The local potential approximation in quantum gravity

Dario Benedetti

Albert Einstein Institute, Potsdam, Germany

June 11, 2012

based on arXiv:1204.3541 (with Francesco Caravelli)

Outline

1. Motivations and general idea

2. Some technical details and results

3. Conclusions and outlook

Motivations

- Many beautiful results for asymptotic safety
- In particular, for AS in pure gravity: polynomial truncations

$$\sum_{j=0}^{n} a_j R^j, \quad n = 6, 8, 10$$

[Codello, Percacci, Rahmede; Machado, Saueressig; Bonanno, Contillo, Percacci]

- \rightarrow Importance for the asymptotic safety conjecture:
 - Test of NGFP beyond EH
 - Number of relevant directions

Some natural questions

- 1. Do results from truncations converge?
- 2. How to systematically reject spurious fixed points?
- 3. Unitarity?

Any truncated effective action contains higher derivatives (heuristic argument [Floreanini,Percacci; DB,Machado,Saueressig] suggests that ghosts might be decoupled in an asymptotically safe theory of gravity, but it is far from conclusive)

4. Non-local IR modifications of gravity?

All these questions suggest to look for approximation schemes which retain an infinite number of terms

 \Rightarrow restore the word "functional" in the FRGE

LPA - Scalar field theory

$$\Gamma_k[\phi] = \int d^d x \Big[V_k(\phi) + \partial^\mu \phi \partial_\mu \phi \Big]$$

 \Rightarrow Obtain flow of the effective action for constant field

• Compare to truncations:
$$\sum_{n=0}^{N} u_{2n}(k) \phi^{2n}$$
 vs. $V_k(\phi)$

	truncations	LPA
flow	ODE	PDE
fixed points	algebraic	ODE

Increased technical effort pays off:

- Derivative expansion typically gives more reliable results than truncations (Spanning an infinite-dimensional subspace of the theory space)
- It provides a criterion for discerning true fixed points from spurious ones
 - \blacktriangleright All but a small discrete set of initial conditions lead to singularities at finite ϕ
 - Fixed points correspond to globally defined solutions [Hasenfratz&Hasenfratz; Felder; Morris; ...]

An LPA for gravity?

- Expansion in curvature invariants is obviously not an expansion in powers of the field (the metric)
- However it is also not properly a derivative expansion:
 - $\blacktriangleright\ R^3$ Lagrangian propagates as many dof as R^2 Lagrangian
 - it leads to algebraic equations for fixed points, as in field expansions
- The simplest gravitational Lagrangian that can be written without restricting to any specific function is that of an f(R) theory
 - it contains the least number of derivatives among Lagrangians with generic functions (2nd order for TT (spin 2) component; 4th order for scalar component (which if 2nd order is non-propagating))
 - $\Rightarrow f(R)$ as the LPA of gravity

The special role of maximally symmetric spacetimes

Decompose the Riemann tensor into its irreducible components:

$$R_{\mu\nu\rho\sigma} = R \oplus S_{\mu\nu} \oplus C_{\mu\nu\rho\sigma}$$

where

$$S_{\mu
u} = R_{\mu
u} - rac{1}{d}g_{\mu
u}R$$
, $C_{\mu
u
ho\sigma} =$ Weyl tensor

Express action in terms of irreducible components and their derivatives:

$$\bar{\Gamma}[g] = \int d^d x \sqrt{g} \left\{ R + \dots + R^n + \dots + R\nabla^2 R + C^3 + S^4 + C^2 S^2 + \dots \right\}$$

• Maximally symmetric spacetime: $\nabla_{\mu}R = S_{\mu\nu} = C_{\mu\nu\rho\sigma} = 0$

$$ar{\Gamma}[g] = \int d^d x \sqrt{g} \left\{ f(R) + \text{things which are zero for MSS} \right\}$$

- ► Next order? E.g. Einstein spacetime: $\nabla_{\mu}R = S_{\mu\nu} = 0$, $C_{\mu\nu\rho\sigma} \neq 0$ (used for "EH+ $R^2 + C^{2*}$ [DB,Machado,Saueressig])
- Einstein/near-MSS expansion:

$$\bar{\Gamma}[g] = \int d^d x \sqrt{g} \left\{ f(R) + f_1(R)C^2 + O(C^3) \right\}$$

Going beyond polynomial truncations

f(R) functional RG

The ansatz is

$$\bar{\Gamma}_k = Z_k \int d^d x \sqrt{g} f_k(R) = k^d \int d^d x \sqrt{g} \tilde{f}_k(\tilde{R})$$

(All ~ quantities are dimensionless)

Our derivation of FRGE is mostly standard, apart from:

- Non-standard ghost sector
- Appropriately chosen Type II cutoff, to eliminate certain singularities
- (Interpolated) spectral sums, rather than heat kernel

Ghost sector

- Same ghost sector as in [DB, New J. Phys. 14 (2012) 015005 [arXiv:1107.3110]]
- Basically (Q is the usual ghost operator)

 $\sqrt{\det Q^2}$ instead of $\det Q$

- Formally equivalent (in general there is multiplicative anomaly)
- Different FRG flows (beyond one-loop approximation)
- $\blacktriangleright \sqrt{\det Q^2}$ leads to exact cancellation on shell between ghost and pure-gauge dof

 \Rightarrow on shell gauge-independence

• Checked: both versions lead to qualitatively similar results in the $\alpha = 0$ gauge

Cutoff

• Typical (Type I) rule: chose \mathcal{R}_k such that

$$\Delta \to P_k\left(\frac{\Delta}{k^2}\right) \equiv \Delta + k^2 r_k\left(\frac{\Delta}{k^2}\right).$$

It can lead to singularities. For example, with optimized cutoff,

$$\frac{1}{2} \operatorname{Tr} \left[\frac{\partial_t \mathcal{R}_k}{\Delta - \frac{R}{d} + \mathcal{R}_k} \right] = \operatorname{Tr} \left[\frac{1}{1 - \frac{\tilde{R}}{d}} \theta(k^2 - \Delta) \right]$$

 \Rightarrow singularity at $\tilde{R}=d$

Adopt (hybrid) Type II cutoff:

$$\Delta_{0} \equiv \Delta - \frac{R}{d-1} \quad \rightarrow \quad P_{k}^{(0)} \left(\frac{\Delta_{0}}{k^{2}}\right) \equiv \Delta_{0} + k^{2} r_{k} \left(\frac{\Delta_{0}}{k^{2}}\right)$$
$$\Delta_{1} \equiv \Delta - \frac{R}{d} \quad \rightarrow \quad P_{k}^{(1)} \left(\frac{\Delta_{1}}{k^{2}}\right) \equiv \Delta_{1} + k^{2} r_{k} \left(\frac{\Delta_{1}}{k^{2}}\right)$$
$$\Delta_{2} \equiv \Delta + \frac{2R}{d(d-1)} \quad \rightarrow \quad P_{k}^{(2)} \left(\frac{\Delta_{2}}{k^{2}}\right) \equiv \Delta_{2} + k^{2} r_{k} \left(\frac{\Delta_{2}}{k^{2}}\right)$$

 \Rightarrow No explicit singularities in the functions being traced in the FRGE

Spectral sums

We evaluated the traces directly as spectral sums:

$$\operatorname{Tr} W(\Delta_s) = \sum_n D_{n,s} W(\lambda_{n,s})$$

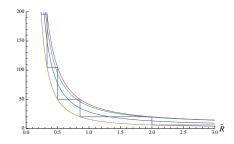
Optimized cutoff:

Pros: sums can be performed exactly

Cons: result is a staircase function of \tilde{R}

We opted to keep the advantage of working with analytical expressions, and we dealt with the cons using an interpolation:

(similar to [Reuter, Weyer, 0804.1475])



Fixed-point equation

At the end, we find the following fixed-point equation:

$$\tilde{f}^{\prime\prime\prime}(\tilde{R}) = \frac{\mathcal{N}(\tilde{f}, \tilde{f}^{\prime}, \tilde{f}^{\prime\prime}; \tilde{R})}{\tilde{R}(\tilde{R}^4 - 54\tilde{R}^2 - 54)\left((\tilde{R} - 2)\tilde{f}^{\prime}(\tilde{R}) - 2\tilde{f}(\tilde{R})\right)}$$

where $\mathcal{N}(\tilde{f},\tilde{f}',\tilde{f}'';\tilde{R})$ is a polynomial in all its variables.

- 3rd order equation \Rightarrow 3 initial conditions
- Singularity at R
 = 0 requires one analyticity condition that reduces number of independent initial conditions at origin to 2.

(Note: something similar happens for scalar theory if we use $\rho = \phi^2$ as field [Comellas,Travesset]) Note that singularity at $\tilde{R} = 0$ is linked to order of the equation:

$$\partial_t \mathcal{R}_k \sim \ldots + (\partial_t \tilde{f}_k^{\prime\prime}(\tilde{R})) \Big(\ldots \Big) = \ldots - 2\tilde{R} \tilde{f}_k^{\prime\prime\prime}(\tilde{R}) \Big(\ldots \Big) + \ldots$$

► Singularity also at $\tilde{R}_{\pm} \simeq \pm 7.414$, originated by zero-mode of $h = g^{\mu\nu}h_{\mu\nu}$: $\Delta_0 \equiv \Delta - \frac{R}{d-1} \Rightarrow$ zero mode: $\tilde{\lambda}_0 = -\frac{\tilde{R}}{d-1} \Rightarrow$ at large \tilde{R} $\tilde{f}_k^{\prime\prime\prime}(\tilde{R}) \sum_n D_n (1 - \tilde{\lambda}_n^2) \theta(1 - \tilde{\lambda}_n) = \tilde{f}_k^{\prime\prime\prime}(\tilde{R}) D_0 (1 - \tilde{\lambda}_0^2)$ has a zero

Non-linear equation ⇒ also movable singularities

Small- \tilde{R} expansion

Expand in series at the origin:

$$\tilde{f}(\tilde{R}) = \sum_{n \ge 0} a_n \tilde{R}^n$$

▶ Plug into FP equation ⇒ Coefficients a_n can be solved iteratively as function of a₀ and a₁

Order-N truncation:

Impose $a_{N+1} = a_{N+2} = 0$ and forget about higher terms

- Reproduce old results from polynomial truncations
- At R
 ₊ there is a similar analiticity condition, hence also a series expansion with two free parameters, which can be treated in a similar way

Large- \tilde{R} expansion - part 1

• At large \tilde{R} solutions behave like

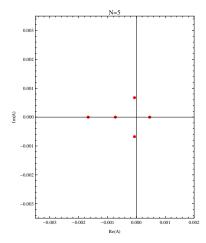
$$\tilde{f}(\tilde{R}) \sim A\tilde{R}^2 \left(1 + \sum_{n \ge 1} d_n \tilde{R}^{-n}\right)$$

where $d_n = d_n(A)$ can be computed order by order \Rightarrow only one free parameter in asymptotic expansion

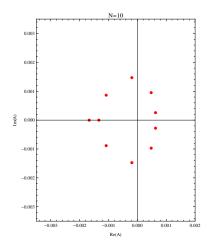
• Note for later: leading order is
$$\tilde{R}^2$$

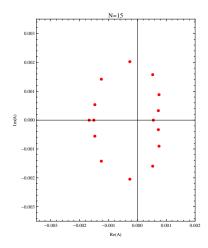
- Asymptotic expansion can be treated as a large-R truncation, i.e. computing the beta functions for the couplings d_n and looking for fixed points
- ▶ In practice, we solve $d_n(A)$ for n = 1, ...N + 1, and then impose $d_{N+1}(A) = 0$

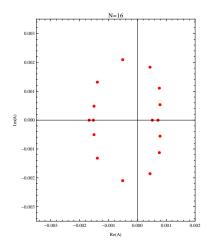
▶ Fixed points in the complex *A*-plane

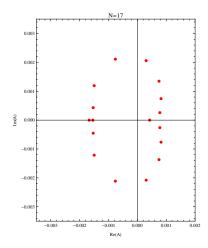


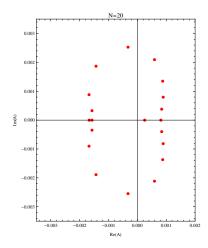
start

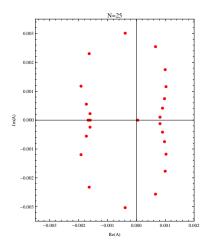


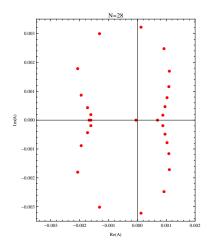




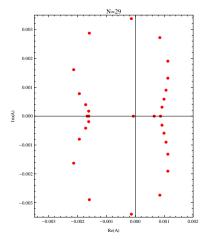








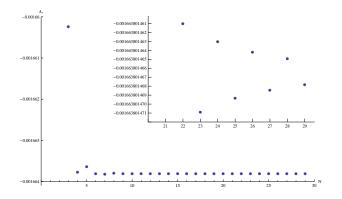
▶ Fixed points in the complex *A*-plane



stop

Large- \tilde{R} expansion – part 3

Fast convergence of FP on negative axis:



Large- \tilde{R} expansion - part 3

Fast convergence of FP on negative axis:

Ν	$10^{3}A_{1}$	θ_0	θ_1	θ_2	θ_3	θ_4	θ_5	θ_6	θ_7	θ_8
1 2 3 4 5 6 7 8	-1.319 -1.631 -1.663 -1.663 -1.663 -1.663 -1.663 -1.663	-4.26 -1.64 -1.80 -1.82 -1.81 -1.82 -1.82 -1.82 -1.82	0.65 9.19 7.47 7.25 7.27 7.26 7.26 7.26 7.26	29.2 29.6 29.4 29.7 29.5 29.8 29.5	20.39 17.3-4.38i 14.6-4.24i 14.0-3.19i 14.4-2.50i 14.8-3.55i	17.3+4.38i 14.6+4.24i 14.0+3.19i 14.4+2.50i 14.8+3.55i	20.9 19.4-4.20i 16.7-4.72i 15.8-2.32i	19.4+4.20i 16.7+4.72i 15.8+2.32i	22.5 21.6+3.83i	21.6-3.83i

 \Rightarrow only 1 irrelevant direction, increasing number of relevant directions

 \blacktriangleright Result compatible with [Machado,Saueressig], where single R^{-n} term was added, and found to be relevant

Numerical integration

- A better use for large-*R* expansion should be to impose it as initial condition for a numerical integration of the FRGE (shooting backward from infinity)
- However the plot of singularities is much more complicated than in scalar case, and also fixed singularities are on the way
- ▶ In the range $-0.0035 \lesssim A \lesssim 0.0005$ the numerical integration can reach $\tilde{R}_+ + \epsilon$, and it can be shown (by scaling) that in the limit $\epsilon \to 0$ the analiticity condition at \tilde{R}_+ is satisfied in the whole range
- ▶ Combining numerical integration and series expansion at \tilde{R}_+ , integration can be continued to $\tilde{R}<\tilde{R}_+$
- ▶ However, due to high sensitivity to order of the expansion and other effects, situation at $\tilde{R} = 0$ is not clear yet

 \Rightarrow work in progress

Fixed-point action

One generic conclusion can be drawn:

If a global fixed-point solution $\tilde{f}^*(\tilde{R})$ exists, then $\Gamma^*=\Gamma^*_{k=0}=A^*\int d^4x\sqrt{g}R^2$

 $\Gamma_k^* = k^4 \int d^4x \sqrt{g} \tilde{f}^*(R/k^2)$ and limit $k \to 0$ corresponds to $\tilde{R} \to \infty$

- Resummation: polynomial truncations give non-trivial FP for \tilde{R}^3 , \tilde{R}^4 and so on, but they must sum up to a function going like \tilde{R}^2 at infinity
- Agreement with [Bonanno [1203.1962]; Hindmarsh, Saltas [1203.3957]]
- ▶ Is it just dimensional analysis at work? (scale invariance $\rightarrow R^2$)

In a sense yes: no anomalous scaling within f(R) approximation (~ LPA)

However: could R acquire an anomalous dimension beyond LPA? Does it make sense for $g_{\mu\nu}$ to acquire an anomalous dimension?

The fact that FP theory is an R² theory requires more thinking about unitarity of full theory (where FP action could contain C²)

Conclusions and outlook

Conclusions and outlook

What I have discussed:

- A suggestion for a different type of expansion, a near-MSS expansion, whose leading order is the f(R)-approximation (~LPA)
- We re-derived the FP equation for f(R), eliminating some singularities, and discussed the role of the remaining singularities
- ▶ We studied the large-R truncations
 - Fast convergence, but unbounded action and many relevant directions
- We gave a general argument that the FP action is an R^2 action

Some open questions:

- Existence of global solutions of the differential FP equation
- ▶ Next order in near-MSS expansion: $f_2(R)C^2$. Anomalous dimension?
- ► Technical challenge: go to non-Einstein space and include derivatives of curvature (running of terms like R F(-∇²)R)
- Can an asymptotically safe higher-derivative theory be unitary?