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Motivations

◮ Many beautiful results for asymptotic safety

◮ In particular, for AS in pure gravity: polynomial truncations

n
X

j=0

ajR
j , n = 6, 8, 10

[Codello, Percacci, Rahmede; Machado, Saueressig; Bonanno, Contillo, Percacci]

→ Importance for the asymptotic safety conjecture:

◮ Test of NGFP beyond EH
◮ Number of relevant directions
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Some natural questions

1. Do results from truncations converge?

2. How to systematically reject spurious fixed points?

3. Unitarity?

Any truncated effective action contains higher derivatives

(heuristic argument [Floreanini,Percacci; DB,Machado,Saueressig] suggests that ghosts
might be decoupled in an asymptotically safe theory of gravity, but it is
far from conclusive)

4. Non-local IR modifications of gravity?

All these questions suggest to look for approximation schemes which retain an
infinite number of terms

⇒ restore the word “functional” in the FRGE
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LPA – Scalar field theory

Γk[φ] =

Z

ddx
h

Vk(φ) + ∂µφ∂µφ
i

⇒ Obtain flow of the effective action for constant field

◮ Compare to truncations:
PN

n=0 u2n(k)φ2n vs. Vk(φ)

truncations LPA

flow ODE PDE

fixed points algebraic ODE

Increased technical effort pays off:

◮ Derivative expansion typically gives more reliable results than truncations

(Spanning an infinite-dimensional subspace of the theory space)

◮ It provides a criterion for discerning true fixed points from spurious ones

◮ All but a small discrete set of initial conditions lead to
singularities at finite φ

◮ Fixed points correspond to globally defined solutions
[Hasenfratz&Hasenfratz; Felder; Morris; ...]
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An LPA for gravity?

◮ Expansion in curvature invariants is obviously not an expansion in powers
of the field (the metric)

◮ However it is also not properly a derivative expansion:

◮ R3 Lagrangian propagates as many dof as R2 Lagrangian
◮ it leads to algebraic equations for fixed points,

as in field expansions

◮ The simplest gravitational Lagrangian that can be written without
restricting to any specific function is that of an f(R) theory

◮ it contains the least number of derivatives among Lagrangians
with generic functions (2nd order for TT (spin 2) component;
4th order for scalar component (which if 2nd order is
non-propagating))

⇒ f(R) as the LPA of gravity
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The special role of maximally symmetric spacetimes

◮ Decompose the Riemann tensor into its irreducible components:

Rµνρσ = R ⊕ Sµν ⊕ Cµνρσ

where

Sµν = Rµν − 1

d
gµνR , Cµνρσ = Weyl tensor

◮ Express action in terms of irreducible components and their derivatives:

Γ̄[g] =

Z

ddx
√

g
˘

R + ... + Rn + ... + R∇2R + C3 + S4 + C2S2 + ...
¯

◮ Maximally symmetric spacetime: ∇µR = Sµν = Cµνρσ = 0

Γ̄[g] =

Z

ddx
√

g {f(R) + things which are zero for MSS}

◮ Next order? E.g. Einstein spacetime: ∇µR = Sµν = 0, Cµνρσ 6= 0

(used for “EH+R2 + C2” [DB,Machado,Saueressig] )

◮ Einstein/near-MSS expansion:

Γ̄[g] =

Z

ddx
√

g
˘

f(R) + f1(R)C2 + O(C3)
¯
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Going beyond polynomial truncations
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f(R) functional RG

◮ The ansatz is

Γ̄k = Zk

Z

ddx
√

gfk(R) = kd

Z

ddx
√

gf̃k(R̃)

(All˜quantities are dimensionless)

Our derivation of FRGE is mostly standard, apart from:

◮ Non-standard ghost sector

◮ Appropriately chosen Type II cutoff, to eliminate certain singularities

◮ (Interpolated) spectral sums, rather than heat kernel
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Ghost sector

◮ Same ghost sector as in [DB, New J. Phys. 14 (2012) 015005 [arXiv:1107.3110]]

◮ Basically (Q is the usual ghost operator)

p

det Q2 instead of detQ

◮ Formally equivalent (in general there is multiplicative anomaly)

◮ Different FRG flows (beyond one-loop approximation)

◮

p

detQ2 leads to exact cancellation on shell between ghost
and pure-gauge dof

⇒ on shell gauge-independence

◮ Checked: both versions lead to qualitatively similar results
in the α = 0 gauge
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Cutoff

◮ Typical (Type I) rule: chose Rk such that

∆ → Pk

“ ∆

k2

”

≡ ∆ + k2rk

“ ∆

k2

”

.

◮ It can lead to singularities. For example, with optimized cutoff,

1

2
Tr

"

∂tRk

∆ − R
d

+ Rk

#

= Tr

"

1

1 − R̃
d

θ(k2 − ∆)

#

⇒ singularity at R̃ = d

◮ Adopt (hybrid) Type II cutoff:

∆0 ≡ ∆ − R

d − 1
→ P

(0)
k

“∆0

k2

”

≡ ∆0 + k2rk

“∆0

k2

”

∆1 ≡ ∆ − R

d
→ P

(1)
k

“∆1

k2

”

≡ ∆1 + k2rk

“∆1

k2

”

∆2 ≡ ∆ +
2R

d(d − 1)
→ P

(2)
k

“∆2

k2

”

≡ ∆2 + k2rk

“∆2

k2

”

⇒ No explicit singularities in the functions being traced in the FRGE
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Spectral sums

◮ We evaluated the traces directly as spectral sums:

TrW (∆s) =
X

n

Dn,sW (λn,s)

◮ Optimized cutoff:

Pros: sums can be performed exactly

Cons: result is a staircase function of R̃

◮ We opted to keep the advantage of working with analytical expressions,
and we dealt with the cons using an interpolation:
(similar to [Reuter, Weyer, 0804.1475] )
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Fixed-point equation
◮ At the end, we find the following fixed-point equation:

f̃ ′′′(R̃) =
N (f̃ , f̃ ′, f̃ ′′; R̃)

R̃(R̃4 − 54R̃2 − 54)
“

(R̃ − 2)f̃ ′(R̃) − 2f̃(R̃)
”

where N (f̃ , f̃ ′, f̃ ′′; R̃) is a polynomial in all its variables.

◮ 3rd order equation ⇒ 3 initial conditions

◮ Singularity at R̃ = 0 requires one analyticity condition that reduces
number of independent initial conditions at origin to 2.

(Note: something similar happens for scalar theory if we use ρ = φ2 as field [Comellas,Travesset])

Note that singularity at R̃ = 0 is linked to order of the equation:

∂tRk ∼ ... + (∂tf̃
′′
k (R̃))

“

...
”

= ... − 2R̃f̃ ′′′
k (R̃)

“

...
”

+ ...

◮ Singularity also at R̃± ≃ ±7.414, originated by zero-mode of h = gµνhµν :

∆0 ≡ ∆ − R
d−1

⇒ zero mode: λ̃0 = − R̃
d−1

⇒ at large R̃

f̃ ′′′
k (R̃)

P

n
Dn(1 − λ̃2

n)θ(1 − λ̃n) = f̃ ′′′
k (R̃)D0(1 − λ̃2

0) has a zero

◮ Non-linear equation ⇒ also movable singularities
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Small-R̃ expansion

◮ Expand in series at the origin:

f̃(R̃) =
X

n≥0

anR̃n

◮ Plug into FP equation

⇒ Coefficients an can be solved iteratively as function of a0 and a1

◮ Order-N truncation:

Impose aN+1 = aN+2 = 0 and forget about higher terms

◮ Reproduce old results from polynomial truncations

◮ At R̃+ there is a similar analiticity condition, hence also a series
expansion with two free parameters, which can be treated in a similar way
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Large-R̃ expansion – part 1

◮ At large R̃ solutions behave like

f̃(R̃) ∼ AR̃2

0

@1 +
X

n≥1

dnR̃−n

1

A

where dn = dn(A) can be computed order by order

⇒ only one free parameter in asymptotic expansion

◮ Note for later: leading order is R̃2

◮ Asymptotic expansion can be treated as a large-R̃ truncation,

i.e. computing the beta functions for the couplings dn and looking for
fixed points

◮ In practice, we solve dn(A) for n = 1, ...N + 1, and then impose
dN+1(A) = 0



16

Large-R̃ expansion – part 2

◮ Fixed points in the complex A-plane
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Large-R̃ expansion – part 2
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Large-R̃ expansion – part 2
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Large-R̃ expansion – part 3

◮ Fast convergence of FP on negative axis:
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Large-R̃ expansion – part 3

◮ Fast convergence of FP on negative axis:

N 10
3

A1 θ0 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

1 -1.319 -4.26 0.65
2 -1.631 -1.64 9.19 29.2
3 -1.660 -1.80 7.47 29.6 20.39
4 -1.663 -1.82 7.25 29.4 17.3-4.38i 17.3+4.38i
5 -1.663 -1.81 7.27 29.7 14.6-4.24i 14.6+4.24i 20.9
6 -1.663 -1.82 7.26 29.5 14.0-3.19i 14.0+3.19i 19.4-4.20i 19.4+4.20i
7 -1.663 -1.82 7.26 29.8 14.4-2.50i 14.4+2.50i 16.7-4.72i 16.7+4.72i 22.5
8 -1.663 -1.82 7.26 29.5 14.8-3.55i 14.8+3.55i 15.8-2.32i 15.8+2.32i 21.6+3.83i 21.6-3.83i

⇒ only 1 irrelevant direction, increasing number of relevant directions

◮ Result compatible with [Machado,Saueressig], where single R−n term was
added, and found to be relevant
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Numerical integration

◮ A better use for large-R̃ expansion should be to impose it as initial
condition for a numerical integration of the FRGE

(shooting backward from infinity)

◮ However the plot of singularities is much more complicated than in scalar
case, and also fixed singularities are on the way

◮ In the range −0.0035 . A . 0.0005 the numerical integration can reach
R̃+ + ǫ, and it can be shown (by scaling) that in the limit ǫ → 0 the
analiticity condition at R̃+ is satisfied in the whole range

◮ Combining numerical integration and series expansion at R̃+, integration
can be continued to R̃ < R̃+

◮ However, due to high sensitivity to order of the expansion and other
effects, situation at R̃ = 0 is not clear yet

⇒ work in progress
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Fixed-point action
◮ One generic conclusion can be drawn:

If a global fixed-point solution f̃∗(R̃) exists, then Γ∗ = Γ∗
k=0 = A∗

R

d4x
√

gR2

Γ∗
k = k4

R

d4x
√

gf̃∗(R/k2) and limit k → 0 corresponds to R̃ → ∞

◮ Resummation: polynomial truncations give non-trivial FP for R̃3, R̃4 and
so on, but they must sum up to a function going like R̃2 at infinity

◮ Agreement with [Bonanno [1203.1962]; Hindmarsh, Saltas [1203.3957]]

◮ Is it just dimensional analysis at work? (scale invariance → R2)

In a sense yes: no anomalous scaling within f(R) approximation (∼ LPA)

However: could R acquire an anomalous dimension beyond LPA?
Does it make sense for gµν to acquire an anomalous dimension?

◮ The fact that FP theory is an R2 theory requires more thinking about
unitarity of full theory (where FP action could contain C2)
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Conclusions and outlook
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Conclusions and outlook

What I have discussed:

◮ A suggestion for a different type of expansion, a near-MSS expansion,
whose leading order is the f(R)-approximation (∼LPA)

◮ We re-derived the FP equation for f(R), eliminating some singularities,
and discussed the role of the remaining singularities

◮ We studied the large-R truncations

– Fast convergence, but unbounded action and many relevant directions

◮ We gave a general argument that the FP action is an R2 action

Some open questions:

◮ Existence of global solutions of the differential FP equation

◮ Next order in near-MSS expansion: f2(R)C2. Anomalous dimension?

◮ Technical challenge: go to non-Einstein space and include derivatives of
curvature (running of terms like R F (−∇2)R)

◮ Can an asymptotically safe higher-derivative theory be unitary?


