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Overview of the talk

• Main idea :

View the RG improved Einstein-Hilbert action as an effective f (R) model
and study its (cosmological) properties.

• Gain intuition about RG improved cosmology, from a different viewpoint.

• Application in cosmology :

• UV behavior (inflation, primordial fluctuations).

• Radiation/Matter domination period.

• IR behavior (late time acceleration).

•The limit to solar system scales.

• Stability of the model.
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Motivation for modifying GR?

• A big problem of the standard ΛCDM cosmology:

• Why is Λ so small?

• Are there any “natural” ways to make it small?

• Is there any relation between primordial (inflation) and late time
acceleration of the Universe?

• Different paths suggested: Modified gravity, scalar fields, stringy scenarios
(e.g branes)

• Motivation, complicated equations, degeneracies, instabilities,
fine tuning problems.

• A running Λ with cosmic time could be able to provide a dynamical
resolution to the cosmological constant problem
(Motivation/Naturalness?). 1

1I. L. Shapiro, J. Sola, and H. Stefancic, JCAP 0501, 012 (2005),
F. Bauer, Class. Quant. Grav. 22, 3533 (2005),
F. Bauer(2005), arXiv:gr-qc/0512007,
M. Reuter, F. Saueressig, JCAP 0509, 012 (2005).
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RG gravity and scalar–tensor theories

• Scalar tensor (ST) theories of gravity: A scalar field φ playing the role of the (running)
Planck mass.

• Fields dynamical and satisfy their own equations of motion.

• RG gravity: G → G(k), Λ→ Λ(k), . . . , ci → ci (k). Couplings promoted to dynamical
variables.

• Running couplings conceptually different from the fields in ST theories. Their running is
dictated by an “external” set of equations, the beta functions.

• Equivalence with Brans–Dicke theories has been studied for the EH truncation, at the level
of the equations of motion: 2 Role of Bianchi identities crucial to ensure integrability of the
system.

• A cut–off identification at the level of the action: Overcome difficulties with Bianchi
identities, covariant formulation of theory, equivalence with ST theories established for higher
truncations.3

• Scalar-tensor theories φR !φ− dV
dφ = κ2Tm

• RG improvement of action R−Λ(k)
16πG(k) ∇µ (8πG(k)Tµν) = 0

2M. Reuter & H. Weyer, Phys. Rev. D 69 104022 (2004),
Y. F. Cai, D. A. Easson, arXiv: 1202.1285 [hep-th], (2012).

3Andrei V. Frolov, Jun-Qi Guo, arXiv:1101.4995v1 [astro-ph.CO],
A. Bonanno arXiv:1203.1962 [hep-th].
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The RG improved Einstein–Hilbert action
• Effective average action of gravity at scale k:

Γk [g ] =

Z p
−gd4x

∞X

i

ci (k)Ri

Cut-off k defines the typical scale of evaluation: all momenta with p2 < k2 are suppressed.
Effective action satisfies a Functional Renormalisation Group equation4.

• A family of effective actions Γk smoothly connected from UV (k →∞) to IR (k → 0),
through the system of beta functions for the couplings ci ,

k∂k ci (k) = βi (c1, c2, . . . cj )

• The Einstein–Hilbert truncation (in 4D):

S =

Z
d4x

p
−g

R − 2Λ(k)

16πG(k)

A non-trivial UV fixed point at (g , λ) % (0.016, 0.25), and a trivial, “free” one (Gaussian
Fixed Point (GFP)) at (g , λ) = (0, 0). 5 6

4
C. Wetterich Phys. Lett. B 301, 90 (1993).

5
M. Reuter, Phys. Rev. D 57 971 (1998),

W. Souma, Prog. Theor. Phys. 102 181 (1999) [hep-th/9907027], [gr-qc/0006008] ,
O. Lauscher and M. Reuter, Phys. Rev. D 65 025013 (2002) [hep-th/0108040] ,
D. F. Litim, Phys. Rev. Lett. 92 201301(2004) [hep-th/0312114],
M. Reuter and F. Saueressig, Phys. Rev. D 65 (2002) 065016 [hep-th/0110054],
R. Percacci and D. Perini, Phys. Rev. D 67 081503 (2003) [hep-th/0207033], Phys. Rev. D 68 (2003) 044018 [hep-th/0304222].

6
For recent investigations regarding a non-trivial IR fixed point, see

I. Donkin, J. M. Pawlowski (2012) arXiv: [hep-th/1203.4207],
S. Nagy, J. Krizsan, K. Sailer (2012), arXiv:1203.6564v1,
C. Contreras and D. F. Litim, in preparation.
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Beta functions and theory space for the 4D Einstein-Hilbert truncation 7

∂λ
∂ ln k = βλ(g , λ) ≡ −2λ− 2g − 24g(3g+ 1

2 (1−3λ))
2g− 1

2 (1−2λ)2
λ ≡ Λ(R)

R

∂g
∂ ln k = βg (g , λ) ≡ 2g + 24g2

4g−(1−2λ)2
g ≡ 24πG(R)× R

Gaussian Fixed Point regime

Λ = 1
2 λT

k4

k2
T

+ 1
2 λT k2

T , G = const. = m−2
p

GR regime: Trajectory very close to the GFP, g ∼ λ' 1

Smallness of g ∼ λ:

⇒ Large hierarchy: kTurn =
√

gTurnmp # 1

⇒ Long classical regime: kterm =
√

gTurnkTurn

⇒ Smallness of Λ comes for free: Λ
m2

p
= g2

Turn ' 1

A single fine tuning ensures both existence of classical regime and smallness of Λ.

Classical regime

UV regime

IR regime
IR FP ?
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(see for example M. Reuter, H. Weyer, JCAP 0412:001 (2004).

7Here, they are calculated in the optimised cut-off of Ref. D. F. Litim, Phys. Lett. B 486 92
(2000).
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How to identify the RG cut-off scale k in cosmology?
• Either at the level of the equations of motion or the action, k should be

identified as some function of cosmic time and space, xµ.

• In FRW cosmology, the cut-off scale can be identified as some (physically
meaningful) function of cosmic time t only.

• One expects that cosmological properties of a given action should not depend on
the particular identification.

• k → k(t):
• Monotonically decreasing function
• Consistency with Bianchi identities

What are the options?

Average energy of the Universe k ∼ kBT (t)

Horizon of the observable Universe k ∼ H−1(t)

Scalar curvature k ∼ R

Use Bianchi identities ∇µ (8πG (k(t)) Tµν) = 0!
"

#
$! Not all identifications will satisfy the Bianchi identities.8

8
A. Bonanno and M. Reuter, Phys. Rev. D 65, 043508 (2002).,

M. Reuter & H. Weyer, Phys. Rev. D 69 104022 (2004).
M. Reuter and F. Saueressig, JCAP 0509, 012 (2005),
A. Babic, B. Guberina, R. Horvat and H. Stefancic, Phys. Rev. D 71, 124041 (2005).
M. Hindmarsh, D. Litim & C. Rahmede, JCAP 1107 019 (2011).
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f (R) model from the Renormalisation Group

Lk [g ] = R−2Λ(k)
16πG(k) RG improved Einstein-Hilbert action

↓ k2 = ρR, g(R) ≡ ρR × G(R), λ(R) ≡ Λ(R)
ρR

Lf (R)[g ] = ρR2 (1−2ρλ(R))
κ̃2g(R)

9 Effective f (R) model

The RG improved Einstein-Hilbert action can be re-expressed as an f (R) model:

• Quantum corrections of the RG improved action, included in the running
of G(k), Λ(k), are now “absorbed” in a non-linear, effective f (R) model.

• f (R) model behaves as R2 gravity on an RG fixed point, where g , λ
constant.

• Dimensionless parameter ρ ≡ k2/R controls how curvature “follows” the
cut-off k; in principle an arbitrary parameter, but constrained by
cosmological and solar system considerations.

9κ̃2 ≡ 192π2.
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Fundamentals of f (R) gravity

f (R) gravity is the simplest non-linear extension of Einstein–Hilbert gravity,
where R is promoted to a function f (R). 10

f (R) ≡ R
16πG

+ c2R
2 + c3R

3 . . .| {z }
primordial acceleration

+ d1R
−1 + d2R

−2 + . . .| {z }
late time acceleration

• Graviton and massive scalar !fR(R) + dVeff (R)
dfR

= κ
3 T(m)

• Graviton and scalar not a ghost fR(R) > 0

• Scalaron not a tachyon m2
eff ≡ d2Veff

df 2
R
≡ fR−RfRR

3fRR
> 0

Remember : f (R) ≡ f (R, g(R), λ(R)).

• Stability conditions can be expressed in terms of the couplings g , λ,
defining characteristic curves on the theory space.

• Stability requirements constraint the allowed range of parameter ρ.

10T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451–497 (2010),
A. De Felice and S. Tsujikawa, Living Rev. Rel. 13, 3 (2010).

9 / 22



The form of the effective f (R) model

• The RG effective f (R) model is defined through the evolution of the
couplings g , λ:

g(R), λ(R) %→ f (R) ≡ ρR2
“

1−2ρλ(R)
g(R)

”

• We can understand the general behavior of the function f (R) by evaluating
along a trajectory g(R), λ(R) for a set of “toy” initial conidtions:
Rmin = 8× 10−5, RT = 5× 10−3, Rmax = 50, λ(RT ) = 10−2, g(RT ) = 10−3, ρ = 1,

0.0 0.2 0.4 0.6 0.8
0
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R

df !R"
dR

• UV FP regime : f (R) ∼

R2

»
1 + cos

“
log

“
R
µ

”” “
R
µ

”β
–

a

• Intermediate regime : fR ∼ R

(f (R) ∼ R2) .

• GFP and IR regime : fR ∼ const..
fRR > 0 reflects positivity of
scalaron’s mass, m2

eff,0 = fR−RfRR
3fRR

> 0

aA. Bonanno arXiv:1203.1962 [hep-th].
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Cosmological viability from UV to IR: Requirements

• Existence of an unstable de Sitter period in the UV.
• Non-trivial de Sitter, RfR(R)− 2f (R) = 0 = 2ρ2gβλ + (1− 2ρλ)βg .

• Existence of a viable radiation/matter domination period.
• GR-like evolution, fRR(R) ( 0, g , λ) 1 (GFP regime).

• Accelerated period for the Universe at late times, (effectively) produced by
a vacuum energy Λ/m2

p ∼ 10−120.

• Have all above periods dynamically connected in a viable way.

• Evasion of solar system tests.
• Scalaron very massive m2

eff (g , λ)* R.

• Agreement with the amplitude of primordial fluctuations observed in CMB
radiation, as well as with large scale structure.

Does our RG effective f (R) model satisfy above conditions?

11 / 22



Cosmological considerations on the theory space 11

• de Sitter line (solid black):

• Passes through the UV RG fixed point: Infinite number of de Sitter points in the vicinity
of the fixed point, due to complex eigenvalues.

• UV RG fixed point is “hidden” by the outer dS point and cannot be accessed
cosmologically.

• Outer UV dS is unstable, IR one is stable.

• Slow roll line (dashed black):

• End of inflation, through violation of the slow roll condition Ḣ
H2 ' 1.

• Vanishing (dotted green)/Divergence (dotted orange) of m2
eff line:

• Scalaron mass vanishes on the UV RG fixed point.

• Positivity of m2
eff at classical scales.

m2eff!0

m2eff"0 m2eff!0

0.0 0.1 0.2 0.3 0.4

#0.02

#0.01

0.00
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0.02
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0.04

Λ

g

11Here, analysis is done for ρ = 1. 12 / 22



Background cosmological dynamics: From UV to IR

We can study cosmological evolution by “RG-improving” the dynamical system for

f (R) gravity found before. 12

x ′1 = −1− x3 − 3x2 + x2
1 − x1x3 + x4 Dimensionless dynamical variables

x ′2 = x1
x3
− x2(2x3 − x1 − 4) x1 = − ˙fR

HfR
, x2 = −f

6H2fR

x ′3 = −x1x3
m(r) − 2x3(x3 − 2) x3 = R

6H2 , x4 = κ2ρr
3H2fR

x ′4 = −2x3x4 + x1x4

Model definition through m = m(r)

g ′ =
βg
2R

„
f 2

f 2
R R−fR f−fRR fR

« „
x′3x2−x′2x3

x2
2

«
m ≡ RfRR

fR

λ′ = βλ
2R

„
f 2

f 2
R R−fR f−fRR fR

« „
x′3x2−x′2x3

x2
2

«
r ≡ −RfR

f = x3
x2

Remember : f ≡ f (R, g , λ)

Ωm ≡ κ2ρm
3H2fR

= 1− x1 − x2 − x3 − x4

• Function m = m(r) determines form of f (R) and needed to close the system!

12L. Amendola, R. Gannouji, D. Polarski & S. Tsujikawa, Phys.Rev. D 75 083504 (2007).
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• The behavior of the function m = m(r) is able to characterize the asymptotic behavior of

the f (R) model: fixed points and their stability.

Reminder: m ≡ RfRR
fR

, r ≡ −RfR
f

A

BC

!2.5 !2.0 !1.5 !1.0

0

1

2

3

r

m
!r"

de Sitter points

•PA,C = (0, 1,−2, 0),

Stability: 0 < m(r)|r=−2 < 1.

Matter point

•PB =
“

3m0
m0+1 ,− 4m0+1

2(m0+1)2
, 4m0+1

2(m0+1) , 0
”
,

Stability: m(r)|r=−2 ( +0,

dm(r)
dr

˛̨
˛
r=−2

> −1.

• In the presence of radiation, i.e x4 ,= 0, a radiation point exists in the vicinity of the matter

one - see Ref. L. Amendola, R. Gannouji, D. Polarski & S. Tsujikawa, Phys.Rev. D 75

083504 (2007).

• Numerical investigation shows that viable background evolution requires that

0.9 " ρ " 1.1, otherwise Universe does not evolve through matter domination and late

time de Sitter. 14 / 22



Solar and astrophysical scales

• It is important to ensure that the model evades solar system tests.

• Solar and astrophysical scales are recovered in the vicinity of the Gaussian
Fixed Point regime, where the beta functions take the linear form

∂λ
∂ ln k = −2λ + 2αg ,

∂g
∂ ln k = 2g .

• f (R) model can be expanded as

f (R) = f (R0) + fR |R0
(R − R0) +

1
2

fRR |R0
(R − R0)

2

. . . and matched with the renormalisation conditions

RfR−f
2fR

˛̨
˛
R0

= Λ0

f (R) ( κ̃2

G0
(R − 2Λ0) + 6(2− ρ)ρ(R − R0)

2

fR |R0
= κ̃2

8πG0
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Solar and astrophysical constraints

• The scalaron mass in the GFP linear regime (g ∼ λ) 1) is of the Planck
order

m2
eff,0(g , λ) ( 1

36(2− ρ)
R0

g
( 1

36(2− ρ)
κ̃2

8πG0

Heavy scalaron mass prevents from observable deviations from GR.

• Positivity of scalaron’s mass at solar scales requires that

ρ < 2

• Remember that at solar system scales the couplings g , λ acquire a tiny
value

k−1
sol ∼ R−1/2

sol ∼ 1AU⇒ gsol ( Rsol × Gsol ( 10−92,

gλ ∼ G0Λ0, λsol ) 1.
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Primordial inflation

• A speculated period of accelerating expansion of the Universe at very early
times with (quasi-) de-Sitter expansion a(t) ∼ eHt , as long as the slow roll
condition is satisfied

ε ≡ Ḣ
H2

= −d ln H
dN

) 1

• In our scenario, inflation is expected to happen in the vicinity of the UV
RG fixed point, where g , λ ∼ 10−1 13.

• Quantum fluctuations of the field Φ during inflation are the seeds for the
large scale matter fluctuations today. The power spectra of scalar and
tensor fluctuations are constrained through CMB observations 14

Ps ( 2× 10−9 , Pg " 0.2Ps

What does the RG effective f (R) model predict for the primordial fluctuations?

13It is important to note that, for an acceptable radiation/matter era to exist, one has to ensure
that a viable reheating period exists after inflation has ended.

14E. Komatsu et. al, Astrophys. J. Suppl.192 18 (2011).
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Einstein frame action
It is useful for inflationary calculations to express the original f (R) action first
in the Jordan frame through the auxiliary scalar σ

S =
1

2κ̃2

Z √
−g

ˆ
f ′(σ)R − (f ′(σ)σ − f (σ))

˜

and then through two field redefinitions to the Einstein frame

g̃αβ = 8πG0φ
κ̃2 gαβ

eS =
R

d4x
√
−g̃

“
1

16πG0
eR − 1

2 (∇Φ)2 − U(Φ)
”

φ = φ0 exp

„q
16πG0

3 Φ

«

U(R) =
κ̃2

2 (8πG0)
2

RfR(R)− f (R)
fR(R)2

Φ(R) =

r
3

16πG0
ln fR(R).

0.5 1.0 1.5 2.0
0.000

0.005

0.010

0.015

! !R"
U
!R"

• Field Φ starts from top of the potential (unstable UV dS), and evolves to
the left towards small field values.
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An analytic inflationary model

We can first get an idea about primordial fluctuations by using an analytic
approach.

• We can use the f (R) model calculated at the linearised regime (k ) mp)
and extrapolate up to k ∼ mp,

f (R) =
R − 2Λ0

G
+ 6 (2− ρ) ρR2.

• Inflation could be then realised as R2 inflation 15.

• In the usual R2 inflationary scenario, the coupling of the R2 term, m2
p/M2,

is constrained to be m2
p/M2 ( 1011 for observationally viable inflation.

• However, for ρ ∼ 1 (classical regime constraint) , it turns out that

O(1)× R2 and inflation cannot be viable.

15Starobinsky A A 1980 Phys. Lett. B 91 99.
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The inflationary power spectra

Ps (Φ(g , λ)) =
128π

3
U3

m2
pU2

Φ

˛̨
˛̨
k=aH

, Pg (Φ(g , λ)) =
128
3

U
m4

p

˛̨
˛̨
k=aH

• Inflation is expected at high energies, i.e in the vicinity of the UV RG fixed
point, where gλ = GΛ ∼ 10−2, implying that Pg ∼ 10−2.

• For ρ ∼ 1, Ps ∼ Pg ∼ 10−2 ; fluctuations too large to be observationally

viable.

• Possible solutions?

Ps (g , λ) Pg (g , λ)

20 / 22



Conclusions

• The covariant cut-off identification k2 = ρR provides us with a very useful
tool: An effective f (R) model from an RG improved action.

• The RG effective f (R) model in the EH truncation has very interesting
properties: Behaves as R2 gravity around a non-trivial fixed point, exhibits
an infinite number of dS points in the UV, a stable dS point in the IR, a
viable radiation/matter domination and is able to evade solar system tests.

• Solar system and cosmological requirements constrain dimensionless
parameter ρ to be ρ ∼ 1.

• Primordial inflation gives very large fluctuations, GΛ ∼ O(1), indicating
that more ingredients in the action are needed.

• Open questions: How generic are the features found? (Study of higher
truncations, RG improvement of matter fields, inclusion of scalar field(s) in
the action.)
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Thank you!
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