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Outline

Main Ideas 1:

Understanding black hole (BH) thermodynamics as arising
from an averaging of degrees of freedom via the
renormalisation group.

Go beyond the semi-classical approximation using a systematic
coarse graining idea, interpolating from largest to smallest BH
masses.

Outline:

Black hole thermodynamics.

Coarse grained model.

Implications for asymptotic safety.

Conclusion.
1based on KF and D Litim arXiv:1212.1821
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Black holes in general relativity

Solutions to Einsteins equations

Stationary solutions are parametrized by just M, J and q.

End point of gravitational collapse

Uniqueness M, J, q → ”No hair”

A = A(M, J, q)

First law 2

κ

8πGN
δA = δM − ΩδJ − Φδq

2Bardeen, Carter and Hawking ’73
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Black holes and thermodynamics

Four laws of black hole mechanics

Analogous to the laws of thermodynamics

Thermodynamics Black holes

T δS = δQ κ
8πG δA = δQ

T κ

δS ≥ 0 δA ≥ 0

Generalised second law 3 δS + δSBH ≥ 0

3Bekenstein ’73
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Beyond the analogy

Hawking radiation (’75) QFT on curved space-time

T = ~
κ

2π
, SBH =

A

~ 4G
.

Jacobson(95’)

δQ

T
= δS ⇐⇒ Gµν + gµνΛ = 8πG Tµν

for all local Rindler causal horizons.

Suggests a deep connection between classical gravity,
thermodynamics and quantum mechanics due to the presence
of causal horizons.

Is gravity/space-time fundamental or emergent?
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Challenges for quantum gravity

Black hole thermodynamics appears when quantum fields
propagate on a background black hole space-time.

A thermal bath of particles, as seen by observers far from the
horizon, seems to contain no information of the matter that
initially collapsed to form the black hole

What happens when the black hole evaporates away
completely? Information loss?

Black hole thermodynamics seems to suggest that there exists
an underlying microstructure of space-time
=⇒ What are the fundamental building blocks of space-time?

Strings, branes ? Spin foam?...
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Quantum gravity

Saddle point approximation to the Euclidean path integral

e−Γ =

∫
Dgµν e−IEH [gµν ],

δIEH

δgµν
[ḡµν ] = 0

≈ e−IEH [ḡµν ]

Hawking and Gibbons found that in this approximation

F ≡ TΓ = M − TS

New idea: Use the coarse grained effective action Γ→ Γk

which provides a set of scale dependent models where
fluctuations p2 > k2 have been included.
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Wilsonian black hole thermodynamics

Here we utilise the coarse grained effective action Γk which
provides a set of scale dependent models where fluctuations
p2 > k2 have been included.

Jacobson and Satz arXiv:1212.6824 [hep-th]. Can the long
wavelength modes p2 < k2 be interpreted as accounting for
the entanglement entropy?

Becker and Reuter arXiv:1205.3583 [hep-th]. Running
boundary terms.
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Wilsonian black hole thermodynamics

Implement quantum corrections to the physics of black hole
thermodynamics using the renormalisation group.

We consider 4d gravity coupled to U(1) gauge fields.

The action

Γk [gµν ,Aµ] =

∫
d4x

√
− det gµν

[
1

8πGk
R+

1

4αk
FµνFµν

]
+Sm .

Scale dependent couplings Gk and αk ≡ ek
4π which run under

the renormalisation group flow of the theory
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QFT à la Wilson

For intermediate scales k has the interpretation as the inverse
“resolution”

` ≈ 1/k (1)

of the RG microscope through which the physics is observed.

The equations of motion for the effective average action Γk [φ]
give the coarse grained version of the microscopic dynamics
where only the modes p2 > k2 have been averaged over

δΓk

δφ
[φ] =

〈
δI

δϕ
[ϕ]

〉
k
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Scale dependent black holes

At fixed k , and by varying Γk with respect to the gµν and Aµ

we recover Einstein-Maxwell theory.

Solutions include a family of Kerr–Newman-type black holes
additionally parameterised by the RG scale k via the running
couplings.

A = A(M, J, q; k)

Semi-classical limit (k → 0) we have
G ≈ 6.674× 10−11 N (m/kg)2 and α ≈ 1

137 .
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Flowing entropy

Consider the entropy off-shell

Sk =
A

4Gk

Depending independently on the metric via A and the coarse
graining scale k .

Decreasing k for fixed A we go from fine grained to coarse
grained entropy. RG flow given by

∂

∂ ln k
Sk = −Sk

∂ ln Gk

∂ ln k
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Variation of the entropy

Vary the entropy at fixed coarse graining scale k to obtain
thermodynamics

δS =
δA

4Gk

In analogy to the coarse grained dynamics obtained from
varying Γk

δΓk

δgµν
= 0
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Scale identification

We will assume that there exists a scale k = kopt, associated
to the macroscopic spacetime geometry,

kopt = kopt(M, J, q)

such that Γkopt gives a approximation to the full partition
function.

Under this identification we have a new set of RG improved
Kerr-Newman-type black holes defined by a new state function

A(M, J, q) = A(M, J, q; kopt)

Again parameterised by three quantities.
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Thermal equilibrium

What about the thermodynamics? Reply Bekenstein’s thought
experiment.

We now imagine that a small amount of matter to falls into a
black hole of mass M, angular momentum J and charge q.

While assuming the relation

δQ

T
= δSkopt

holds with δSkopt = δA
4Gkopt

.

Heat crossing the horizon of a black hole

δQ = δM − ΩδJ − Φekoptδq .
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Thermal equilibrium

The black hole settles down into a new state with an area
A + δA

δA = 4Gkopt

2π

κ
δQ +

∂A(M, J, q; k)

∂ ln k

∣∣∣∣
k=kopt

δkopt

kopt
.

First term follows from the classical first law of black hole
mechanics.

Second term is proportional to the RG β-functions and takes
into account quantum corrections.
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Thermal equilibrium

The black hole settles down into a new state with an area
A + δA

δA = 4Gkopt

2π

κ
δQ +

∂A(M, J, q; k)

∂ ln k

∣∣∣∣
k=kopt

δkopt

kopt
.

Rearranging this equation for the heat δQ and inserting it into
the LHS of δQ

T = δA
4Gkopt

we obtain(
1− 2π

κ
T

)
δA =

∂A(M, J, q; k)

∂ ln k

∣∣∣∣
k=kopt

δkopt

kopt
.

In the presence of RG corrections describes quantum
corrections to the temperature.
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Thermal equilibrium

Thermodynamics implies that δkopt must be proportional to
δA independently of the heat δQ. Under our assumptions

δkopt ∝ δA, thus kopt(M, J, q) ≡ kopt(A(M, J, q))

Dimensional analysis then dictates that this relation reads

k2
opt =

4π

A
ξ2

where ξ is an undetermined dimensionless positive constant of
order unity.

This constant depends on the RG-scheme used ξ = ξ(Rk) .

Will set ξ = 1 for simplicity.
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Mass function

Modified relation between the area A and the parameters M,
J and q.

M2 ≡ 4π

A

(A + 4πGopt(A)e2
opt(A)q2

8πGopt(A)

)2

+ J2


Temperature

T = 4Gopt(A)
∂M

∂A

Semi-classical limit A→∞
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Asymptotic safety

Our reasoning so far has been independent of the actual form
of the RG running couplings and therefore the UV completion
of gravity

Asymptotic safety is a possible UV completion of gravity

Dimensionless coupling constants reach a non-Gaussian fixed
point at high energies.
→ Ensures that the continuum limit may be taken.

Finite number of relevant directions flowing away from the
fixed point to the IR.
→ Theory is predictive.
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Asymptotic safety and black hole thermodynamics

Go beyond the semiclassical approximation assuming

1

Gk
=

1

GN
+

k2

g∗

Cross over between classical G ≈ GN and fixed point G ∝ k−2

scaling governed by the characteristic energy scale

E 2
c = g∗M2

P =
g∗

GN
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Asymptotic safety and black hole thermodynamics

Inserting the running Newton’s constant into the mass
function with q = 0 and resolve for A

A± = 4πGN

(
2GNM2 − GNM2

c ± 2
√

G 2
NM4 − J2 − G 2

NM2
c M2

)
.

Characteristic mass scale

M2
c =

1

g∗
M2

P .

- Smallest black hole mass.

Semi-classical limit 1/g∗ → 0 leads to Mc → 0 and Ec →∞.
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Temperature

a=0

a=3

a=6
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Figure: Horizon temperature as a function of the black hole mass,
comparing classical gravity with asymptotically safe gravity with g∗ = 1
for several angular momenta a = J/M , with a given in units of 1/Mc .
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Specific heat
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Figure: Specific heat as a function of the black hole mass, comparing
classical gravity with asymptotically safe gravity (g∗ = 1, solid lines) for
several angular momenta a, given in units of 1/Mc .
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Conformal scaling

Suggested by O. Aharony and T. Banks and by A. Shomer
that gravity cannot exist as a local QFT

Consider the case for general d with J = q = 0

At a UV fixed point we expect that a theory behaves as a
CFT where by the entropy and energy should scale as
S ∼ (RT )d−1 and E ∼ Rd−1T d .

For black holes the radius R depends on the energy E = M.

Therefore we consider the relation

S

Rd−1
∼
(

E

Rd−1

)ν

.

With νCFT = d−1
d . However for classical black holes νBH = 1

2
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Figure: Scaling index for an asymptotically safe Schwarzschild black hole
in four dimensions interpolating between the classical value νBH for large
horizon radii and the conformal limit νCFT for small radii.
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Relation to RG improved space-times

RG improved space-times put G (k) directly into the classical
metric

Using a scale identification k(r) (Reuter and Bonnano ’00,
K.F., Litim, Raghuraman ’10, Cai, Easson ’10,Reuter, Tuiran,
’10 )

ds2 = −
(

1− 2G (r)Mr

ρ2

)
dt2 − 2G (r)Mar sin2 θ

ρ2
(dtdφ+ dφdt)

+
ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2

[
(r2 + a2)2 − a2∆sin2θ

]
dφ2

where a = J
M , ∆(r) = r2 − 2G (r)Mr + a2, ρ2 = r2 + a2 cos2 θ

Can these metrics carry the same thermodynamics?
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Relation to RG improved space-times

Horizons at

∆(rs) ≡ r2
± − 2G (r±)Mr± + a2 = 0

A± = 4π(r2
± + a2)

Can be shown to be equivalent for

k2(r) =
ξ2

(r2 + a2)

Reproducing

δM =
T

4G (r)
δA + ΩδJ + e2(r)Φδq

where T = κ
2π .
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RG improved Schwarzschild entropy

Reuter and Bonnano 00’: Put the RG improved Schwarzschild
metric into the classical Euclidean action to obtain the free
energy

F =
r+

2GN
− A

4GN
T

If instead the action with GN → Gopt(A) is used and identify
k2 with the inverse area one obtains

F = M − ST

where S = A
4Gopt(A) and M is RG improved mass function.
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Conclusions

Black hole thermodynamics + RG

is compatible with RG running of couplings assuming a scale
dependent entropy

requires that RG cutoff is set by BH area

has physical interpretation that sub-horizon modes are
integrated out - consistent picture.

Implies thermodynamics is consistent even away from the
semi-classical limit.
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Conclusions

Asymptotic Safety + Black hole thermodynamics

Existence of smallest black hole mass Mc .

Maximum temperature Tmax.

Generic existence of inner horizon.

Potential existence of BH remnant.

Conformal scaling.
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