n2a?

d -~ 3N 1 N -
dtf2‘2<1‘4<47r> >f2 apal




Fixed point - numerical result

Table:
cutoff and gauge fx Jx
typel, a =1 4m+/6/N | 0
type Il, a=1 | 8m\/2/3N | 0
type Il, a=0 | 8m\/2/3N | 0
Figure:
f 9
0.8
& 0.7
15 0.6
10 0.5
0.4
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t t
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Figure: Running of f and g for N =2 ind =4, f, ~21.7.
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SU(2) x U(1) gauged NLoM

If no Higgs, the spontaneous breaking of SU(2) x U(1) — U(1)
would be implemented by coupling the gauge bosons to the NLoM
Nambu-Goldstone bosons:

1
S = d*z hogD, ¢ D" ¢’ + te W W
2f2/ Z hogDpd o° + 4g /da;WW

+

157 /d4x B, B" (Euclidean action)

o 1/f? =v2/4 (v is the EW VEV), g and ¢’ are the gauge
couplings.
@ the gauge covariant derivative is

Dyu¢® =0,0° + W,R} — B,L§  «,i=1,2,3.

@ R/L are right/left invariant Killing vectors.
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(B-functions

The system of RGEs for f2, g% and ¢’ is (at one-loop):

dJFQ B 1 1 f4 1 J?4 292f2
2f* - {4(1+m%v)2+4(1+m2z)2+(1+mgv)3

dat (47)2

P gt 1 [ 163
dt  (4m)21+m2, | (L+mg)?2 2
dg/2 g/4 1

1
dt 6 (4m)21+m3,

where m3, = m%, /k* = g/ f2, m% = ¢’/ f* and m% = (¢*> + ¢'*)/ F>.
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U.V. limit (g2, "> < f?) of the RGEs:

df2 2 1 f~2 2 2 /2
Y _ofr = 6% + 3
a =Y 2(47r)2<f+9+9>
dg* ___g* 29

dt — (4m)% 2

dg/2 1 g/4

dt 6 (dm)2

Approximation of constant gauge couplings (¢ = g« = 0.65,

g =g. =0.35):

fo = /6472 — 692 — 392 ~ 25.06
Approximate solution for f2(k):
£213

2 _
= re-mn
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Scattering amplitude and perturbative unitarity

Elastic pion-pion scattering amplitude 7i7m? — 7*rt:

A(rird — wFrl) = A(s, t, )69 M+ A(t, 5, u)6F 57 + A(u, s, )60 67F

where A(s,t,u) = sf?/4.
Isospin amplitudes:

Ap = 3A(s,t,u) + A(t, s,u) + A(u, s, t)
Ay = A(t, s,u) — A(u, s, t)
Ay = A(t, s,u) + A(u, s, t)

Partial wave decomposition of Ay (I =0,1,2):

trg = —/ dcos® Pjy(cosf) Ay
647
The unitarity bound on the first partial wave:
sf2 1
too = —— < =
0= Gar <2
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RG improved unitarity bound
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The position of the fixed point is regularization scheme dependent,
inclusion of higher derivative operators may also move the fixed
point [R. Percacci and O. Zanusso, Phys. Rev. D 81 (2010),065012].
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S and T parameters

£ and £ operators that give contribution to electroweak
oblique parameters:

1 1 - 1
- 8 = Hv
L= 2f2 hoap D™ DHp” + 492 W Wi + 49" B B
= %D,@“DwﬁLng — 5B W, RiaL§
S and T' parameters computed in our model:
1 5 mg
S = -16 — |—= -1 —
7r0L1(mz)—i—67r [12 og<m2>] )

2 3 5 mir
T = = ==l A
aemao(mz) 87 cos? Oy {12 = <mz>}
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B functions | (ungauged case)

Lagrangian in absence of gauge interactions:

L= =—hapdup*dhpP .

1
212
New metric hqg = LLLL + L2L% + (1 — 2a0) L3 L3,
RG flow of the NLoM:

d 1. 1 .
— | Zhag | = ——=K’R,
it (Fh ﬁ) (@ s

In the basis of the right-invariant vectorfields:

A A 1 5 1
311=R22=§+a0, R33=-—ap.

2
One-loop beta functions of f2 and ag:

af? L n 1 41
= ! <2+““>

dao 1 o)
— 1-2 .
dt (@m0t = 2a0)

N | —
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SU(2)R broken

SU(2)r symmetric
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Two nontrivial Fixed Points:

FPI: f, = &r

FPIL: f, = 427



3 functions Il (gauged case)

One-loop beta functions (g2, g2 < f2):

df2 2 f2 2 2 12
C — = 142

i = 2 3y (Pr20) 460 +367)
dag 11 9 3 1

— = - 1 - 2a) + =

= 2 (@) (f ao( ao) + 59" )

dal o 1 72 1

at — (4r)? (f o 6) '

The two nontrivial Fixed Points of the ungauged case are slightly
shifted:

FPI: /. =25.1  ags = —0.000292 a1, = —0.000265
(1 relevant and 2 irrelevant directions)

FPII: f. =17.7  ag. = 0.501 a1, = —0.000530
(2 relevant and 1 irrelevant directions)
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Comparison with experimental bounds

Figure: The half-line (FPII endpoints) and the dot (FPI endpoint) show
the values permitted by asymptotic safety. The ellipses show the 1 and 2
o experimental bounds with my=117GeV [PDG, J. Phys. G, 37, 075021
(2010)].
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Fermions and Goldstone bosons

SU(N)r x SU(N)pg invariant nonlinear sigma model lagrangian
coupled to fermions:

1 _ _
L=l (V10,0004 ) + BrinSypr, + i Qv

2R | i ia
3 (YPUYy% +he.). (1/f =v/2)

U = ef™Ta is SU(N) valued scalar field, 7* Goldstone bosons.
i in the fundamental of SU(N)p g and SU(N,)

Degenerate fermion multiplet of mass

h
m=2— = hv,

f

h is the Yukawa coupling.
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Beta functions

One-loop RG equations for f and h using sharp cutoff
regularization:

df

_ i3
dt - f 2f f7
dh 1 N2—1 1 N2-2 .
= = AN, — h3 hf?.
& = Ton? ( N ) o N
Fixed Points:

FPI (he =0, f. = 0) = trivial
FPIl (hy =0, f» = 87/v/N) = h = 0 at all scales

FPIIl (ks # 0, f« #0) = N > 2N, (not true for the most
phenomenologically important case N =2, N, = 3)
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Four-fermion interactions

Fix N = 2, we add to the lagrangian a complete set of
SU(2)r x SU(2)g four fermion operators:

Ly = N (9 JW )+A2 (vievRvh z“)
+ g (BievwEE vl + PR vl )
+ A (Dl W;‘w SRR YR

@ These four-fermion interactions have been studied also by
Gies, Jaeckel and Wetterich [PRD 69 105008 (2004)];

@ We do not seek to model chiral symmetry breaking;

@ In our RG analysis we consider only the third family of quarks,
Pt = (tb);

o In the case of SU(2) x U(1) there would be 10 operator.



Beta functions

One-loop RG equations for f h and \; = k2 (sharp cutoff):

df
dt
dh

dt

d\
dt
ds
dt
d)s
dt
d\s
dt

f- 2f3 f
1 5
AN, — 3+ —(NA1 + A2) | B3
162[ 3—|—f2( 1+ 2)]
L2 _16(v,5 +30)]
642 f2—=16(NcA1 + A2)
_ 1 [y 3z x - -
2\ — m -NCA1 + 5)\1)\2 — 2X A3 — 4 i\
2+~ [ 152 4 4% g + 20 he — D32+ 221, — 1)Fak
2t 13 3 1 1A3 1A = 7 A c 273
~ 1 1z = N < ~q -
2)\34-72 *)\1)\24-f)\g—i-(QNc—1))\3+2(Nc+2))\3)\4
474 | 4 8
3 1 [1s, 13 12
2/\44—72 A7 —4Ashg + (N +2)N\] ]| -
474 | 8
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Fixed points table (f. = 17.78, h, = 0)

A1 Az A3 M| e ]
fp0 0 0 0 0 0.5
fpla 0 | —-2871] —7.18 0 1.22
fplb [[ 0 0 785 | —951 [ 05
[fplc | 0 ] 2561 [ —427 [ 0 [ —-0.15]
fpld [ 25.80 [ —1.77 [ 019 | —1.15 [ —1.42
fp2a || 13.41 | 20.10 [ —3.80 | —0.24 | —1.03
fp2b [ 20.86 | —3.56 | 7.04 | —8.94 | —1.00
fp2c 0 | -3655] 234 [ -13.92| 1.43
fp2d 0 0 —15.79 0 05
fp2e || 37.17 | —37.36 | —8.43 | —1.65 | —1.38
fp2f [ —2.92 | 3259 [ 4.67 | —12.04 | —0.10
fp3a [ 0. 31.67 | 4.67 [ —12.06 | —0.30
fp3b [ 19.95 [ —8.59 [ —15.27 | —0.36 | —0.80
fp3c || 31.22 | —4452 [ 0.73 | —13.38 | —0.74
fp3d || —4.87 [ 154 | —5.42 | —20.10 [ 0.83
fp4 0 0 —5.42 | —20.13 [ 0.5
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Numerical solution, initial conditions hg = m;/v and fo=2:

25 T 1

~=10xh, no &;
—10xh_
==1, N0 A;

t

Running of f and h for N =2 and N, = 3. Without four-fermion
interactions, the AS behavior of f is destabilized around ¢t = 3.5
(N 8, 3 TeV). 25/28



Experimental constraints

Current bounds on contact interactions have been published for
the case in which only one operator is considered [ E. Eichten,
K. D. Lane, M. E. Peskin, PRL 50 (1983) 811], here ¢! = (u d):

AT A —. T :
Lagaq = 9A2 PRy PR (A= =£1).

The experimental bound is a lower bound of the so-called contact

interaction scale A:
27

e
Current published bound [ATLAS Collaboration, arXiv:1103.3864 hep-ex]:

(k)

A >9.5TeV  with 36 pb.
Future expected bound [ATLAS and CMS, arXiv:0709.2518 hep-ph]:

A > 30TeV with 100fb~ 1.
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We enforce the same bound on all the coefficients (conservative

but unrealistic), \;(k) < 27k /Apound:
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Figure: RG evolution of \; towards the IR for the point fplc.
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Summary and Conclusions

@ There seem to exist fixed point for the gauged NLoM in
which only the leading two-derivative operator is considered.

@ The position of the fixed point depends on the scheme of
regularization and inclusion of higher derivative operators may
also move the fixed point.

@ In the case of the electroweak chiral lagrangian we were able
to study some phenomenology emerging from the AS picture.

@ AS seems to be compatible with electroweak precision
measurement. It is possible to obtain estimations of S and T’
parameters in agreement with experimental data.

@ Coupling the NLoM to fermion we have that, in the case of
SU(2) x U(1), the model is no more AS.

@ AS can be restored introducing effective four-fermion
interactions that satisfy current LHC experimental bounds on
contact interactions.
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