An asymptotic safety scenario for gauged chiral Higgs-Yukawa models

Michael M. Scherer

Institute for Theoretical Physics, University of Heidelberg

http://arxiv.org/abs/1306.6508

September 9, 2013, International Seminar on Asymptotic Safety

in collaboration with Holger Gies (Jena), Stefan Rechenberger (Darmstadt), Luca Zambelli (Jena)

I. Introduction

2. Gauged chiral Higgs-Yukawa models

Questions? (Slide 9)

3. RG flow of the model

4. Fixed-point structure

Questions? (Slide 18)

5. Flow from the UV to the electroweak scale

6. Conclusions

Questions? (Slide 22)

Introduction

Possible solutions:• new d.o.f.• new symmetries• new quantization rules• Really cool nonperturbative QFT!
$$\rightarrow$$
 Asymptotic Safety[S. Weinberg, 1976]

Model:

• Scalar Higgs-sector chirally coupled to top-bottom fermion sector and left-handed SU(NL) gauge group

$$S_{\rm cl} = \int d^d x \Big[\frac{1}{4} F^i_{\mu\nu} F^{i\mu\nu} + (D^{\mu}\phi)^{\dagger} (D_{\mu}\phi) + \bar{m}^2 \phi^{a\dagger} \phi^a + \frac{\bar{\lambda}}{2} (\phi^{a\dagger} \phi^a)^2 + i \left(\bar{\psi}^a_{\rm L} D^{ab} \psi^b_{\rm L} + \bar{\psi}_{\rm R} \partial \psi_{\rm R} \right) + \bar{h} \bar{\psi}_{\rm R} \phi^{\dagger a} \psi^a_{\rm L} - \bar{h} \bar{\psi}^a_{\rm L} \phi^a \psi_{\rm R} \Big]$$

$$(details on slide 6)$$

- Reduced model with the same structural deficits as Higgs sector of the standard model
- ▶ Perturbation theory of this model → triviality & hierarchy problem
- Model is motivated from simpler Higgs-Yukawa systems with UV fixed points for unrealistic parameters
 III Gies & MMS 20101

[H. Gies & MMS, 2010][H. Gies, S. Rechenberger, MMS, 2010]

Nonperturbative FRG:

• Includes perturbative physics

$$\left\{ S_{\rm cl} = \int d^d x \left[\frac{1}{4} F^i_{\mu\nu} F^{i\mu\nu} + (D^{\mu}\phi)^{\dagger} (D_{\mu}\phi) + \bar{m}^2 \phi^{a\dagger} \phi^a + \frac{\bar{\lambda}}{2} \left(\phi^{a\dagger} \phi^a \right)^2 \right. \\ \left. + i \left(\bar{\psi}^a_{\rm L} \not\!\!D^{ab} \psi^b_{\rm L} + \bar{\psi}_{\rm R} \not\!\partial \psi_{\rm R} \right) + \bar{h} \bar{\psi}_{\rm R} \phi^{\dagger a} \psi^a_{\rm L} - \bar{h} \bar{\psi}^a_{\rm L} \phi^a \psi_{\rm R} \right]$$

- Boson mass \bar{m} , scalar self-interaction $\bar{\lambda}$, Yukawa coupling \bar{h}
- Complex scalar field (2N_L real scalar fields): $\phi^a = (\phi_1^a + i\phi_2^a)/\sqrt{2}$, with invariant: $\rho := \phi^{a\dagger}\phi^a$
- Covariant derivatives D_{μ} in fundamental representation of gauge group $D_{\nu}^{ab} = \partial_{\nu} i\bar{g}W_{\nu}^{i}(T^{i})^{ab}$
- Indices $a, b, \ldots = 1, \ldots, N_{\mathrm{L}}$
- Gauge coupling $ar{g}$,Yang-Mills vector potential $W^i_
 u$
- Gauge group generators: $[T^i, T^j] = i f^{ijk} T^k$
- Non-abelian field strength: $F^i_{\mu\nu} = \partial_\mu W^i_
 u \partial_
 u W^i_
 \mu + \bar{g} f^{ijl} W^j_
 \mu W^l_
 u$ with adjoint indices i, j, k, ...

$$\begin{split} S_{\rm cl} &= \int d^d x \Big[\frac{1}{4} F^i_{\mu\nu} F^{i\mu\nu} + (D^{\mu}\phi)^{\dagger} \left(D_{\mu}\phi \right) + \bar{m}^2 \phi^{a\dagger} \phi^a + \frac{\bar{\lambda}}{2} \left(\phi^{a\dagger} \phi^a \right)^2 \\ &+ i \left(\bar{\psi}^a_{\rm L} \not\!\!D^{ab} \psi^b_{\rm L} + \bar{\psi}_{\rm R} \not\!\partial \psi_{\rm R} \right) + \bar{h} \bar{\psi}_{\rm R} \phi^{\dagger a} \psi^a_{\rm L} - \bar{h} \bar{\psi}^a_{\rm L} \phi^a \psi_{\rm R} \Big] \end{split}$$

- Fermion field (Ng generations*):
 - Left-handed N_L -plet \rightarrow top-bottom doublet for $SU(N_L = 2)$
 - One right-handed fermion (top-quark component)
 - Right-handed bottom-type components not considered
 - Only top can become massive upon SB

Flow equation & truncation

• FRG flow equation:
$$\partial_t \Gamma_k[\Phi] = \frac{1}{2} \operatorname{STr}\{[\Gamma_k^{(2)}[\Phi] + R_k]^{-1}(\partial_t R_k)\}.$$

• Truncation:
$$\begin{split} & \Gamma_{k} = \int d^{d}x \Big[\underbrace{U(\rho)}_{k} + \underbrace{Z_{\phi}(D^{\mu}\phi)^{\dagger}(D_{\mu}\phi)}_{\text{Higgs effective potential Higgs}} & \text{left-handed fermions right-handed fermion}_{k} + i(\overleftarrow{Z_{L}}\bar{\psi_{L}^{a}} \not{D}^{ab}\psi_{L}^{b} + \overleftarrow{Z_{R}}\bar{\psi_{R}} \not{\partial}\psi_{R}) \\ & + \underbrace{\bar{h}}\bar{\psi_{R}}\phi^{a\dagger}\psi_{L}^{a} - \bar{h}\bar{\psi_{L}^{a}}\phi^{a}\psi_{R} \\ & \text{Higgs-Yukawa coupling} & + \underbrace{\overline{Z_{W}}}_{4}F_{\mu\nu}^{i}F^{i\mu\nu} + \underbrace{\overline{Z_{\phi}}}_{2\alpha}G^{i}G^{i} - \overline{c}^{i}\mathcal{M}^{ij}c^{j} \Big] . \end{split}$$

 R_{α} - gauge with gauge fixing parameter α , flow of \overline{g} with background field formalism.

[L. F. Abbott, 1981] [W. Dittrich & M. Reuter, 1986]

Truncation

Summary: theory space is parametrized by

- wave function renormalizations of matter fields $Z_{\phi}, Z_{
 m L}, Z_{
 m R}$
- wave function renormalization of gauge fields Z_W or gauge coupling \overline{g}
- Higgs-Yukawa interaction $ar{h}$, the vev $ar{m{v}}$ and the Higgs effective potential $m{U}$

Dimensionless renormalized parameters:

• Expansion of effective potential: $u = \frac{\lambda_2}{2!} (\tilde{\rho} - \kappa)^2 + \frac{\lambda_3}{3!} (\tilde{\rho} - \kappa)^3 + \cdots$.

► Anomalous dimensions: $\eta_{\phi} = -\partial_t \log Z_{\phi}$, $\eta_W = -\partial_t \log Z_W$ $\eta_L = -\partial_t \log Z_L$, $\eta_R = -\partial_t \log Z_R$.

Fixed point and critical exponents:

- Flow of couplings and β -functions: $\partial_t g_i = \beta_{g_i}(g_1, g_2, ...)$
- Fixed point: $\beta_i(g_1^*, g_2^*, \ldots) = 0, \ \forall \ i,$

• Linearized flow and stability matrix: $\partial_t g_i = B_i^{\ j}(g_j - g_j^*) + \dots, \quad B_i^{\ j} = \frac{\partial \beta_{g_i}}{\partial q_i}\Big|_{q=q^*},$

This model gives flow equations for:

- Effective potential $u \rightarrow$ self-interactions λ_i and minimum κ
- ► Yukawa coupling h
- anomalous dimensions (can be solved as function of u, h, λ_i, κ)
- gauge coupling g is kept fixed for the moment!

NGFP at finite fixed gauge coupling $SU(N_L=2)$

- Choose finite gauge coupling g (no FP for flow of g)
- \bullet For a given g matter system shows NGFP in SSB regime
- \bullet Strong dependence of FP on value of g
- Position of the minimum κ diverges as $g \rightarrow 0$

 $\partial_t \kappa = \beta_\kappa(\kappa, \lambda_2, h^2, g^2) = 0,$ $\partial_t \lambda_2 = \beta_\lambda(\kappa, \lambda_2, h^2, g^2) = 0,$ $\partial_t h^2 = \beta_h(\kappa, \lambda_2, h^2, g^2) = 0,$ $\partial_t g^2 \neq 0$

NGFP at finite fixed gauge coupling $SU(N_L=2)$

- Position of the minimum κ diverges as $g \rightarrow 0$
- Asymptotically free couplings as $g \rightarrow 0$
- Combinations of couplings approach finite FP as $g \rightarrow 0$
 - dimensionless mass parameters approach finite FP

```
\partial_t \kappa = \beta_\kappa(\kappa, \lambda_2, h^2, g^2) = 0,

\partial_t \lambda_2 = \beta_\lambda(\kappa, \lambda_2, h^2, g^2) = 0,

\partial_t h^2 = \beta_h(\kappa, \lambda_2, h^2, g^2) = 0,

\partial_t g^2 \neq 0
```


NGFP at finite fixed gauge coupling $SU(N_L=2)$

Is this the Gaussian FP ($g \rightarrow 0$)? No, it's not!

- True GFP of present model has massless gauge bosons and massless chiral fermions
- ► Mass parameters arise from interplay of interaction terms in the flow equation in the weakcoupling limit → genuine interaction effect
- Critical exponents do not agree with canonical dimensions at GFP (see below!)

Scalar potential approaches flatness in the UV with nonvanishing minimum!

For further investigation \rightarrow mass parametrization:

- dimensionless renormalized mass parameters:
- dimensionful renormalized masses:

$$\begin{array}{l} \textbf{gauge boson} \\ \mu_W^2 = \frac{1}{2}g^2\kappa, \\ m_W^2 = \mu_W^2k^2, \end{array} \begin{array}{l} \textbf{Higgs} \\ \mu_H^2 = 2\lambda_2\kappa, \\ m_H^2 = 2\lambda_2\kappa, \\ m_H^2 = \mu_H^2k^2, \end{array} \begin{array}{l} \textbf{top} \\ \mu_t^2 = \kappa h^2. \\ m_t^2 = \mu_t^2k^2. \end{array}$$

Flow equations in mass parametrization:

$$\begin{cases} \partial_t \mu_{\rm H}^2 = 2(\partial_t \kappa)\lambda_2 + 2\kappa(\partial_t \lambda_2), \\ \partial_t \mu_{\rm t}^2 = (\partial_t \kappa)h^2 + \kappa(\partial_t h^2), & \partial_t g^2 = g^2 \eta_W, \\ \partial_t \mu_{\rm W}^2 = \frac{1}{2}(\partial_t \kappa)g^2 + \frac{1}{2}\kappa(\partial_t g^2), \end{cases}$$

Fixed point in mass parametrization $SU(N_L=2)$

• NGFP in mass parametrization in the limit $g \rightarrow 0$ (now also $\partial_t g^2 = 0$):

$$\partial_t g^2 = 0, \quad \partial_t \mu_{\rm H} = 0,$$

$$\chi = \frac{\mu_{\rm H}^2}{g^2}, \qquad \partial_t \chi^2 = \frac{1}{g^2} \partial_t \mu_{\rm H}^2 - \frac{\mu_{\rm H}^2}{g^4} \partial_t g^2, \qquad \chi^* = -\frac{1}{16\pi^2} \Big(\frac{\mu_{\rm t}^2 (1+3\mu_{\rm t}^2)}{(1+\mu_{\rm t}^2)^3 \mu_W^2} - \frac{9(1+3\mu_W^2)}{4(1+\mu_W^2)^3} \Big)$$

Mass parametrization uncovers line of NGFPs:

Includes NGFP from standard parametrization: $\mathcal{A}: (\mu_t^{*2}, \mu_W^{*2}, \chi^*) \simeq (0.38, 0.21, 0.0037)$

Critical exponents **SU(N_L=2)**

Critical exponents on the line of fixed points as a function of the top mass parameter:

Recover GFP for vanishing top mass parameter with canonical dimensions

• Complex pair of critical exponents for NGFP

Special NGFP

$$\begin{aligned} \mathcal{A}: \quad (\mu_{\rm t}^{*2}, \mu_{W}^{*2}, \chi^{*}) \simeq (0.38, 0.21, 0.0037) \\ \mathcal{A}: \quad \theta_{1/2} = 1 \pm 0.36i, \theta_{3} = \theta_{4} = 0 \end{aligned}$$

$$\begin{array}{ll} \mathcal{B}: & (\mu_{\rm t}^{*2}, \mu_{W}^{*2}, \chi^{*}) \simeq (0.35, 0.19, 0.0037) \\ \mathcal{B}: & \theta_{1/2} = 1, \theta_{3,4} = 0 \end{array}$$

Fixed points & critical exponents **SU(NL=2)**

Summary: We found a line of UV stable fixed points

- 3 physical parameters + 1 FP choice on the line of FPs
- FPs can serve to define UV complete QFT of a gauged Higgs-Yukawa model
- Specifying an RG trajectory yields fully predictive long-range theory

Flow from the UV to the electroweak scale $SU(N_L=2)$

- Similar flows for gauge boson mass and Higgs mass
- Gauge coupling exhibits perturbative asymptotically free running in the UV
- Asymptotically safe trajectories:
 - ▶ IR exhibits standard Higgs phase as in perturbative scenario
 - UV controlled by FP at which continuum limit can be taken

Flow from the UV to the electroweak scale $SU(N_L=2)$

- Observation: Typical flows feature Higgs mass of about two orders of magnitude smaller than top and gauge boson mass
- Only particulary tuned trajectories Higgs mass to top mass ratio approach realistic value ~125/175

Flow from the UV to the electroweak scale $SU(N_L=2)$

• Realistic values for "Higgs/top" can be achieved via walking regime on intermediate scales

- Walking regime on intermediate scales between deep UV FP regime and IR freeze-out regime
- Walking regime = "quasi-fixed-point regime" which extends over wide range of scales
- β -functions small but non-vanishing
 - Remnant of line of FPs at finite gauge coupling

Conclusions

- Line of weak-coupling FPs from threshold effects in RG flow of gauged chiral Higgs-Yukawa models
- Weak-coupling FPs well-controlled → No strong couplings, anomalous dimensions vanish
- NGFPs define UV complete asymptotically safe QFTs including an elementary scalar
- Critical exponents: 2 relevant +1 marginally relevant direction + 1 exactly marginal direction
 - Inear instead of quadratically running renormalization constants
- Typically small Higgs masses → Realistic masses by particularly tuned flow with walking regime
- Methods to deal with threshold phenomena are also available within perturbation theory
 - ▶ Reproduce our results e.g. with a mass dependent RG scheme

Thank you for your attention!

Link to paper:

http://arxiv.org/abs/1306.6508

Backup slide I: Truncation

• FRG flow equation: $\partial_t \Gamma_k[\Phi] = \frac{1}{2} \operatorname{STr}\{[\Gamma_k^{(2)}[\Phi] + R_k]^{-1}(\partial_t R_k)\}.$

• Truncation:
$$\begin{split} & \Gamma_{k} = \int d^{d}x \Big[\underbrace{U(\rho)}_{k} + \underbrace{Z_{\phi}(D^{\mu}\phi)^{\dagger}(D_{\mu}\phi)}_{\text{Higgs effective potential Higgs}} & \underset{i(\overline{Z_{L}}\bar{\psi}_{L}^{a}\underline{D}^{ab}\psi_{L}^{b} + \overline{Z_{R}}\bar{\psi}_{R}\underline{\partial}\psi_{R})}{\text{left-handed fermions right-handed fermion}} \\ & + \underbrace{\bar{h}\bar{\psi}_{R}\phi^{a\dagger}\psi_{L}^{a} - \bar{h}\bar{\psi}_{L}^{a}\phi^{a}\psi_{R}}_{\text{Higgs-Yukawa coupling}} & \underset{i(\overline{Z_{L}}\bar{\psi}_{L}^{a}\underline{D}^{ab}\psi_{L}^{b} + \overline{Z_{R}}\bar{\psi}_{R}\underline{\partial}\psi_{R})}{\text{gauge fields gauge-fixing term ghosts}} \\ & + \underbrace{\overline{Z_{W}}}_{4}F_{\mu\nu}^{i}F^{i\mu\nu} + \underbrace{\overline{Z_{\phi}}}_{2\alpha}G^{i}G^{i} - \underbrace{\overline{c}^{i}\mathcal{M}^{ij}c^{j}}_{ij}\Big]. \end{split}$$

 R_{α} - gauge with gauge fixing parameter α , flow of \overline{g} with background field method:

- Gauge fixing condition: $G^{i}(W) = \partial_{\mu}W^{i}_{\mu} + i\alpha \bar{v}\bar{g}(T^{i}_{\hat{n}\check{a}}\Delta\phi^{\check{a}}_{1} + iT^{i}_{\hat{n}a}\Delta\phi^{a}_{2}) = 0$
- Fadeev-Popov operator: $\mathcal{M}^{ij} = -\partial^2 \delta^{ij} \bar{g} f^{ilj} \partial_\mu W^{l\mu} + \sqrt{2} \alpha \bar{v} \bar{g}^2 T^i_{\hat{n}\check{a}} T^j_{\check{a}b} \Delta \phi^b$,

Backup Slide 2: Masses

Masses in SB regime: