First steps toward an asymptotically safe model of electroweak interactions

(with M. Fabbrichesi, R. Percacci, F. Bazzocchi, L. Vecchi and O. Zanusso)

Alberto Tonero

SISSA Trieste - Asymptotic Safety Seminar

June 6, 2011

Motivations

The minimal realization of the SM would include only fundamental particles already discovered (no Higgs boson).

EW symmetry implemented by coupling fermions and gauge bosons to the corresponding Nambu-Goldstone bosons described by a Nonlinear σ Model.

Two strong arguments against this picture:

- violation of unitarity;
- EW precision measurements;

Both these arguments may be avoided if this EW symmetry breaking sector is Asymptotically Safe.

The Nonlinear σ Model (NL σ M)

The NL σ M action describes the physics of the Goldstone bosons (Gb) of a spontaneously broken symmetry $(G \rightarrow H)$:

$$\mathcal{S} = \frac{1}{2f^2} \int d^d x \, h_{\alpha\beta} \partial_\mu \varphi^\alpha \partial^\mu \varphi^\beta$$

• f is the Gb coupling with mass dimension (2-d)/2 . • the flow of $\frac{1}{f^2}h_{\alpha\beta}$ is governed by the Ricci tensor:

$$\frac{d}{dt}\left(\frac{1}{f^2}h_{\alpha\beta}\right) = 2c_d k^{d-2} R_{\alpha\beta} \,.$$

• one-loop UV non-trivial fixed point (d > 2):

$$\tilde{f}^2_* = \frac{d-2}{2} \frac{D}{c_d R}.$$
 $(\tilde{f}^2 = k^{d-2} f^2)$

(R Ricci scalar) [A. Codello and R. Percacci, PLB 672 (2009) 280]

Gauging the NL σ M

Gauged SU(N) chiral NL σ M Euclidean action (the left part of the isometry group $SU(N)_L \times SU(N)_R$ is gauged):

$$\mathcal{S} = \frac{1}{2f^2} \int d^d x \, h_{\alpha\beta} D_\mu \varphi^\alpha D^\mu \varphi^\beta + \frac{1}{4g^2} \int d^d x \, F^i_{\mu\nu} F^{\mu\nu}_i$$

- g is the gauge coupling.
- $D_{\mu}\varphi^{\alpha} = \partial_{\mu}\varphi^{\alpha} + A^{i}_{\mu}R^{\alpha}_{i}(\varphi)$ is the gauge covariant derivative, R^{α}_{i} -right invariant Killing vectors ($\alpha, i = 1, ..., N^{2} - 1$).
- $F^i_{\mu\nu} = \partial_\mu A^i_
 u \partial_
 u A^i_\mu + f^i{}_{jl} A^j_\mu A^l_
 u$ is the gauge field strength.
- the action is invariant under local $SU(N)_L$ infinitesimal transformations

$$\delta_{\epsilon}\varphi^{\alpha} = -\epsilon_{L}^{i}R_{i}^{\alpha}(\varphi) \qquad \qquad \delta_{\epsilon}A_{\mu}^{i} = \partial_{\mu}\epsilon_{L}^{i} + f_{jl}{}^{i}A_{\mu}^{j}\epsilon_{L}^{l} \,.$$

Background field expansion and gauge fixing

Expand the fieds around nonconstant backgrounds $\bar{\varphi}$ and \bar{A} :

$$\varphi^{\alpha} = \bar{\varphi}^{\alpha} + \xi^{\alpha} - \frac{1}{2} \Gamma_{\beta}{}^{\alpha}{}_{\gamma} \xi^{\beta} \xi^{\gamma} + \dots \qquad A^{i}_{\mu} = \bar{A}^{i}_{\mu} + a^{i}_{\mu} \,.$$

 ξ^{α} normal coordinates (preserve background invariance). Functional Taylor series expansion of the action:

$$\mathcal{S}(\varphi, A) = \mathcal{S}(\bar{\varphi}, \bar{A}) + \mathcal{S}^{(1)}(\bar{\varphi}, \bar{A}; \xi, a) + \mathcal{S}^{(2)}(\bar{\varphi}, \bar{A}; \xi, a) + \dots$$

The second order piece is:

$$\begin{split} \mathcal{S}^{(2)} &= \frac{1}{2f^2} \int d^d x \, \xi^\alpha \left(-\bar{D}^2 h_{\alpha\beta} - D_\mu \bar{\varphi}^\epsilon D^\mu \bar{\varphi}^\eta R_{\epsilon\alpha\eta\beta} \right) \xi^\beta \\ &+ \frac{1}{2g^2} \int d^d x \, a^i_\mu \left(-\bar{D}^2 \delta_{ij} \delta^{\mu\nu} + \bar{D}^\nu \bar{D}^\mu \delta_{ij} + \bar{F}^{\ell\mu\nu} f_{\ell ij} + \frac{g^2}{f^2} \delta_{ij} \delta^{\mu\nu} \right) a^j_\nu \\ &+ \frac{1}{f^2} \int d^d x \, a^i_\mu \left(h_{\alpha\gamma} D^\mu \bar{\varphi}^\alpha \nabla_\beta R^\gamma_i + h_{\alpha\beta} R^\alpha_i \bar{D}^\mu \right) \xi^\beta \,, \end{split}$$

where $\bar{D}_{\mu}\xi^{\alpha} = \nabla_{\mu}\xi^{\alpha} + \bar{A}^{i}_{\mu}\nabla_{\beta}R^{\alpha}_{i}\xi^{\beta}$.

Background gauge fixing term:

$$\mathcal{S}_{gf} = rac{1}{2lpha g^2} \int d^d x \, \delta_{ij} \chi^i \chi^j \qquad ext{with} \qquad \chi^i = ar{D}^\mu a^i_\mu + eta rac{g^2}{f^2} R^i_lpha \xi^lpha$$

The second order piece becomes:

$$\begin{split} \mathcal{S}^{(2)} &= \frac{1}{2f^2} \int d^d x \, \xi^\alpha \left(-D^2 h_{\alpha\beta} - D_\mu \varphi^\epsilon D^\mu \varphi^\eta R_{\epsilon\alpha\eta\beta} + \frac{\beta^2}{\alpha} \frac{g^2}{f^2} h_{\alpha\beta} \right) \xi^\beta \\ &+ \frac{1}{2g^2} \int d^d x \, a^i_\mu \left(-D^2 \delta^{\mu\nu}_{ij} + \left(1 - \frac{1}{\alpha} \right) \delta_{ij} D^\mu D^\nu - 2F^{\ell\mu\nu} f_{i\ell j} + \frac{g^2}{f^2} \delta^{\mu\nu}_{ij} \right) a^j_\nu \\ &+ 2\frac{1}{f^2} \int d^d x \, a^{\mu i} D_\mu \varphi^\alpha h_{\alpha\gamma} \nabla_\beta R^\gamma_i \xi^\beta + \frac{1}{f^2} \left(\frac{\beta}{\alpha} - 1 \right) \int d^d x \, D^\mu a^i_\mu \delta_{ij} R^j_\beta \xi^\beta \\ &+ \mathcal{S}_{gh} \, . \end{split}$$

where S_{gh} is the ghost action.

The case $\alpha = \beta = 1$ is the generalization of the 't Hooft-Feynman gauge fixing to the background field method.

Functional RG study

RG study is done by using ERGE and heat-kernel techniques:

$$\dot{\Gamma}_{k} = \frac{d\Gamma_{k}}{dt} = \frac{1}{2} \operatorname{Tr} \left(\frac{\delta^{2} \Gamma_{k}}{\delta \theta \delta \theta} + \mathcal{R}_{k}^{\theta} \right)^{-1} \dot{\mathcal{R}}_{k}^{\theta} - \operatorname{Tr} \left(\frac{\delta^{2} \Gamma_{k}}{\delta \bar{c} \delta c} + \mathcal{R}_{k}^{c} \right)^{-1} \dot{\mathcal{R}}_{k}^{c}$$

where $\theta^T = (\xi^i, a^i_\mu)$ and $t = \log(k/k_0)$. Optimized cutoff kernels \mathcal{R}^{θ}_k and \mathcal{R}^{c}_k :

$$\mathcal{R}_{k}^{\theta} = \begin{pmatrix} \frac{1}{f^{2}} R_{k}(-D_{\xi}^{2}) & 0\\ 0 & \frac{1}{g^{2}} R_{k}(-D_{a}^{2}) \end{pmatrix} \qquad \qquad \mathcal{R}_{k}^{c} = R_{k}(-D_{c}^{2})$$

The *t*-derivative of the cutoff is

$$\frac{d\mathcal{R}_{k}^{\theta}}{dt} = \begin{pmatrix} \frac{1}{f^{2}} \left[\partial_{t} R_{k}(-D_{\xi}^{2}) + \eta_{\xi} R_{k}(-D_{\xi}^{2}) \right] & 0 \\ 0 & \frac{1}{g^{2}} \left[\partial_{t} R_{k}(-D_{a}^{2}) + \eta_{a} R_{k}(-D_{a}^{2}) \right] \end{pmatrix}$$

where $\eta_{\xi} = -2\partial_t \log f$ and $\eta_a = -2\partial_t \log g$.

β -functions in d = 4

System of linear equations for the β functions:

$$\frac{d}{dt}\frac{1}{g^2} = \frac{N}{(4\pi)^2} \left[\frac{8}{(1+\frac{g^2}{\tilde{f}^2})^3} \left(1+\frac{\eta_a}{6}\right) - \frac{1}{3} \left(\frac{9}{4} + 2\eta_a + \frac{1}{8}\eta_\xi\right) \frac{1}{1+\frac{g^2}{\tilde{f}^2}} \right]$$

$$\frac{d}{dt}\frac{1}{f^2} = \frac{N}{(4\pi)^2}\frac{k^2}{4}\frac{1}{(1+\frac{g^2}{\tilde{f}^2})^2}\left[1+\frac{\eta_{\xi}}{6}+\frac{4\frac{g^2}{\tilde{f}^2}}{1+\frac{g^2}{\tilde{f}^2}}\left(2+\frac{\eta_{\xi}+\eta_a}{6}\right)\right].$$

One loop flow equations for $g^2 \ll \tilde{f}^2$:

$$\frac{d}{dt}g^2 = -\frac{N}{(4\pi)^2}\frac{29}{4}g^4$$

$$\frac{d}{dt}\tilde{f}^2 = 2\left(1 - \frac{3N}{4(4\pi)^2}g^2\right)\tilde{f}^2 - \frac{1}{(4\pi)^2}\frac{N}{4}\tilde{f}^4$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fixed point - numerical result

Table:

cutoff and gauge	\widetilde{f}_*	g_*
type I, $\alpha = 1$	$4\pi\sqrt{6/N}$	0
type II, $\alpha = 1$	$8\pi\sqrt{2/3N}$	0
type II, $\alpha = 0$	$8\pi\sqrt{2/3N}$	0

Figure:

$SU(2)\times U(1)$ gauged ${\rm NL}\sigma{\rm M}$

If no Higgs, the spontaneous breaking of $SU(2) \times U(1) \rightarrow U(1)$ would be implemented by coupling the gauge bosons to the NL σ M Nambu-Goldstone bosons:

$$\begin{split} \mathcal{S} &= \frac{1}{2f^2} \int d^4x \, h_{\alpha\beta} D_\mu \phi^\alpha D^\mu \phi^\beta + \frac{1}{4g^2} \int d^4x \, W^i_{\mu\nu} W^{\mu\nu}_i \\ &+ \frac{1}{4g'^2} \int d^4x \, B_{\mu\nu} B^{\mu\nu} \end{split} \tag{Euclidean action}$$

- $1/f^2 = v^2/4$ (v is the EW VEV), g and g' are the gauge couplings.
- the gauge covariant derivative is

$$D_{\mu}\phi^{\alpha} = \partial_{\mu}\phi^{\alpha} + W^{i}_{\mu}R^{\alpha}_{i} - B_{\mu}L^{\alpha}_{3} \qquad \alpha, i = 1, 2, 3.$$

• R/L are right/left invariant Killing vectors.

イロン (行) イヨン (ヨン) (の)

β -functions

The system of RGEs for \tilde{f}^2 , g^2 and g'^2 is (at one-loop):

$$\begin{split} \frac{d\tilde{f}^2}{dt} &= 2\tilde{f}^2 - \frac{1}{(4\pi)^2} \Biggl\{ \frac{1}{4} \frac{\tilde{f}^4}{(1+\tilde{m}_W^2)^2} + \frac{1}{4} \frac{\tilde{f}^4}{(1+\tilde{m}_Z^2)^2} + \frac{2g^2\tilde{f}^2}{(1+\tilde{m}_W^2)^3} \\ &+ \frac{g'^2\tilde{f}^2}{(1+\tilde{m}_W^2)(1+\tilde{m}_B^2)} \left[\frac{1}{(1+\tilde{m}_W^2)} + \frac{1}{(1+\tilde{m}_B^2)} \right] \\ &+ \frac{g^2\tilde{f}^2}{(1+\tilde{m}_W^2)(1+\tilde{m}_Z^2)} \left[\frac{1}{(1+\tilde{m}_W^2)} + \frac{1}{(1+\tilde{m}_Z^2)} \right] \Biggr\} \\ \frac{dg^2}{dt} &= \frac{g^4}{(4\pi)^2} \frac{1}{1+\tilde{m}_W^2} \left[-\frac{16}{(1+\tilde{m}_W^2)^2} + \frac{3}{2} \right] \\ \frac{dg'^2}{dt} &= \frac{1}{6} \frac{g'^4}{(4\pi)^2} \frac{1}{1+\tilde{m}_W^2} \end{split}$$

where $\tilde{m}_W^2 = m_W^2/k^2 = g^2/\tilde{f}^2$, $\tilde{m}_B^2 = g'^2/\tilde{f}^2$ and $\tilde{m}_Z^2 = (g^2 + g'^2)/\tilde{f}^2.$

U.V. limit $(g^2, g'^2 \ll \tilde{f}^2)$ of the RGEs:

$$\begin{aligned} \frac{d\tilde{f}^2}{dt} &= 2\tilde{f}^2 - \frac{1}{2} \frac{\tilde{f}^2}{(4\pi)^2} \left(\tilde{f}^2 + 6g^2 + 3g'^2\right) \\ \frac{dg^2}{dt} &= -\frac{g^4}{(4\pi)^2} \frac{29}{2} \\ \frac{dg'^2}{dt} &= \frac{1}{6} \frac{g'^4}{(4\pi)^2} \end{aligned}$$

Approximation of constant gauge couplings ($g = g_* = 0.65$, $g' = g'_* = 0.35$):

$$\tilde{f}_* = \sqrt{64\pi^2 - 6g_*^2 - 3g_*'^2} \simeq 25.06$$

Approximate solution for $f^2(k)$:

$$f^{2}(k) = \frac{\tilde{f}_{*}^{2} f_{0}^{2}}{\tilde{f}_{*}^{2} + (k^{2} - k_{0}^{2}) f_{0}^{2}} \,.$$

Scattering amplitude and perturbative unitarity

Elastic pion-pion scattering amplitude $\pi^i \pi^j \rightarrow \pi^k \pi^l$:

$$\begin{split} A(\pi^{i}\pi^{j} \to \pi^{k}\pi^{l}) &= A(s,t,u)\delta^{ij}\delta^{kl} + A(t,s,u)\delta^{ik}\delta^{jl} + A(u,s,t)\delta^{il}\delta^{jk} \\ \text{where } A(s,t,u) &= sf^{2}/4. \\ \text{Isospin amplitudes:} \end{split}$$

$$A_{0} = 3A(s, t, u) + A(t, s, u) + A(u, s, t)$$
$$A_{1} = A(t, s, u) - A(u, s, t)$$
$$A_{2} = A(t, s, u) + A(u, s, t)$$

Partial wave decomposition of A_I (I = 0, 1, 2):

$$t_{IJ} = \frac{1}{64\pi} \int_{-1}^{1} \mathrm{d}\cos\theta \ P_J(\cos\theta) \ A_I$$

The unitarity bound on the first partial wave:

$$t_{00} = \frac{sf^2}{64\pi} < \frac{1}{2} \,.$$

13 / 28

イロン (行) イヨン (ヨン) (の)

RG improved unitarity bound

The position of the fixed point is regularization scheme dependent, inclusion of higher derivative operators may also move the fixed point [R. Percacci and O. Zanusso, Phys. Rev. D **81** (2010) 065012].

S and T parameters

 $\mathcal{L}^{(0)}$ and $\mathcal{L}^{(1)}$ operators that give contribution to electroweak oblique parameters:

$$\mathcal{L} = \frac{1}{2f^2} h_{\alpha\beta} D_{\mu} \varphi^{\alpha} D^{\mu} \varphi^{\beta} + \frac{1}{4g^2} W^{i}_{\mu\nu} W^{\mu\nu}_{i} + \frac{1}{4g'^2} B_{\mu\nu} B^{\mu\nu} - \frac{a_0}{f^2} D_{\mu} \varphi^{\alpha} D^{\mu} \varphi^{\beta} L^{3}_{\alpha} L^{3}_{\beta} - \frac{a_1}{2} B^{\mu\nu} W^{i}_{\mu\nu} R_{i\alpha} L^{\alpha}_{3}$$

S and T parameters computed in our model:

$$S = -16\pi a_1(m_Z) + \frac{1}{6\pi} \left[\frac{5}{12} - \log\left(\frac{m_H}{m_Z}\right) \right],$$

$$T = \frac{2}{\alpha_{em}} a_0(m_Z) - \frac{3}{8\pi \cos^2 \theta_W} \left[\frac{5}{12} - \log\left(\frac{m_H}{m_Z}\right) \right].$$

β functions I (ungauged case)

Lagrangian in absence of gauge interactions:

$$\mathcal{L} = \frac{1}{2f^2} \hat{h}_{\alpha\beta} \partial_\mu \varphi^\alpha \partial^\mu \varphi^\beta$$

New metric $\hat{h}_{\alpha\beta} = L^1_{\alpha}L^1_{\beta} + L^2_{\alpha}L^2_{\beta} + (1-2a_0)L^3_{\alpha}L^3_{\beta}$. RG flow of the NL σ M:

$$\frac{d}{dt}\left(\frac{1}{f^2}\hat{h}_{\alpha\beta}\right) = \frac{1}{(4\pi)^2}k^2\hat{R}_{\alpha\beta}$$

In the basis of the right-invariant vectorfields:

$$\hat{R}_{11} = \hat{R}_{22} = \frac{1}{2} + a_0, \qquad \hat{R}_{33} = \frac{1}{2} - a_0.$$

One-loop beta functions of \tilde{f}^2 and a_0 :

$$\frac{d\tilde{f}^2}{dt} = 2\tilde{f}^2 - \frac{1}{(4\pi)^2}\tilde{f}^4\left(\frac{1}{2} + a_0\right)$$

$$\frac{da_0}{dt} = \frac{1}{2}\frac{1}{(4\pi)^2}\tilde{f}^2a_0(1 - 2a_0) .$$

Two nontrivial Fixed Points:

FPI: $\tilde{f}_* = 8\pi$ $a_{0*} = 0$ $SU(2)_R$ symmetric FPII: $\tilde{f}_* = 4\sqrt{2}\pi$ $a_{0*} = 1/2$ $SU(2)_R$ broken 30 20 10 a_0 0.5 ◆□ → ◆□ → ◆三 → ◆三 → ○へ⊙

β functions II (gauged case)

One-loop beta functions $(g^2, g'^2 \ll \tilde{f}^2)$:

$$\frac{d\tilde{f}^2}{dt} = 2\tilde{f}^2 - \frac{1}{2}\frac{\tilde{f}^2}{(4\pi)^2} \left(\tilde{f}^2(1+2a_0) + 6g^2 + 3g'^2\right),$$

$$\frac{da_0}{dt} = \frac{1}{2}\frac{1}{(4\pi)^2} \left(\tilde{f}^2a_0(1-2a_0) + \frac{3}{2}g'^2\right),$$

$$\frac{da_1}{dt} = \frac{1}{(4\pi)^2} \left(\tilde{f}^2a_1 + \frac{1}{6}\right).$$

The two nontrivial Fixed Points of the ungauged case are slightly shifted:

FPI: $\tilde{f}_* = 25.1$ $a_{0*} = -0.000292$ $a_{1*} = -0.000265$ (1 relevant and 2 irrelevant directions)

FPII: $\tilde{f}_* = 17.7$ $a_{0*} = 0.501$ $a_{1*} = -0.000530$ (2 relevant and 1 irrelevant directions)

Comparison with experimental bounds

Figure: The half-line (FPII endpoints) and the dot (FPI endpoint) show the values permitted by asymptotic safety. The ellipses show the 1 and 2 σ experimental bounds with m_H =117GeV [PDG, J. Phys. G, 37, 075021 (2010)].

Fermions and Goldstone bosons

 $SU(N)_L \times SU(N)_R$ invariant nonlinear sigma model lagrangian coupled to fermions:

$$\mathcal{L} = -\frac{1}{f^2} \operatorname{Tr} \left(U^{\dagger} \partial_{\mu} U U^{\dagger} \partial^{\mu} U \right) + \bar{\psi}_L i \gamma^{\mu} \partial_{\mu} \psi_L + \bar{\psi}_R i \gamma^{\mu} \partial_{\mu} \psi_R - \frac{2h}{f} \left(\bar{\psi}_L^{ia} U^{ij} \psi_R^{ja} + \text{h.c.} \right). \qquad (1/f = v/2)$$

 $U=e^{if\pi^aT_a}$ is SU(N) valued scalar field, π^a Goldstone bosons. $\psi^{ia}_{L/R}$ in the fundamental of $SU(N)_{L/R}$ and $SU(N_c)$

Degenerate fermion multiplet of mass

$$m = 2\frac{h}{f} = h\upsilon\,,$$

h is the Yukawa coupling.

Beta functions

One-loop RG equations for \tilde{f} and h using sharp cutoff regularization:

$$\begin{aligned} \frac{df}{dt} &= \tilde{f} - \frac{N}{64\pi^2} \tilde{f}^3 + \frac{N_c}{4\pi^2} h^2 \tilde{f} ,\\ \frac{dh}{dt} &= \frac{1}{16\pi^2} \left(4N_c - 2\frac{N^2 - 1}{N} \right) h^3 + \frac{1}{64\pi^2} \frac{N^2 - 2}{N} h \tilde{f}^2 . \end{aligned}$$

Fixed Points:

FPI $(h_* = 0, \tilde{f}_* = 0) \Rightarrow$ trivial

FPII $(h_* = 0, \tilde{f}_* = 8\pi/\sqrt{N}) \Rightarrow h = 0$ at all scales

FPIII $(h_* \neq 0, \tilde{f}_* \neq 0) \Rightarrow N > 2N_c$ (not true for the most phenomenologically important case $N = 2, N_c = 3$)

Four-fermion interactions

Fix N = 2, we add to the lagrangian a complete set of $SU(2)_L \times SU(2)_R$ four fermion operators:

$$\begin{aligned} \mathcal{L}_{\psi^4} &= \lambda_1 \left(\bar{\psi}_L^{ia} \psi_R^{ja} \bar{\psi}_R^{jb} \psi_L^{ib} \right) + \lambda_2 \left(\bar{\psi}_L^{ia} \psi_R^{jb} \bar{\psi}_R^{jb} \psi_L^{ia} \right) \\ &+ \lambda_3 \left(\bar{\psi}_L^{ia} \gamma_\mu \psi_L^{ia} \bar{\psi}_L^{jb} \gamma^\mu \psi_L^{jb} + \bar{\psi}_R^{ia} \gamma_\mu \psi_R^{ia} \bar{\psi}_R^{jb} \gamma^\mu \psi_R^{jb} \right) \\ &+ \lambda_4 \left(\bar{\psi}_L^{ia} \gamma_\mu \psi_L^{ib} \bar{\psi}_L^{jb} \gamma^\mu \psi_L^{ja} + \bar{\psi}_R^{ia} \gamma_\mu \psi_R^{ib} \bar{\psi}_R^{jb} \gamma^\mu \psi_R^{ja} \right) \end{aligned}$$

- These four-fermion interactions have been studied also by Gies, Jaeckel and Wetterich [PRD 69 105008 (2004)];
- We do not seek to model chiral symmetry breaking;
- In our RG analysis we consider only the third family of quarks, $\psi^t = (t \ b);$
- In the case of $SU(2) \times U(1)$ there would be 10 operator.

Beta functions

One-loop RG equations for \tilde{f}, h and $\tilde{\lambda}_i = k^2 \lambda_i$ (sharp cutoff):

$$\begin{aligned} \frac{d\tilde{f}}{dt} &= \tilde{f} - \frac{1}{32\pi^2} \tilde{f}^3 + \frac{N_c}{4\pi^2} h^2 \tilde{f} \\ \frac{dh}{dt} &= \frac{1}{16\pi^2} \left[4N_c - 3 + \frac{16}{\tilde{f}^2} (N_c \tilde{\lambda}_1 + \tilde{\lambda}_2) \right] h^3 \\ &+ \frac{1}{64\pi^2} \left[\tilde{f}^2 - \mathbf{16} (N_c \tilde{\lambda}_1 + \tilde{\lambda}_2) \right] h \\ \frac{d\tilde{\lambda}_1}{dt} &= 2\tilde{\lambda}_1 - \frac{1}{4\pi^2} \left[N_c \tilde{\lambda}_1^2 + \frac{3}{2} \tilde{\lambda}_1 \tilde{\lambda}_2 - 2\tilde{\lambda}_1 \tilde{\lambda}_3 - 4\tilde{\lambda}_1 \tilde{\lambda}_4 \right] \\ \frac{d\tilde{\lambda}_2}{dt} &= 2\tilde{\lambda}_2 + \frac{1}{4\pi^2} \left[\frac{1}{4} \tilde{\lambda}_1^2 + 4\tilde{\lambda}_1 \tilde{\lambda}_3 + 2\tilde{\lambda}_1 \tilde{\lambda}_4 - \frac{3}{4} \tilde{\lambda}_2^2 + 2(2N_c - 1)\tilde{\lambda}_2 \tilde{\lambda}_3 \right] \\ \frac{d\tilde{\lambda}_3}{dt} &= 2\tilde{\lambda}_3 + \frac{1}{4\pi^2} \left[\frac{1}{4} \tilde{\lambda}_1 \tilde{\lambda}_2 + \frac{N_c}{8} \tilde{\lambda}_2^2 + (2N_c - 1)\tilde{\lambda}_3^2 + 2(N_c + 2)\tilde{\lambda}_3 \tilde{\lambda}_4 \right] \\ \frac{d\tilde{\lambda}_4}{dt} &= 2\tilde{\lambda}_4 + \frac{1}{4\pi^2} \left[\frac{1}{8} \tilde{\lambda}_1^2 - 4\tilde{\lambda}_3 \tilde{\lambda}_4 + (N_c + 2)\tilde{\lambda}_4^2 \right]. \end{aligned}$$

Fixed points table ($\tilde{f}_* = 17.78$, $h_* = 0$)

	$\tilde{\lambda}_1$	$ ilde{\lambda}_2$	$ ilde{\lambda}_3$	$ ilde{\lambda}_4$	ϵ_h
fp0	0	0	0	0	0.5
fp1a	0	-28.71	-7.18	0	1.22
fp1b	0	0	7.85	-9.51	0.5
fp1c	0	25.61	-4.27	0	-0.15
fp1d	25.80	-1.77	0.19	-1.15	-1.42
fp2a	13.41	20.10	-3.80	-0.24	-1.03
fp2b	20.86	-3.56	7.04	-8.94	-1.00
fp2c	0	-36.55	2.34	-13.92	1.43
fp2d	0	0	-15.79	0	0.5
fp2e	37.17	-37.36	-8.43	-1.65	-1.38
fp2f	-2.92	32.59	4.67	-12.04	-0.10
fp3a	0.	31.67	4.67	-12.06	-0.30
fp3b	19.95	-8.59	-15.27	-0.36	-0.80
fp3c	31.22	-44.52	0.73	-13.38	-0.74
fp3d	-4.87	1.54	-5.42	-20.10	0.83
fp4	0	0	-5.42	-20.13	0.5

Numerical solution, initial conditions $h_0 = m_t/v$ and $\tilde{f}_0 = 2$:

Running of \tilde{f} and h for N = 2 and $N_c = 3$. Without four-fermion interactions, the AS behavior of \tilde{f} is destabilized around t = 3.5 (~ 8, 3 TeV).

Experimental constraints

Current bounds on contact interactions have been published for the case in which only one operator is considered [E. Eichten, K. D. Lane, M. E. Peskin, PRL **50** (1983) 811], here $\psi^t = (u \ d)$:

$$\mathcal{L}_{qqqq} = \frac{4\pi A}{2\Lambda^2} \,\bar{\psi}_L^{ia} \gamma_\mu \psi_L^{ia} \bar{\psi}_L^{jb} \gamma^\mu \psi_L^{jb} \qquad (A = \pm 1) \,.$$

The experimental bound is a lower bound of the so-called contact interaction scale Λ :

$$\lambda(k) = rac{2\pi}{\Lambda^2} \, .$$

Current published bound [ATLAS Collaboration, arXiv:1103.3864 hep-ex]:

$$\Lambda > 9.5$$
TeV with $36 \, \mathrm{pb}^{-1}$.

Future expected bound [ATLAS and CMS, arXiv:0709.2518 hep-ph]:

 $\Lambda > 30 {\rm TeV} \qquad {\rm with} \ 100 \, {\rm fb}^{-1}.$

・ロット (日) ・ (日) ・ (日) ・ (日)

We enforce the same bound on all the coefficients (conservative but unrealistic), $\tilde{\lambda}_i(k) < 2\pi k^2 / \Lambda_{bound}$:

Figure: RG evolution of $\tilde{\lambda}_i$ towards the IR for the point fp1c.

Summary and Conclusions

- There seem to exist fixed point for the gauged NL σ M in which only the leading two-derivative operator is considered.
- The position of the fixed point depends on the scheme of regularization and inclusion of higher derivative operators may also move the fixed point.
- In the case of the electroweak chiral lagrangian we were able to study some phenomenology emerging from the AS picture.
- AS seems to be compatible with electroweak precision measurement. It is possible to obtain estimations of S and T parameters in agreement with experimental data.
- Coupling the NL σ M to fermion we have that, in the case of $SU(2) \times U(1)$, the model is no more AS.
- AS can be restored introducing effective four-fermion interactions that satisfy current LHC experimental bounds on contact interactions.