LIGHT FERMIONS IN QUANTUM GRAVITY

Astrid Eichhorn

in collaboration with Holger Gies

based on arXiv:1104.5366

Friedrich-Schiller-Universität Jena

Asymptotic Safety Seminar, 18.07.2011

seit 1558

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

2 EXISTENCE OF LIGHT FERMIONS: FLOW EQUATION STUDIES

3 Results: Light fermions in QG

Phenomenology of quantum gravity

• new (to be observed) effects from QG

- problem: (expected) typical scale of QG effects $M_{
 m Planck} \sim 10^{19} {
 m GeV}$
- cosmology/ astrophysics?
- extra dimensions?

• compatibility of QG with physics that has already been observed

- existence of semiclassical regime, where GR description holds
- compatibility with existence of matter, in particular preserve observed low-energy properties of matter

 \rightarrow mandatory requirements! \rightarrow can be used to rule out QG proposals

MATTER AND ASYMPTOTICALLY SAFE QG

coupling to matter: $\partial_t \Gamma_k =$

• What happens to the NGFP under the inclusion of matter?

 \rightarrow minimally coupled matter compatible with NGFP at $G_* > 0$ for many matter models (e.g. Standard Model) [Percacci,Perini (2002,2003)]

• What happens to matter coupled to asymptotically safe quantum gravity?

4

 \rightarrow YM theory probably remains asymptotically free

[Daum, Harst, Reuter (2009); Folkerts, Litim, Pawlowski (2011)]

QED possibly asymptotically free/safe

[Harst, Reuter, 2011]

Higgs sector possibly asymptotically safe

[Zanusso, Zambelli, Vacca, Percacci (2009); Vacca, Zanusso (2010)]

FERMION MASSES

Standard Model:

- no explicit mass terms in microscopic action (quark sector: chiral symmetry SU(N_f)_L × SU(N_f)_R)
- strong fermionic correlations (e.g. in QCD by strong gluon coupling) generate condensate $\langle\bar\psi\psi\rangle$ and break chiral symmetry
- \rightarrow fermion masses $<< M_{\rm Planck}$

similarity between Yang-Mills theory/ QCD and gravity:

CAN METRIC FLUCTUATIONS INDUCE STRONG FERMIONIC CORRELATIONS AND BREAK CHIRAL SYMMETRY?

ightarrow fermion masses \simeq $M_{\rm Planck}$

not compatible with observation of light fermions in our universe!

 \rightarrow existence of chiral symmetry breaking mechanism in quantum gravity might rule out quantum gravity models!

FRAMEWORK

QG parametrised by metric fluctuations

• effective description below $k_0 \lesssim M_{\rm Planck}$

metric: *effective* degree of freedom fundamental degrees of freedom can be very different (LQG, strings, causal sets ...)

microscopic UV completion for gravity determines values of couplings on this initial scale k_0 below k_0 our description applies \rightarrow can study compatibility of initial conditions with existence of light fermions at low energies

• *fundamental* description (valid far beyond Planck scale) within asymptotic-safety scenario

How to detect χ SB from the RG flow? SU(N_f)_L × SU(N_f)_R chirally symmetric 4-fermion interaction:

 $\lambda_{\pm} \left[\left(\bar{\psi}^{i} \gamma_{\mu} \psi^{i}
ight)^{2} \pm \left(\bar{\psi}^{i} \gamma_{\mu} \gamma_{5} \psi^{i}
ight)^{2}
ight]$ (Fierz complete) $i = 1, ..., N_{f}$

CRITERION FOR χSB

 $\chi {\rm SB}:\,\beta_{\lambda_\pm}$ have no real fixed points!

$$\lambda_{+} \big[(\bar{\psi}^{i} \gamma_{\mu} \psi^{i})^{2} - (\bar{\psi}^{i} \gamma_{\mu} \gamma_{5} \psi^{i})^{2} \big] = \lambda_{\sigma} \big[(\bar{\psi}^{i} \psi^{j})^{2} - (\bar{\psi}^{i} \gamma_{5} \psi^{j})^{2} \big], \ \lambda_{\sigma} = -\frac{1}{2} \lambda_{+}$$

composite boson field $\phi \sim \bar{\psi}\psi$: $\lambda(\bar{\psi}\psi)^2 \rightarrow -\frac{2}{\lambda}\phi^2 - h\phi\bar{\psi}\psi$

$$\chi SB: \langle \bar{\psi}\psi \rangle \neq 0 \Leftrightarrow \langle \phi \rangle \neq 0$$

onset of $\chi SB: m = 0 \Leftrightarrow \lambda \to \infty$

χSB in QCD

fermions coupled to gauge field: $\bar{\psi}^i D [A] \psi^i$

gauge coupling g = 0: χ SB depends on initial conditions

gauge coupling $g = g_{crit}$

gauge coupling $g > g_{crit}$: no initial conditions exist in UV such that χ symmetry remains unbroken Gies, Jaeckel, Wetterich (2004), Gies, Jaeckel (2006), Braun, Gies (2010)

induced masses: $m_{
m proton} \sim \Lambda_{
m QCD}$

COUPLING FERMIONS TO GRAVITY

vierbein formalism:

 $e^a_\mu(x)$ transition from local orthonormal frame to coordinate frame $g_{\mu\nu}(x)=e^a_\mu(x)e^b_\nu(x)\eta_{ab}$

 $\nabla_{\mu}\psi = \partial_{\mu}\psi + \frac{1}{8}[\gamma^{a},\gamma^{b}]\omega_{\mu\,ab}\psi, \qquad \gamma^{\mu}(x) = e^{\mu}_{a}(x)\gamma^{a}$

spin connection from: $\nabla_{\mu}e_{\nu}^{a} = 0 \rightarrow \omega_{\mu}^{ab} = -e^{\nu \, b} \left(\partial_{\mu}e_{\nu}^{a} - \Gamma_{\mu\nu}^{\lambda}e_{\lambda}^{a}\right)$

TRUNCATION

$$\begin{split} \Gamma_{k} &= \int d^{4}x \sqrt{g} \left[\frac{Z_{N}(k)}{16\pi G_{N}} (-R + 2\bar{\lambda}(k)) \right] + \Gamma_{gf} + \Gamma_{gh} \\ &+ \int d^{4}x \sqrt{g} \left[i \, Z_{\psi}(k) \bar{\psi}^{i} \gamma^{\mu} \nabla_{\mu} \psi^{i} + \lambda_{\pm}(k) \left(\left(\bar{\psi}^{i} \gamma_{\mu} \psi^{i} \right)^{2} \pm \left(\bar{\psi}^{i} \gamma_{\mu} \gamma_{5} \psi^{i} \right)^{2} \right) \right] \end{split}$$

COUPLING FERMIONS TO GRAVITY

TRUNCATION

$$\begin{split} \Gamma_{k} &= \int d^{4}x \sqrt{g} \left[\frac{Z_{N}(k)}{16\pi G_{N}} (-R + 2\bar{\lambda}(k)) \right] + \Gamma_{gf} + \Gamma_{gh} \\ &+ \int d^{4}x \sqrt{g} \left[i \, Z_{\psi} \bar{\psi}^{i} \gamma^{\mu} \nabla_{\mu} \psi^{i} + \lambda_{\pm}(k) \left(\left(\bar{\psi}^{i} \gamma_{\mu} \psi^{i} \right)^{2} \pm \left(\bar{\psi}^{i} \gamma_{\mu} \gamma_{5} \psi^{i} \right)^{2} \right) \right] \end{split}$$

- G_* and λ_* as in [Percacci, Perini (2002)]
- $\beta_{\lambda\pm}$ and η_ψ : flat background sufficient

background field gauge:
$$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu} \longrightarrow \delta_{\mu\nu} + h_{\mu\nu}$$

 $F_{\mu} = \frac{\sqrt{2}}{32\pi G_N} \left(\bar{D}^{\nu} h_{\mu\nu} - \frac{1+\rho}{d} \bar{D}_{\mu} h^{\nu}{}_{\nu} \right)$

 $\begin{aligned} \beta_{\lambda_{\pm}} &= (2 + \eta_{\psi})\lambda_{\pm} + \lambda_{m}A_{mn}\lambda_{n} + b_{\text{grav}} \ G \ \lambda_{\pm}f_{1}(\lambda) + c_{\text{grav}} \ G^{2}f_{2}(\lambda) \\ \text{cf. QCD:} \ \beta_{\lambda_{\pm}} &= 2\lambda_{\pm} + \lambda_{m}A_{mn}\lambda_{n} + b_{n}\lambda_{n}g^{2} + cg^{4} \end{aligned}$

χSB in gravity: Similarities to QCD?

$$\beta_{\lambda_{\pm}} = (2 + \eta_{\psi})\lambda_{\pm} + \lambda_{m}A_{mn}\lambda_{n} + b_{\text{grav}} G \lambda_{\pm}f_{1}(\lambda) + c_{\text{grav}} G^{2}f_{2}(\lambda)$$

expect: if metric fluctuations break chiral symmetry: masses $\sim M_{
m Planck}$

severe conflict with observations!

12

Questions?

Results *: **Existence of fixed points**

G=0, **G=0.2**, **G=0.5**, **G=2**

- FPs exist even for large ${\cal G}
 ightarrow \chi {\rm SB}$ can remain unbroken
- Gaußian fixed point is shifted and becomes interacting

* Landau deWitt gauge $\alpha = 0 = \rho$, regulator $R_k(p^2) = \Gamma_k^{(2)}(p^2)r_k(p^2)$, where $r_{k \text{ grav}}(p^2) = \left(\frac{\Gamma_k^{(2)}(k^2)}{\Gamma_k^{(2)}(p^2)} - 1\right)\theta(k^2 - p^2)$ and $r_{k \text{ ferm}}(p^2) = \left(\sqrt{\frac{k^2}{p^2}} - 1\right)\theta(k^2 - p^2)$ 14

Results: Asymptotic safety

 G_*,λ_* from [Percacci, Perini, 2002]

asymptotically safe quantum gravity supports universes with light fermions

DECOUPLING MECHANISM: metric propagator $\frac{1}{p^2-2\lambda}$ fermions shift the fixed point $\lambda \ll 0$ [Percacci, Perini, 2002] \Rightarrow metric fluctuations are strongly suppressed

Universality classes

critical exponents $\{\theta\} = \operatorname{spec}(-B_{ij}) = \operatorname{spec}\left(\frac{-\partial\beta_{g_i}}{\partial g_j}\right)\Big|_{g=g_*}$

 $heta_i > 0$:relevant direction: UV attractive (IR repulsive)

 \rightarrow IR value has to be fixed by experiment \rightarrow free parameter

 $\theta_i < 0$: irrelevant direction: UV repulsive (IR attractive)

 \rightarrow no free parameter, since complete RG trajectory in critical hypersurface of UV fixed point

16

DIFFERENCE BETWEEN GLUONS AND GRAVITONS fixed-point structure: λ_{\pm}^2 vs. λ_{\pm}

$$\begin{array}{l} \text{QCD: } \beta_{\lambda_{\pm}} = 2\lambda_{\pm} + \lambda_i A_{ij}\lambda_j + b_{\text{glue}\,j}\lambda_j g^2 + c_{\text{glue}\,g}^4 \end{array}$$

gluonic fluctuation mainly strengthen fermionic fluctuations (terms $\sim g^4$ dominate over terms $\sim g^2\lambda_\pm)$

gravity: $\beta_{\lambda\pm} = (2 + \eta_{\psi})\lambda_{\pm} + \lambda_i A_{ij}\lambda_j + b_{\text{grav}} G \lambda_{\pm} f_1(\lambda) + c_{\text{grav}} G^2 f_2(\lambda)$ metric fluctuations mainly enhance anomalous scaling (terms ~ $G\lambda_{\pm}$ dominate over terms ~ G^2)

Results: Effective theory

$$G = 0.1, \eta_N = 0, \lambda = 0.1, N_f = 6$$

UV completion for gravity determines initial conditions for the RG flow at scales $k_0 \leq M_{\rm Planck}$

to avoid χSB : initial conditions within basin of attraction of Gaußian fixed point

 \rightarrow in principle restriction on generic UV completion for gravity

Results: Shifted GFP

 $\beta_{\lambda_{\pm}} = 2\lambda_{\pm} + \lambda_i A_{ij}\lambda_j + b G \lambda_{\pm} f_1(\lambda) + c G^2 f_2(\lambda) \stackrel{\lambda_{\pm} \to 0}{\Longrightarrow} c G^2 f_2(\lambda) \neq 0$

 \rightarrow possibly strong interactions even at shifted GFP

general remark:

similarly NGFP for $G \Rightarrow$ shift of GFP for other operators \rightarrow non-minimal couplings will be generated (truncation not closed)

SUMMARY

- quantum gravity must be consistent with observed low-energy properties of matter
- quantum gravity should not break chiral symmetry and induce fermion masses $\sim M_{\rm Planck}$
- in fRG: χ SB signalled by divergent four-fermion couplings
- If quantum gravity fluctuations are metric fluctuations, light fermions can exist! *
- asymptotically safe quantum gravity supports universes with light fermions
- decoupling mechanism in asymptotic safety: metric fluctuations do not alter properties of fermionic sector strongly
- any UV completion for gravity has to provide initial conditions for the RG flow that avoid χ SB

 * this claim is within a *truncation* of the full fRG equations...

(similar truncation in QCD is sufficient to detect χ SB; all channels for χ SB included in pointlike and minimally coupled limit)

Outlook

terms beyond the truncation: non-minimal couplings

e.g.
$$\xi \int d^4x \sqrt{g} R \bar{\psi}^i i \nabla \psi^i$$

expect $\xi_* \neq 0$ at $G_* \neq 0$

 \Rightarrow non-trivial backreaction on the whole system

possible influence on fixed point structure in fermionic as well as metric subsystem

$$eta_{\lambda_\pm} \sim \xi^2
ightarrow$$
 may destroy dominance of $\sim \lambda_\pm G$ terms

Outlook

terms beyond the truncation:

anomalous dimension η_ψ

here: η_ψ parameter

 $\eta_{\psi\,\textit{crit}}:$ fixed points merge

Thank you for your attention!

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 のへで