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Introduction

Solutions Treat theory as an effective low-energy description (Donoghue, ...) 
to be completed by new high energy physics (string theory, ...)

Try to quantize the 
theory non-perturbatively

Canonically (LQG, mini/midi-superspace...)

Discretizing (spin foams, CDTs, Regge calculus...)

Following the Exact Renormalization Group 

Quantized general relativity is perturbatively nonrenormalizable

Legendre effective action 𝛤k , defined by an IR cutoff term "
added to the action in the path integral.

Leads to ERGE: Asymptotically stable solutions Fixed points

Limit cycles
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1. QG renormalization group 

Einstein-Hilbert Truncation

For quantum gravity, 𝛤k  depends on a background metric        and the expectation value of the 
fluctuation        .  We consider only the case with dependence on the full metric                   . 

For the standard Einstein-Hilbert truncation we have the ansatz:

Using the “optimized” cutoff and in a first-order approximation where the anomalous dimension                 
is kept linear in g, the flow equations in four dimensions are:

λ
A:  UV non-Gaussian FP
B:  Gaussian FP 

C:  Degenerate point
D:  IR attractor 
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1. QG renormalization group 

Conformal reduction

An approximation to the Einstein-Hilbert truncation, that preserves only the conformal factor of the 
metric as dynamical (Reuter-Weyer, ...).

The flow equations are:

λ

The main features of the full EH truncation are preserved in the conformal reduction.
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2. Minisuperspace truncation

Reduction strategy

We can choose to gauge-fix N=1. Then we have an example of the conformally reduced theory, with flat ĝ 
and with the conformal factor depending on a single coordinate instead of four.

Hence to derive the flow equations, we simply suppress the spatial dependence of the fluctuations on the 
traces that give the beta functions of the CR theory.

,  simil. for 

Introduce a 𝛿-function to supress the dependence on pi, i = 1,2,3.

.         involves the cutoff function

,  simil. for . 

Spatially flat FRW written in conformal form:  

Minisuperspace EH action: v spatial volume parameter
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Reason for this freedom: arbitrariness of the spatial volume v 

multiplicative ambiguity in the definition of G for a minisuperspace theory with flat reference metric.

Note that we could include an arbitrary constant c in the 𝛿-function.

We are led to the flow equations: 

There is an alternative derivation of these equations starting directly from an ansatz for a minisuperspace 𝛤k 

instead of the full CR theory.  It requires a hand-picked choice for the flow of v. (Cf. Manrique, Rechenberger 
and Saueressig on Lorentzian RG.) 

Details in Litim and Satz, forthcoming.

The flow equations
2. Minisuperspace truncation
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2. Minisuperspace truncation

The flow equations (cont.)

None of the essential features of the flow depend on the choice of c.  We choose a value that maximizes the 
similarity with the full CR theory:

This is the system we will study in the rest of the talk.
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2. Minisuperspace truncation

The flow equations (cont.)

None of the essential features of the flow depend on the choice of c.  We choose a value that maximizes the 
similarity with the full CR theory:

Was a 6 in full CR theory. General value 
for 𝛿4-n suppression would be n+2.

This is the system we will study in the rest of the talk.
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2. Minisuperspace truncation

The flow equations (cont.)

None of the essential features of the flow depend on the choice of c.  We choose a value that maximizes the 
similarity with the full CR theory:

Was a 6 in full CR theory. General value 
for 𝛿4-n suppression would be n+2.

This is the system we will study in the rest of the talk.

Suppressing the spatial fluctuations leads to Very similar flow equations

Many qualitative similarities in the flow.

But also important dissimilarities!
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3. Structure of the flow

Fixed points and limit cycle

B: Gaussian fixed point:

A: Non-Gaussian fixed point: g* = 3.683

λ* = 0.283

UV-attractive, similar to the full theory.

C:  Degenerate fixed point at g = 0, λ = 1/2.        

Critical exponents 𝜃* are complex, 
with Re(𝜃*) = 1.77 > 0  

g* = 0 = λ*, critical exponents 𝜃* = ±2.

Qualitative new feature: limit cycle separating the NGFP from the semiclassical regime.

Also present, IR-attractive fixed point at g = 0, λ→-∞.

Limit cycle is IR-attractive from both inside and outside.
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3. Structure of the flow

Comparison of approximations

λ

• Two families of trajectories: 
1) From NGFP (A) 
2) From λ = 1/2 singularity. 

Both IR-running towards D attractor.

• Two separatrices
1) From NGFP (A) to GFP (B). 
2) from C to D.

• Three families of trajectories: 
1) From NGFP (A) to limit cycle 
2) From λ = 1/2 singularity to limit cycle
3) From λ = 1/2 singularity to D

• Two separatrices
1) Limit cycle. 
2) From λ = 1/2 singularity to GFP (B)

• Extended semiclassical regime for 
particular trajectories leaving A.

• Extended semiclassical regime for 
particular trajectories leaving λ = 1/2.
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4. Emergence of limit cycle

Tuning parameter

We can study the emergence of the limit cycle introducing a parameter n, representing the number of 
dimensions on which the conformal factor fluctuates.

n = 1: minisuperspace approximation
n = 4: full conformally reduced theory

The four fixed points A, B, C, D exist for all values of n > 0. The location of the NGFP is almost insensitive to n.

(with an n-dependent choice of c)

 simil. for ,
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4. Emergence of limit cycle

Flow for increasing n

Re(𝜃*) increases with n, showing that the fixed point 
is more strongly IR-repulsive as n grows.

Consequently, the size of the limit cycle surrounding 
the NGFP increases with n.

n = 1
n = 1.4
n = 1.5
n = 2

However, upon increasing n a point is eventually 
reached where the limit cycles disappears.

After that, trajectories from the NGFP escape 
freely towards the IR attractor D.
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4. Emergence of limit cycle

Bifurcation point

At the critical value n* ≈ 1.4715, the limit cycle collides with the Gaussian fixed point B and the degenerate 
fixed point C. The periodicity of the limit cycle in t diverges logarithmically as n → n* from below.

At n = n* there are only two families of trajectories: those that flow out from the UV fixed point A into the 
degenerate limit cycle, and those that flow from the singularity at λ = 1/2 to the D attractor at  λ →-∞.

For n > n* the limit cycle disappears and the flow resembles qualitatively the one of the full theory.

All trajectories from A exhibit an extended semiclassical regime (no fine tuning!)
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4. Emergence of limit cycle

Flow for lower n

For n < 1, the size of the limit cycle keeps decreasing as Re(𝜃*) decreases and the NGFP becomes less 
strongly IR-repulsive.

At n ≈ -0.05, the limit cycle shrinks to a point and vanishes. Re(𝜃*) becomes negative, and the NGFP 
becomes IR-attractive.

Hopf bifurcation pattern

n does not have a physical interpretation in this regime.
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5. Summary and outlook

Summary

•  The RG flow of quantum gravity is studied in a minisuperspace approximation.

•  The truncation is derived from the Einstein-Hilbert theory for the conformal factor by suppressing 
fluctuations in 3 (more generally, in 4-n) dimensions. 

•  The flow equations generalize those of the n = 4 theory.

•  In addition to the well known Gaussian non-Gaussian fixed points, the theory contains a limit cycle.

•  Trajectories run into the limit cycle when flowing to the IR both from the NGFP and from the 
semiclassical region.

•  The size and period of the limit cycle grow with n until a bifurcation event at n* ≈ 1.4715.  

•  At n*, all trajectories leaving the NGFP exhibit an extended semiclassical regime and run into the 
(degenerate) limit cycle.  Above n* there is no limit cycle and the flow resembles the one for the full 
theory.

•  For n < n* the limit cycle decreases until vanishing in (at n ≈ -0.05) a Hopf bifurcation.
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5. Summary and outlook

Perspectives for Asymptotic Safety

The limit cycle is found in an ultra-simplified model, and is not present when including the 
full spatial dependence of the conformal factor or the spin 2 fluctuations.

However, the simplicity and naturalness of the n-tweaking that creates the limit cycle suggests 
that similar behaviour might be also present in a more rich and physical truncation (e.g., 
involving nonlocal operators?)

We must bear in mind the possibility of a limit cycle (instead of a 
fixed point) as the UV limit of the theory when followed upwards 
from the IR regime, and understand better its physical implications

The bifurcation point scenario offers a possibility of obtaining naturally a good 
semiclassical limit without fine-tuning the initial conditions for the RG flow.
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5. Summary and outlook

Relevance for discrete gravity

In Euclidean/Causal Dynamical Triangulations, the spectral dimension ns flows from 4 in the IR to 
respectively nE =1.457 and nC =1.80 in the UV.

The value nE is intriguingly close to our bifurcation point n* ≈1.4715.

Assume the EDT can be understood as the microscopic theory descibed effectively, in some 
approximation, by our model with an effective value of n.

• nE < n* implies that the effective theory contains a limit cycle and 
no UV fixed point is reached.

•  nE > n* implies that the effective theory reaches a UV fixed point.


