Structural Aspects of Asymptotically Safe Black Holes

Benjamin Koch^a

in collaboration with Frank Saueressig^b

bkoch@fis.puc.cl

^a PUC, Chile ^b U-Nimwegen, Netherlands

Asymptotic Safety Seminar September 2013

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

A.S., September 2013 1 /

Outline

Introduction

- la Functional Renormalization Group for gravity (FRG)
- Ib FRG improvement and scale setting for black holes

II Results

- IIa FRG improved black holes, in the UV
- IIb FRG improved black holes, global structure
- IIc Thermodynamics and state counting
 III Summary

크 (크)

I Functional Renormalization Group

Introduction I

Introduction

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

A.S., September 2013 3 / 37

▶ < ∃ >

Renormalizable?

Introduction I

Special seminar on Asymptotic Safety (AS)[*]

You are experts in AS

Skip typical renormalization-AS introduction slides

[*] S. Weinberg, "General Relativity" Cambridge University Press

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

イロト イボト イヨト イヨト

Introduction I

Special seminar on Asymptotic Safety (AS)[*]

You are experts in AS

Skip typical renormalization-AS introduction slides

[*] S. Weinberg, "General Relativity" Cambridge University Press

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

イロト イボト イヨト イヨト

Introduction I

Special seminar on Asymptotic Safety (AS)[*]

You are experts in AS

Skip typical renormalization-AS introduction slides

[*] S. Weinberg, "General Relativity" Cambridge University Press

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

크 (크)

Asymptotic Safety

Introduction la

"Asymptotic Safety" Wetterichs realization in terms of functional equation[**]

$$\partial_t \Gamma[\psi] = \frac{1}{2} \operatorname{Tr} \left[\partial_t R_k \cdot (\Gamma^{(2)}[\psi] + R_k)^{-1} \right]$$
(1)

Flow equation where ψ are fields, $\Gamma^{(2)} = \delta^2(\Gamma/\delta\psi^2)$, $t = \ln(k)$, and R_k cut-off function.

⇒ running couplings

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

∃⇒ < ∃⇒

Functional Renormalization Group

Introduction la

Define dimensionless couplings

$$g_k = k^2 G_k \qquad \lambda_k = \frac{\Lambda_k}{k^2}$$

 G_0 : Newtons constant, Λ_0 : Cosmological constant

With Wetterichs equation one can get running gravitational couplings [*]

$$\beta_{\lambda}(g,\lambda) = (\eta_{N} - 2)\lambda + \frac{1}{2\pi}g \left[10\Phi_{2}^{1}(-2\lambda) - 8\Phi_{2}^{1}(0) - 5\eta_{N}\tilde{\Phi}_{2}^{1}(-2\lambda) \right], \quad (3)$$

$$\beta_{g}(g,\lambda) = (2 + \eta_{N})g.$$

$$\lambda_* = 0,193$$
 , $g_* = 0,707$, $g_*\lambda_* = 0,137$

[*]M. Reuter and F. Saueressig, Phys. Rev. D 65, 065016 (2002); hep-th/0110054

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

FRG Flow

Introduction la

Solve numerically:

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

FRG Flow

Introduction la

Expand beta functions for small couplings $g, \lambda \ll 1$:

$$\beta_g = g(k)(2 - 24g(k)) \tag{5}$$

$$\beta_{\lambda} = 12g(k) - 2\lambda(k) \tag{6}$$

Solve

$$g_{FRG}(k) = \frac{k^2 G_0 g_U^*}{g_U^* + G_0 k^2}$$
(7)
$$\lambda(k)_{FRG} = \lambda_U^* + \frac{1}{k^2} \Lambda_0 - \frac{g_U^* \lambda_U^*}{G_0 k^2} \text{Log} \left[\left(1 + G_0 \frac{k^2}{g_U^*} \right) \right]$$
with fixed points g_U^* and λ_U^* used as free parameters.

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

э

FRG Flow

Introduction la

Analytically approximated flow [*]

[*]B. K. and I. Ramirez, Class. Quant. Grav. 28, 055008 (2011); arXiv:1010.2799

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

Improving black hole solutions

Black holes in the AS context

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

A.S., September 2013 10 / 37

< 合型

Improving black hole solutions Introduction Ib

Work pioneered by Bonanno and Reuter [*], but now do not neglect cosmological term Λ_k

Take classical Schwarzschild (A)dS-solution

$$ds^{2} = f(r)dt^{2} - f^{-1}(r)dr^{2} - r^{2}d\Omega_{d+2}$$

with
$$f(r) = 1 - \frac{2G_k M}{r^1} - \frac{1}{3}\Lambda_k r^2$$
.

But: Take couplings scale dependent $G = G_k$ and $\Lambda = \Lambda_k$

(9)

[*] Phys. Rev. D 62, 043008 (2000);

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

▶ < ≣ >

Scale setting

Introduction Ib

Sensible scale setting $k \leftrightarrow r$

$$k(r) = \frac{\xi}{d(r)} \quad \text{with} \quad d(r) = \int_{\mathcal{C}_r} \sqrt{|ds^2|} \tag{10}$$

along purely radial curve C_r with parameter ξ

Black holes, improved solutions

II Results

B. K. and F. Saueressig, arXiv:1306.1546 [hep-th].

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

A.S., September 2013 13 / 37

FRG improved (A)dS black holes, in the UV

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

A.S., September 2013 14 / 37

< 47 ▶

Close to the UV-NGFP

$$\lim_{k \to \infty} G_k = g_* k^{-2} , \qquad \lim_{k \to \infty} \Lambda_k = \lambda_* k^2 . \tag{11}$$

with

$$k(r) \simeq \frac{3}{2} \sqrt{2G_0 M} \,\xi \, r^{-3/2} \,.$$
 (12)

one finds

$$f_*(r) = 1 - \frac{2 G_0 M}{r} \left(\frac{3}{4} \lambda_* \xi^2\right) - \frac{1}{3} \left(\frac{4 g_*}{3 G_0 \xi^2}\right) r^2.$$

< 17 ×

$$f_*(r) = 1 - \frac{2 G_0 M}{r} \left(\frac{3}{4} \lambda_* \xi^2\right) - \frac{1}{3} \left(\frac{4 g_*}{3 G_0 \xi^2}\right) r^2.$$

Selfsimilar for

$$\xi_{\rm sc}^2 = \frac{4}{3\lambda_*} \,. \tag{14}$$

with

$$f_{*,sc}(r) = 1 - \frac{2G_0M}{r} - \frac{1}{3}\Lambda_{\rm eff} r^2$$
, (15)

and effective cosmological constant

$$\Lambda_{\mathrm{eff}} = rac{g_* \, \lambda_*}{G_0}$$

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

⇒ < ⇒ >

Note:

- Λ_{eff} governed by fixed point product $g_* \lambda_*$
- This is solution of the improved equations of motion
- Does not resolve singularity:

$$R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} = \frac{48G_0^2M^2}{r^6} \left(\frac{3}{4}\lambda_*\xi^2\right)^2 + \frac{8}{3}\left(\frac{4g_*}{3G_0\xi^2}\right)^2$$
(17)

FRG improved black holes, global structure Results II

FRG improved black holes, global structure

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

A.S., September 2013 18 / 37

→ < ∃ →</p>

For global structure of $f(r)_{improved}$ (numerical)

Black Holes and Asymptotic Safety

FRG improved black holes, global structure Results II

Note: For $\xi < \xi_{cr}$ can have additional pair of horizons

f(r) for $M=1,\,\Lambda_0=-0,001,\,G_0=1.$ From top to bottom $\xi=\{\xi_{\rm sc},\,1.5,\,0.6,\,0.3\}$

FRG improved black holes, global structure Results II

For $M > M_{crit}$ no additional pair of horizons whatsoever.

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

A.S., September 2013 21 / 37

Thermodynamics and state counting Results II

Thermodynamics

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

A.S., September 2013 22 / 37

< (T) >

Thermodynamics and state counting Results II

Thermodynamics (inner horizon)

Hawking temperature

$$T_H = \left. \frac{\partial_r f(r)}{4\pi} \right|_{r=r_H}$$

Beckenstein-Hawking entropy

$$S = \frac{\pi r_{\rm H}^2}{G}$$

(20)

→ < ∃ →</p>

Thermodynamics and state counting Results II

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

Thermodynamics and state counting Results II

UV micro black holes, standard thermodynamics at r_

$$\tilde{S}_* = \frac{4\pi}{g_*\lambda_*} \cos^2\left(\frac{1}{3}\left(\pi + \theta\right)\right) . \tag{22}$$

with $\theta \equiv \arctan\left(\sqrt{\frac{4}{27\tilde{m}^2}-1}\right)$ and rescaled mass $\tilde{m} = M\xi\sqrt{G_0}\sqrt{g_*}\lambda_*$. Limited by $0 \le \tilde{m}^2 \le 4/27 \leftarrow \text{Nariai black hole}$ with critical mass M_{crit} . Thus:

$$\tilde{S}_{\max} = \frac{\pi}{g_* \lambda_*}$$
.

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

(23

Thermodynamics and state counting Results II

State counting

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

A.S., September 2013 26 / 37

< (T) >

Thermodynamics and state counting Results II

Compare to state counting property [*]

$$\ln \mathbb{Z}_k \equiv -\Gamma_k[g]|_{g=g_{\text{sol}}}, \qquad (24)$$

(\mathbb{Z} : partition function, $\Gamma_k[g]$: effective average action) since in UV (13) is solution, can use

$$g_{sol} = g(f_{sc}) \tag{25}$$

Actually calculation already done for extremal Nariai black hole and corresponding Einstein spaces with $S^2 \times S^2$ topology [*]

$$\ln \mathbb{Z}_* = \frac{2\pi}{g_*\,\lambda_*}$$

[*]D. Becker and M. Reuter, JHEP 1207, 172 (2012), arXiv:1205.3583. D. Becker and M. Reuter, arXiv:1212.4274.

[**] P. H. Ginsparg and M. J. Perry, Nucl. Phys. B 222, 245 (1983); R. Bousso and S. W. Hawking, Phys. Rev. D 54, 6312 (1996)

Volkov and A. Wipf, Nucl. Phys. B 582, 313 (2000).

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

Thermodynamics and state counting Results II

Thus:

$$\ln \mathbb{Z}_* = 2\tilde{S}_{\max} \tag{27}$$

First explicit example where state counting agrees with thermodynamics

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

A.S., September 2013 28 / 37

▶ < ∃ >

II Summary

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

A.S., September 2013 29 / 37

< ロ > < 回 > < 回 > < 回 > < 回 >

- Cosmological term makes huge difference
- Universal short distance behavior independent of G_0 and Λ_0
- UV: Singularity persists
- UV: limit same form as classical solution, but g and λ change role
- UV: Improved solution also solution of improved equations of motion, (but not for all scales *k*)
- Example for analytic micro state counting
- No stable remnant

- A - TH

Thank you

Saludos from Chile

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

A.S., September 2013 31 / 37

★ E ► ★ E ►

< (T) >

Backups

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

A.S., September 2013 32 / 37

< ロ > < 回 > < 回 > < 回 > < 回 >

Black holes, scale setting Backups

Scale setting intuition \rightarrow something like 1/ distance

$$k(r) = \frac{\xi}{d(r)} \tag{28}$$

Something with r, M, G_0 , usually [*]

$$d_{(2)}(r) = \int_{\mathcal{C}_r} \sqrt{|ds^2|} \approx |_{UV} \frac{1}{R_H^{\frac{1}{2}}} \frac{2}{3} r^{\frac{3}{2}}$$

Put this into f(r)

[*] A. Bonanno and M. Reuter, Phys. Rev. D 62, 043008 (2000) [arXiv:hep-th/0002196];

(29)

Black Holes and Asymptotic Safety

< E

Black holes, improved solutions Backups

No (global) solution

Plug improved solution f(r) into Einstein equations

$$G_{\mu\nu} \neq -g_{\mu\nu}\Lambda_k + 8\pi G_k T_{\mu\nu} \tag{30}$$

Why? Because $G \rightarrow G_k \rightarrow G(r)$ Need take into account variable G(r) when deriving the eoms,

$$G_{\mu\nu} \neq -g_{\mu\nu}\Lambda_k + 8\pi G_k T_{\mu\nu} - \Delta t_{\mu\nu} \quad \text{with,} \\ \Delta t_{\mu\nu} = G_k \left(g_{\mu\nu} \Box - \nabla_\mu \nabla_\nu \right) \frac{1}{G_k}$$

Still no global solution

Benjamin Koch (PUC, Chile)

Black Holes and Asymptotic Safety

A.S., September 2013 34 / 37

(31)

Thermodynamics and state counting Backups

Black Holes and Asymptotic Safety

Classical Nariai black hole

For increasing *M*, the black hole horizon grows while the cosmological horizon $r_c \equiv r_+$ shrinks. For the critical mass

$$M_{\rm max} \equiv \frac{1}{3 \, G \, \sqrt{\Lambda}} \tag{32}$$

the two horizons coincide and one obtains the Nariai black hole as the maximal black hole in dS space

Cardy Verlinde thermodyniamics

The evaluation of the Temperature and the entropy at the black hole horizon \tilde{r} gives

$$\tilde{T} = \frac{1}{4\pi\tilde{r}} \left(1 - \Lambda \tilde{r}^2 \right) , \qquad \tilde{S} = \frac{\pi\tilde{r}^2}{G} .$$
(33)

The same formulas hold for the cosmological horizon r_+

⊒⇒ ∢∃⇒