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Quantum Einstein-Hilbert theory

• two “running” couplings: G(k), Λ(k)

Γgrav
k [g] =

1

16πG(k)

Z

d4x
√

g {−R + 2Λ(k)}

• project the above “Ansatz" in to a functional-flow-equation (you choose what

you prefer!)

• result of several works: non-perturbative β-functions for dimensionless

couplings
gk := k2Gk , λk := Λkk−2

• Particular choice of Rk (sharp cutoff)

k ∂kgk =(ηN + 2)gk ,

k ∂k λk = − (2 − ηN ) λk − gk

π

h

5 ln(1 − 2 λk) − 2ζ(3) + 5
2
ηN

i

“anomalous" dimension of Newton’s constant:

ηN = − 2gk

6π + 5gk

h

18
1−2λk

+ 5 ln(1 − 2λk) − ζ(2) + 6
i
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Phase diagram of quantum gravity in the EH-truncation
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New Physics

• NGFP and GFP

Rµν − 1

2
gµνR = −Λ(k)gµν + 8πG(k) Tµν

◦ G = G(k), Λ = Λ(k) and k = k(t), or k = k(H)

◦ with G(k → ∞) = 1/k2

• IRFP (?): Quantum Gravity at large distances

◦ modifications of General Relativity at long distances/late times

⇐⇒ origin of dark matter and dark energy

◦ AB,M.Reuter PLB, 2002, Bentivegna et al., JCAP 2004, Reuter & Weyer

PRD 2004. Rodrigues, arXiv:1203.2286, AB & Carloni, NJP 2012 and

arXiv:1112.4613, etc etc...

◦ see also: Nagy, Krizsan and Sailer, arXiv:1203.6564
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Main difficulty is the “cutoff identification"

• in principle we have

k = k(any curvature invariant)

◦ The cutoff becomes a dynamical variable whose evolution is dictated by

RG argument

◦ Not all trajectories can be admissible if we specify both G(k = k(xµ)

and Λ = Λ(k = k(xµ)). Ref: AB & MR PLB 2002.

◦ Dissipative-fluid description: entropy production in the Early Universe,

AB+MR JCAP 2007.

. – p.5/16



Main difficulty is the “cutoff identification"

• in principle we have

k = k(any curvature invariant)

◦ The cutoff becomes a dynamical variable whose evolution is dictated by

RG argument

◦ Not all trajectories can be admissible if we specify both G(k = k(xµ)

and Λ = Λ(k = k(xµ)). Ref: AB & MR PLB 2002.

◦ Dissipative-fluid description: entropy production in the Early Universe,

AB+MR JCAP 2007.

• possible way out: ask the Bianchi identity do its job and specify only

Λ(k = k(xµ)) for instance

◦ Reuter & Saueressig JCAP 2005; Koch & Ramirez, CQG 2011, Cai &

Easson, arXiv:1202.1285, Hindmarsh, Litim & Rahmede, JCAP 2011

Contillo, Hindmarsh and Rahmede, PRD 2012.

• or use the Brans-Dicke approach: Reuter & Weyer, PRD 2004. AB, Contillo

and Percacci, CQG 2011, Cai & Easson JCAP 2011.
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Weinberg proposal (PRD 2011) : use an “optimal" cutoff Λc

• Asymptotically Safe Inflation

◦ More general truncations

IΛ[g] = −
Z

d4x
p

−Detg

"

Λ4g0(Λ) + Λ2g1(Λ)R + g2a(Λ)R2

+g2b(Λ)RµνRµν + Λ−2g3a(Λ)R3 + Λ−2g3b(Λ)RRµνRµν + . . .

#

.

◦ Optimal cutoff: “...radiative corrections just beginning to be important

...and higher terms just beginning to be less important...”
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Weinberg proposal (PRD 2011) : use an “optimal" cutoff Λc

• Asymptotically Safe Inflation

◦ More general truncations

IΛ[g] = −
Z

d4x
p

−Detg

"

Λ4g0(Λ) + Λ2g1(Λ)R + g2a(Λ)R2

+g2b(Λ)RµνRµν + Λ−2g3a(Λ)R3 + Λ−2g3b(Λ)RRµνRµν + . . .

#

.

◦ Optimal cutoff: “...radiative corrections just beginning to be important

...and higher terms just beginning to be less important...”

• Objective: to obtain a de Sitter solution which is unstable but lasts N > 60

e-folds

• difficulties: too much fine tuning required, strong dependence on FP

quantities

◦ Tye & Xu, PRD 2010
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Alternative approach: RG improvement at the level of the act ion

• Work with a cutoff identification at the level of the action.

• pros: general covariance always preserved, f(R) can be mapped onto a

scalar field, already uses in QED and QCD

• cons: where do we stop along the IR trajectory?

◦ AB, PRD 2012 in press; Hindmarsh & Saltas:

http://arxiv.org/abs/1203.3957.
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Alternative approach: RG improvement at the level of the act ion

• Work with a cutoff identification at the level of the action.

• pros: general covariance always preserved, f(R) can be mapped onto a

scalar field, already uses in QED and QCD

• cons: where do we stop along the IR trajectory?

◦ AB, PRD 2012 in press; Hindmarsh & Saltas:

http://arxiv.org/abs/1203.3957.

• QCD: leading-log model

LQCD
eff

=
F

2g2
run

, g2
run =

g2(µ2)

[1 + 1
4

b g2(µ2) log (F/µ4)]

where F = − 1
2
(∂µAa

ν − ∂νAa
µ + fabcAµbAνc)2, µ is an infrared subtraction scale

and b is the usual one-loop renormalization constant, dependent on the number of

flavours. (Ref: Matinyan & Savvidy, NPB 1978, Pages & Tomboulis, NPB 1978, Adler

NPB 1983...)
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RG imp vs ERG
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• The effective potential for SU(3) as a function of F 2 (thick blue line), and the

one-loop inspired fit to the numerical data of the form aF 2 ln bF 2 (orange

dashed line).

from: Eichhorn, Gies and Pawlowski, PRD 2011
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Repeat the same idea with gravity

• Einstein-Hilbert Truncation

LEH =
1

16πG
(R − 2Λ)
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Repeat the same idea with gravity

• Einstein-Hilbert Truncation

LEH =
1

16πG
(R − 2Λ)

• Consider the linearized flow around the NGFP

(λ, g)T = (λ∗, g∗)T + 2{[ReC cos(θ′′t) + ImC sin(θ′′t)]Re V

+ [ReC cos(θ′′t) − ImC sin(θ′′t)]Im V } e−θ′t
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Repeat the same idea with gravity

• Einstein-Hilbert Truncation

LEH =
1

16πG
(R − 2Λ)

• Consider the linearized flow around the NGFP

(λ, g)T = (λ∗, g∗)T + 2{[ReC cos(θ′′t) + ImC sin(θ′′t)]Re V

+ [ReC cos(θ′′t) − ImC sin(θ′′t)]Im V } e−θ′t

• And substitute the linearized flow in to EH Lagrangian with k2 ∝ R,

LQEG
eff

(R) = R2 + bR2 cos

»

α log

„

R

µ

«– „

R

µ

«β

where: α = θ′′/2, β = −θ′ < 0, µ = k2
0 and t = ln(k/k0).

Note that LQEG
eff

(R) ∝ R2 for R → ∞.
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f(R) from RG-improved EH

− 1
p

|g|
δS

δgµν
=

dL
dR

Rµν − 1

2
L gµν −∇µ∇ν

dL
dR

+ gµν∇ρ∇ρ
dL
dR

= 0 (1)

being

S =

Z

d4x
p

|g| L(R)
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f(R) from RG-improved EH

− 1
p

|g|
δS

δgµν
=

dL
dR

Rµν − 1

2
L gµν −∇µ∇ν

dL
dR

+ gµν∇ρ∇ρ
dL
dR

= 0 (2)

being

S =

Z

d4x
p

|g| L(R)

Let us now investigate the physical content of this effective lagrangian in the context

of early universe, by considering a spatially flat Friedmann-Robertson-Walker metric

in vacuum. In a FRW cosmology with scale factor a(t) we can write both the Einstein

tensor Gµν and the Ricci tensor Rµν in terms of the Hubble rate H(t) = ȧ(t)/a(t).
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FRW cosmology

the (tt)-component and (minus) the trace of (2) become

A(H) = −3(Ḣ + H2)
dL
dR

+ 3H
dL̇
dR

+
1

2
L (3)

B(H) = −6(Ḣ + 2H2)
dL
dR

+ 2L + 3
dL̈
dR

+ 9H
dL̇
dR

. (4)
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FRW cosmology

the (tt)-component and (minus) the trace of (2) become

A(H) = −3(Ḣ + H2)
dL
dR

+ 3H
dL̇
dR

+
1

2
L (6)

B(H) = −6(Ḣ + 2H2)
dL
dR

+ 2L + 3
dL̈
dR

+ 9H
dL̇
dR

. (7)

For the following analysis, instead of using directly Eq.(6) it is more convenient to

eliminate the
...
H term generated by (7) using (6) in order to obtain

Ḣ2 + 6βb cos

"

α ln

 

6(2H2 + Ḣ)

µ

!# 

2H2 + Ḣ

µ

!β

(2βH4 + (4α2 − 6

−β(9 + 4β))H2Ḣ + (1 + β)Ḣ2 + (α − (1 + β)(2 + β))HḦ)

= 2H(3HḢ + Ḧ) + 6βbα sin

"

α ln

 

6(2H2 + Ḣ)

µ

!# 

2H2 + Ḣ

µ

!β

(2H4 − (9 + 8β)H2Ḣ + Ḣ2 − (3 + 2β)HḦ) (8)
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de Sitter solutions

• so that H = H̄ = const so that Eq.(8) yields

H̄ =

r

µ

12
exp

»

1

2α

„

tan−1 β

α
+ nπ

«–

, n ∈ Z

◦ it represent a countable number of de Sitter vacua all labeled by n.
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de Sitter solutions

• so that H = H̄ = const so that Eq.(8) yields

H̄ =

r

µ

12
exp

»

1

2α

„

tan−1 β

α
+ nπ

«–

, n ∈ Z

◦ it represent a countable number of de Sitter vacua all labeled by n.

• Weinberg’s idea: the relevant question is if these solutions are unstable with

characteristic growth time ≫ 1/H̄ so that inflation comes to an end after a

large enough e-folds number ≈ 1/ξ.

• In order to address this question it is convenient to write

H(t) = H̄ + δH(t)

and linearize Eq.(8) around the solutions (9) with δH(t) = exp(ξH̄t).
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Stability of de Sitter solutions

After some manipulations, it is possible to obtain the following stability equation

ξ2 + ξ 3 e
nπ
2α + A = 0

where

A = −
4αb(−1)n

`

α2 + β2
´

e
β tan−1

„

β
α

«

+π(β+1)n

α

αb(−1)n (α2 + β2 − 2) e
β

„

tan−1
„

β
α

«

+πn

«

α − 2
p

α2 + β2
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Stability of de Sitter solutions

After some manipulations, it is possible to obtain the following stability equation

ξ2 + ξ 3 e
nπ
2α + A = 0

where

A = −
4αb(−1)n

`

α2 + β2
´

e
β tan−1

„

β
α

«

+π(β+1)n

α

αb(−1)n (α2 + β2 − 2) e
β

„

tan−1
„

β
α

«

+πn

«

α − 2
p

α2 + β2

• The interesting result of this discussion is that the stability of these

inflationary solutions does not depend on the mass scale µ: only the real and

imaginary part of the critical exponent and the point in the λ-g-plane,

monitored by the constant b, determine the stability of the solution.

• The scheme dependence of the critical exponents turns out to be rather

limited, as θ′ and θ′′ assume values in the ranges 2.1 < θ′ < 3.4 and

3.1 < θ′′ < 4.3, respectively for various cutoff functions.

. – p.13/16



Stability of de Sitter solutions

A = −
4αb(−1)n

`

α2 + β2
´

e
β tan−1

„

β
α

«

+π(β+1)n

α

αb(−1)n (α2 + β2 − 2) e
β

„

tan−1
„

β
α

«

+πn

«

α − 2
p

α2 + β2

• For positive values of the integer n the constant A decays exponentially to

zero because β < 0, one is left only with a negative root, which implies

stability, for any value of b.
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Stability of de Sitter solutions

A = −
4αb(−1)n

`

α2 + β2
´

e
β tan−1

„

β
α

«

+π(β+1)n

α

αb(−1)n (α2 + β2 − 2) e
β

„

tan−1
„

β
α

«

+πn

«

α − 2
p

α2 + β2

• For positive values of the integer n the constant A decays exponentially to

zero because β < 0, one is left only with a negative root, which implies

stability, for any value of b.

• But for n < 0 A is always negative and one root is unstable. In this case A

can be approximated with

A ≈ −
4
`

α2 + β2
´

e
πn
α

α2 + β2 − 2

• and the unstable root is

ξ =

“

p

(α2 + β2 − 2) (25α2 + 25β2 − 18) − 3α2 − 3β2 + 6
”

e
πn
2α

2 (α2 + β2 − 2)
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Number of e-folds

Therefore:

ξ =

“

p

(α2 + β2 − 2) (25α2 + 25β2 − 18) − 3α2 − 3β2 + 6
”

e
πn
2α

2 (α2 + β2 − 2)

• The factor in front of the exponential is always of the order unity and positive

for θ′ and θ′′ in the allowed range as α = θ′′/2 and β = −θ′

• it is always possible to produce enough e-folds of inflation for n negative

enough.
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Number of e-folds

Therefore:

ξ =

“

p

(α2 + β2 − 2) (25α2 + 25β2 − 18) − 3α2 − 3β2 + 6
”

e
πn
2α

2 (α2 + β2 − 2)

• The factor in front of the exponential is always of the order unity and positive

for θ′ and θ′′ in the allowed range as α = θ′′/2 and β = −θ′

• it is always possible to produce enough e-folds of inflation for n negative

enough.

At last we find

1/ξ ≈ e−nπ/θ′′

for the number of e-folds. For instance for n = −3, 1/ξ ≈ 17 and for n = −4 one

gets 1/ξ ≈ 49 while for n = −5, 1/ξ ≈ 140. It should be stressed that this result is

rather remarkable, because it only depends on one “universal" quantity namely the

imaginary part of the critical exponent which characterizes the flow around the NGFP.
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Conclusions

• Weinberg mechanism to obtain dS is achieved with no fine-tuning

• Essential role played by the imaginary part of critical exponents

• straighforward to include matter field, to extend the model physics
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Conclusions

• Weinberg mechanism to obtain dS is achieved with no fine-tuning

• Essential role played by the imaginary part of critical exponents

• straighforward to include matter field, to extend the model physics

• main issues :-

◦ How to connect with GFP?

◦ Universality in the IR and IRFP

◦ How to produce CMBR fluctuations?

◦ Are the critical exponents real?

◦ Understand the role of k4 ∝ RµνRµν -cutoff.

• go back to the leading-log model again to get inspiration!
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