The effective field theory of general relativity
and running couplings

1) GR as an EFT
2) Gravitational corrections to gauge coupling running?

3) Can we define a good running G in the perturbative region?

4) AS to one loop - matching to EFT

Overall goal: Understanding how gravity works in the perturbative regime
Does gravity lead to well-defined corrections to running couplings?

“Running” work with M. Anber
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General Relativity as a quantum Effective Field Theory

We do have a quantum theory of GR at ordinary energies
It has the form of an Effective Field Theory

Rigorous well-established procedure

EFT falls apart beyond Planck scale

Well-defined calculations at ordinary energy

A lot of portentous drivel has been written about the quantum theory of gravity, so I'd
like to begin by making a fundamental observation about it that tends to be
obfuscated. There is a perfectly well-defined quantum theory of gravity that agrees
accurately with all available experimental data.

Frank Wilczek

Physics Today

August 2002



Effective Field Theory

Effective Field Theory
- general and practical technique
- separates known low energy physics from high energy physics
- | will present only EFT with dimensionful coupling (gravity)

Goal

- field theory with only the light D.O.F. and their interactions
- heavy particle effects contained in local operators of effective Lagrangian
- most often refers to non-renormalizable subset of a full theory
- complete field theory — loops and all

What to watch for:
- presence of new operators in Lagrangian of higher order in energy expansion
- loops generate higher powers of the energy
- what gets renormalized (hint: the higher order operators)



Key Steps
1) High energy effects are local (when viewed at low E)
Example = W exchange

% => local 4 Fermi interaction
Even loops
=> local mass counterterm
b
Low energy particles propagate long distances:
Photon:

1

2

% +— Not local V ~

g
>©<‘4nin loops — cuts, imag. parts....

Result: High energy effects in local Lagrangian

L
r

L =9,L, +90,L, + 9L, +

Even if you don’t know the true effect, you know that it is local
-use most general local Lagrangian



2) Energy Expansion

Order lagrangians by powers of (low scale/high scale)N

Only a finite number needed to a given accuracy

Then:
Quantization: use lowest order Lagrangian

Renormalization: / ok
-U.V. divergences are local
- can be absorbed into couplings of local Lagrangian

Remaining effects are predictions



General Procedure

1) Identify Lagrangian
-- most general (given symmetries)
-- order by energy expansion

2) Calculate and renormalize
-- start with lowest order
-- renormalize parameters

3) Phenomenology
-- measure parameters
-- residual relations are predictions

Note: Two differences from textbook renormalizable field theory:
1) no restriction to renormalizable terms only
2) energy expansion



QCD and the physics of pions — Chiral Perturbation Theory

The chiral symmetry of QCD, with pions as pseudo-Golstone bosons requires
a non-linear lagrangian with all powers of the pion field

U = exp(iT -7 /Fy) with U — LURT

Construct most general lagrangian consistent with symmetry — order by energy expansion:

1) Only a constant at zero derivatives: U'U =1

2) Unique term at two derivatives

2 - T — AT 1 ip IT — 5IT.
Ly = % T (D“_UD“UT) D#P = duL_ + 6, U _ﬂ” "

3) Many terms with more derivatives:

L = F*Tr(D,UD*UN4Ly[Tr(D,UD*UN*4+LoTr(D,UD, U Tr(D*UD U ) +......



At low energy only the lowest lagrangian is relevant:

2

‘Z * Tr (D, UD'UT)

Lo =

All depends on one parameter — must be measured

AP
Lt TEH ¢
Fr ~ 92 MeV
2
9
G3 2 » my,
T+ .+, = —LF2mim, Vial? |1 — —£
Tt —=utry, A TR | Tn_g_r
Then very large number of predictions:
2\ ¢ 2
1_ (4 I oyt 4
ReT; = (m?_) (ae + by _m_?r + .. ) Table VII-2. The radiative complex
of pion and kaon transitions.
W T-_m.?‘r 2 -_rn.?‘r 4 — -;q}_?l_ Pions Kaons
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Weinberg’s power counting theorem
M ~ ED with —‘?+Z (n—2) + 2N
Translation: Each loop add a power of E?
Lowest order in energy: Tree level L,
Order E* - one loop L, (and tree level L,)

Order E° — two loops L, (and one loop L, tree L)

Consequence: Loop diagram does not renormalize the lowest order Lagrangian

Example:
. / R
- . y y
G 1 s S
M = = M = F*I( s) = £ 16ﬂ2F§[a.—|—b1ns)
EE



Background field renormalization

Expansion about background field preserves symmtries of the theory
U =Uel/F

Integrate out quantum fluctuations

S = / d*z {ﬁ(i?jJr%&(Dngg)&

Result is local E* lagrangian
1

~ 10272(d — 4)

AL Tr(D,UD*UM]? +2Tr(D,UD,U") Tr(D*UD"U")
i L

TETL 1
b=t 1om@ g
Len = I =

’ 2 10272(d — 4)
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Actually, richer set of operators than I have been showing:

Ly = FTQTI (D#UD“I ) + FTETT (XU% + UX%)

Y Lo,

-
—1 {Tr (D#UD“U%)F LT (DJD,,U*) - Tr (D“UD“UT)
+L3Ttr( LUD'UID,UDU )
LT (D UDIU ) Tr (XUTH x)
4 LsTr (D#UD”L (X[,-T n UXT)) 4 L [Tr (XUf n Uﬁ)f
+ L {-IT (fU— Ufjr + LsTr (XUTXzﬁ +Uf{rf)

+iLoTr (L, D"UD"U" + Ry, DUTD'U ) + Ly Tr (L UR™UT)

D LD*U')])

7_).[(34

+ %T‘r (DD ) T (DUD'UY)

-z Ly (D#UD“UT) Tr (fo+ U‘*x)
+ E Tr | DUD U (xUT + Uy | (2.5)
i

‘1 {Tr (xU‘i + Uxi-)]? + % Tr (xmeT + UXTUXT)

N 1
_ . BRI DY il , BTV — Z Ty U o rt
+4Tr(LW,D{DL + R, DU DL) 4T1 (L“,[R L)}

with

1 P
)\E ——] 41 —1 il . 2.
3272 {(1—4 ndm =1+ } (2.6)
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Nature of predictions:

Not the coefficients - measured
Relationships between different reactions
Residual kinematics from loops — logs in particular

Example — pion form factor

2LS" 1 ¢’
FZ  06mF2 (111—,, !

m

Go(?) =1+ ¢ 4o Li(p=my) = (7.1£0.3) x 10~

Note: Lowest order coefficient F;; does not have any scale dependence
but next order coefficients have log scale dependence

1 72
Lg(p) — 09,2 In (i—z) (SU(2))

12

Ly(u) =
1 .
Li(n) = T35 In (i—)) (SU(3)) .
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What if we used dimensional cutoff?

Exactly the same formulas result, when expressed in physical parameters

Intermediate renormalization different:

A2 ~ A2

FE = Fg[l + (0) i

"TorFD) Li=L{ +

But disappears from final result

13



Gravity as an effective theory e

Both General Relativity and Quantum Mechanics known and tested over
common range of scales

Is there an incompatibility at those scales ?
Or are problems only at uncharted high energies?

Need to study GR with a careful consideration of scales

14



The general Lagrangian

2 )
2 B}

The Einstein action: Syran = / /=g [

K

k? = 321G, g = detg,,, g, is the metric tensor and R = ¢"'R,,
) - A a A T A T A
B',u?-f — d?-f’r,u). o ()Ar,uv + r,u).rmr o r,ur./r).(r
Ao

A ) - - - \
I - 7 (()a-g:’_‘JJ + ():’_'}ga-(r - ()(rga-:’:})

a
But this 1s not the most general lagrangian consistent with general covariance.
Key: R depends on two derivatives of the metric

- Energy expansion — expansion in number of
derivatives

2

k2

Syrav = / d*r\/—q {;’\ + =R+ R?+ colR,,, RM" <+ .. }
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Parameters

2

*9{; rav —— / (.’1’-4;_1",\/__9 {‘\1 4
| ' IS

1) A = cosmological constant
A=(1.2+0.4) x 1071230}

-this is observable only on cosmological scales
-neglect for rest of talk
-interesting aspects

2) Newton’s constant

a

R = 3210

3) Curvature —squared terms c,, ¢,
- studied by Stelle

_2H + o R? + ol RM" +

Mp =1.22 x 1019 GeV

- modify gravity at very small scales c1.0o < 107

-essentially unconstrained by experiment
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Quantization

“Easy” to quantize gravity:
-Covariant quantization Feynman deWitt
-gauge fixing
-ghosts fields
-Background field method  ‘t Hooft Veltman
-retains symmetries of GR

-path integral
g,u;,; — gru;r.; —|_ hhr{”;

Background field: g" = §" = k" + h-?h.f\‘h_’\*’#

Expand around this background:

] ' 2
‘S{.}h"‘('a'z,‘ = / ['{Jt.'.l"'\/ *f} [

g g

R +£[1}+£[2}+
2

.. Byt o~
L‘/l‘,jl) — i L(TMVR _ ZR;W}
: p
~(2) 1 [ 0x 1 [ af e 3
Lfﬁ = 5]1#,/;,}}2 — 5]1:&h + h;ah_ 3= h‘;t'jrnh
(1, ]
R (= Shah™ ) + 20k = b ) R
. . . . Fl)gw 1 7,(!V‘E) _ }‘-'2.]—1;{1/
Linear term vanishes by Einstein Eq. "SR =
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Gauge fixing:
-harmonic gauge

L1 |
Loy = o { (hﬁu;v - Eh,u) (h’“’\:’\ — h.'*“)}

Ghost fields:

a — k|l . ‘A Nz
Lgh.(_?&?f — \/ _g” / {”{uk T R,{H/’” }

vector fields
anticommuting,
in loops only

h

PR
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Performing quantum calculations

Quantization was straightforward, but what do you do next?
- calculations are not as simple

Next step: Renormalization
-divergences arise at high energies
-not of the form of the basic lagraingian

Solution: Effective field theory and renormalization
- renormalize divergences into parameters of
the most general lagrangian (c,,c,...)

Power counting theorem: (pure gravity, A=0)
-each graviton loop — 2 more powers in energy expansion
-1 loop — Order (dg)*

-2 loop — Order (0g)° o



Renormalization

One loop calculation: ‘t Hooft and Veltman

Zlo, J| = TrinD

Divergences are local:
. 1 1 (1 _. 7
Aﬁl‘il"’ = —— {—Hz _Bz.‘uH’m;} € =4 — {'_!
" T Sme \0tt T2

Renormalize parameters in general action:

- (r) cr 1

- J_ —_— J_ . -
0607 2e€

() (

bt = (Co }+ ————
2 2T 16072

Note: Two loop calculation known in pure gravity

209 w

ALP = :
2880(1672)2

{ a3

v 3 ~é f
—/—gR*? R R’

Order cb)\f six derivatves

dim. reg.
preserves
symmetry

Pure gravity
“one loop finite’
since Ry, =0

Goroff and Sagnotti
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What are the quantum predictions?

Not the divergences
- they come from the Planck scale
- unreliable part of theory

Not the parameters
- local terms in L
- we would have to measure them

2

Amp~q*In(-q*) , +/-q

Low energy propagation

- not the same as terms in the Lagrangian

- most always non-analytic dependence in momentum space

- can’t be Taylor expanded — can’t be part of a local Lagrangian
- long distance 1n coordinate space

21



Corrections to Newtonian Potential

Here discuss scattering
potential of two heavy
masses.

(Tl = (@2r)'6W (p = p)(M(9))
= —@nAE - BY V(@i

Potential found using from

1 P
11 /(d q UM ()

2mi 2my | (27)3

Classical potential has been well studied fwasaki

Gupta-Radford
Hiida-Okamura

JFD 1994

JFD, Holstein,
Bjerrum-Bohr 2002
Khriplovich and Kirilin
Other references later
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What to expect:

General expansion: GMn C(M 41
Vir)=— I {1 + a ( J: m) + 0 Cjﬁ;} + cG? Mmé>(r)
T rce r-c
. / Quantum \
Classical expansion : Short
expansion
parameter range
parameter

Relation to momentum space:

d’*q igqr 11

J @n)F C Ja T dwr

] 3
/ ‘d q-; qu’ri = ;)2
J (2m) al 27

d.’i r ) -1
: (275’3 ' In(a’) = 273
Momentum S T2 (;f:“[} n|. Nrarls / s NV et 4 2 o 2
pace V(¢ ) = —5— |1 + adG(M +m)\/—q¢* + U Ghq” In(—q7) + Gq”
amplitudes: q e P

Classical quantum short

/ / / range

Non-analytic analytic



Parameter free and divergence free

Recall: divergences like local Lagrangian ~R?

Also unknown parameters in local Lagrangian ~c,,c,

But this generates only “short distance term”

Note: R2 has 4 derivatives R* ~ ¢*
Then:
Treating R? as perturbation R2
r ~2 7 1,1 ~2 7 -3
Vie ~ G"Mm — ¢ —; ~ const. — G=Mmd”(x)
q q ‘

Local lagrangian gives only short range terms
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The calculation:

Lowest order:

Vertex corrections:

Vacuum polarization:
(Duff 1974)

Box and crossed box

Others:

W

(ry) | S 4 (=)

S k1 ks TN
kg ‘ ‘k4
(m1) YV (m2)

ki‘ \ <o ’

\ )
ks A A,

(my) | , (m2)

wh T ks

i

Koo I 1 ka
(TT:I) e {mi)
rd \
ko \ ‘ ka

k2

(m1) ol 3@4@)
kj‘ k32

oA

R

k1 4 %k‘g

!
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Results:

Pull out non-analytic terms:
-for example the vertex corrections:

2/, . =
9 T=(myy + mo 5} o
ﬂ[.'Si(LIH—S[b)((D = 2GTmymy ( ( ‘l(ﬂ ) + 3 log ‘)
52

Msioy15a)(q) = — 3 G?mymy log ¢

Sum diagrams:

Vi) = — Gz [1 4 3Gt me) 4l (Jﬁ]

7 7 107 72
/ 3
Gives precession \
of Mercury, etc Quantum
(Iwasaki ; correction

Gupta + Radford)



Comments

1) Both classical and quantum emerge from a one loop calculation!
- classical first done by Gupta and Radford (1980)

1) Unmeasurably small correction:
- best perturbation theory known(!)

3) Quantum loop well behaved - no conflict of GR and QM

4) Other calculations
(Radikowski, Duff, JFD; Muzinich and Vokos; Hamber and Liu;

Akhundov, Bellucci, and Sheikh ; Khriplovich and Kirilin )
-other potentials or mistakes

5) Why not understood 30 years ago?
- power of effective field theory reasoning
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Loops without loops - unitarity techniques: arXiv:1309.0804
(with E. Bjerrum-Bohr and P. Vanhove)

1) Dispersion relations -on-shell cut involves gravitational Compton amplitude
B (VA
% gt with >< Y
?‘5 P}'( = .f- 4 ’\)/ 4

, —1 7 dSy, WG oBA
IOQ(\S*- f) — SZW ' 4{1 “'r\/l:( ? ( )J- _A j’)l—(j (.[ A)J\/[ -l (.p{ _A _pﬂ_|_(_[ A )]:),{H.f.('}:'_'; P)\(T.‘;{(‘;
On-shell gravity amplitudes are squares of gauge theory amplitudes — consistency check

2)  Full modern helicity formalism calculation

KT 1 key ke
Atreef o+ 4y o A m’ [ }
‘1[(_1 (1')1-])2'/‘1 AZ) - 16 (Illlfllz) (/\1 pl)(lll ])_)).

Ky 1 (ke |pi|kal (ke |paka)?
Nftrees o L= ) — (4) I]Jll 2] < 1|1U2| 2]
B L N (R R (RN

LERRY”

[ AP 5 0 M, (p1,po, — 0%, ") (M, (p3. pa, 3, —11"))
fZI}'” l!'ffr:; cut

1 {1 Imp| _
) disc

Reproduce usual result without calculating loops — low energy only

Vir)=—

- —+ —
rc? 107 r2¢3

M M+m 41 Gh
GMm [1+3G( + m) Gz] -

.Tw



Graviton —graviton scattering

Fundamental quantum gravity process

Lowest order amplitude:
i 2l Cooke;
A ) = = =2 Behrends Gastmans
4 tu :
Grisaru et al

One loop:
Incredibly difficult using field theory
Dunbar and Norridge —string based methods! (just tool, not full string theory)

4
K 9 a2 a2
Alteer g —!:+(=ti' Il H')
- : 3072072
|
AP ) —= AP
2 ~9 VT \
Ko (1 —e)l'( 1+ €
Alleor g4y 4y > - - AT ) x (stu) (3)
L) e (1 — 2e)

2 (Inl—u) In(—t) I —s) l —t —u"
=z \ L Lt s L (_ )
* { £ ( st s tu ) 52 f 5’ g
L2 In{—u) Inf—s) | In(—t)1Ini—s) | In{—t)In(—s)
) S tu ts

where
—t —u (4 2u) (2 + w) (28* + 28%0 — 202 + 2tu® + 2ut) ot 5
f(_'-" 8 ) g% (“"I I F_)
(t— ) (341 + 1609530 + 256662u2 + 1600tu® + 341ut) ¢
I 3 gs v w
1022 + 0143830 + 146226202 + 90143t + 102204 _

07 s i) 29



JFD +
Torma

Infrared safe:

The 1/€ is from infrared

-soft graviton radiation

-made finite in usual way

1/e -> In(1/resolution) (gives scale to loops)
-cross section finite

dT do do .
E ; l E : l E . . [y |

s K25 —t —u tu —f —u
—_— | — l1h — 111 —— 5 f (_‘_ )
204 =5Tetsus | G s g D5 s 5
i —t U — L 5 S N ()
—(— [11 F— In ) Fn(2w?y v — i Tl 'PJ_,_,_,:"J:)
S s s S NS 3 T Yy )
* finite

Beautiful result:
-low energy theorem of quantum gravity
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Reformulate problem of quantum gravity

Old view: GR and Quantum Mechanics incompatible

Unacceptable

New view: We need to find the right “high energy”
limit for gravity — new physics or new treatment

Less shocking:
-not a conflict of GR and QM
-just incomplete knowledge

THIS IS PROGRESS!
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Summary for purpose of this talk:

] L 2 .
Sorav = / d*r\/—g {j\ + SR+ R? + coR,, R*" + .. }
- . IaY

G(M +n Gh : .
( -r(j ) + h-r'—’(j‘] + G Mmé&*(r)

. (M
Vir) = — m [l + a

r

1) Loops do not modify the original coupling

- 1 1¢(1 ., 7
A[_‘,I‘—U - = {_Hz _HWH,(W}
0 872 ¢ 120 * 20 7

2) Loops involved in renormalization of higher order coupling

L
960m2e

(r)
r'l =) T

— o 4
16072

3) Matrix elements expanded in powers of the momentum

GMm

2

Vv ( (]2) —

[l + d'G(M +m) \,*f'—(gz + V' Ghag* In(—q¢*) + (i'(?qz]

q

4) Corrections to lowest order have two features
- higher order operators and power dependence
- loops also generate logarithms at higher order
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A motivation for the gravity and running couplings:

week endin
PRL 96, 231601 (2006) PHYSICAL REVIEW LETTERS 16 TUNE 2006

Gravitational Correction to Running of Gauge Couplings

Sean P. Robinson™ and Frank Wilczek '

Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, UJSA
(Received 30 March 2006; published 15 June 2006)

We calculate the contribution of graviton exchange to the running of gauge couplings at lowest
nontrivial order in perturbation theory. Including this contribution in a theory that features coupling
constant unification does not upset this unification, but rather shifts the unification scale. When
extrapolated formally, the gravitational correction renders all gauge couplings asymptotically free.

,
B(g, E) dg by . + E*
8 = = = 5 8 ap5 7 8
dInE (47)° Mg
7/
7o
v 1 .
G Sl e M K FIG. 1. A typical Feynman diagram for a gravitational process
1 .[i') contributing to the renormalization of a gauge coupling at one

loop. Curly lines represent gluons. Double lines represent grav-
itons. The three-gluon vertex M is proportional to g, while the
gluon-graviton vertex @ is proportional to E/Mjp.
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A hint of asymptotic freedom for all couplings

1.4+

0.6

0.4

0.2

0 "2 4 6 B 10 12 14 16 18 20
logyg (E/GeV)

FIG. 2. When gravity is ignored, the three gauge couplings of a
model theory evolve as the inverse logarithm of E at one-loop
order (dashed curves). Initial values at 100 GeV were set so that
the curves exactly intersect at approximately 10°® GeV. When
gravity 1s included at one loop (solid curves), the couplings
remain unified near 10" GeV, but evolve rapidly towards
weaker coupling at high E.

when the energy approaches the Planck scale, and soon
after that one loses the right to neglect higher-order gravi-
ton exchanges. Though neglect of additional corrections is
not justified beyond E << My, it is entertaining o consider
some consequences of extrapolating Eq. (2) as it stands to
these energies, taking into account ag < (. The integral on
the right-hand side converges as £ — oo, and so Eq. (20)
arises as an asymptotic relation. Thus, the effective cou-
pling vanishes rapidly beyond the Planck scale, rendering
the gauge sector approximately free at these energies. In

34



A Rough History:

Prehistory: Fradkin, Vilkovisky, Tseytlin, Diennes, Kiritsis, Kounnas...

Start of “modern era”: Claims that couplings do run:
- analysis using cutoff regularization

S. P. Robinson and F. Wilezek, “Gravitational correction to running

of gauge couplings,” Phys. Rev. Lett. 96, 231601 (2006) [arXiv:hep- D. J. Toms, “Quantum gravitational contributions to quantum electro-
th/0509050). ' i ' ) dynamics,” Nature 468, 56-59 (2010). [arXiv:1010.0793 [hep-th]].

H.-J. He, X. -F. Wang, Z. -Z. Xianyu, “Gauge-Invariant Quantum Grav-
. . ity Corrections to Gauge Couplings via Vilkovisky-DeWitt Method and
Claims that Coup|lngs do not run Gravity Assisted Gauge Unification,” [arXiv:1008.1839 [hep-th]].
-analysis in dimensional regularization

Y. Tang, Y. -L. Wu, “Quantum Gravitational Contributions to Gauge
Field Theories,”

[arXiv:1012.0626 [hep-ph]].
S. Folkerts, D. F. Litim, J. M. Pawlowski, “Asymptotic freedom of Yang-

) ) o ) Mills theory with gravity,” [arXiv:1101.5552 [hep-th]].
A. R. Pietrykowski, “Gauge dependence of gravitational correction

to running of gauge couplings,” Phys. Rev. Lett. 98, 061801 (2007) . . .

(arXiv-hep th/0606208]. Claims that running couplings do not work

D. J. Toms, “Quantum gravity and charge renormalization,” Phys. Rev. ) ) ) ) .

D 76, 045015 (2007) [arXiv:0708.2990 [hep-th]]. M. M. ;\nh-"*r: J i~ l)-,_-m.-ghu.o. ‘\.1‘ hl—HUllSSi(tll‘\'. "Runmug couplings and
operator mixing in the gravitational corrections to coupling constants,”

D. Ebert, J. Plefka and A. Rodigast, “Absence of gravitational contri- Phys. Rev. D83, 124003 (2011) [arXiv:1011.3229 [hep-th]|.

butions to the running Yang-Mills coupling,” Phys. Lett. B 660, 579

(2008) [arXiv:0710.1002 [hep-th]]. J. Ellis, N. E. Mavromatos, “On the Interpretation of Gravitational

i ) . o L ) Corrections to Gange Couplings.” [arXiv:1012.4353 [hep-th]].
Y. Tang and Y. L. Wu, “Gravitational Contributions to the Running of

Gauge Couplings,” arXiv:0807.0331 [hep-ph].
Agreement

D. J. Toms, “Qua:drgl,ti‘c :tiivergences and quantum grav-
itational contributions to gauge coupling constants,”
Phys. Rev. D 84, 084016 (2011). 35



What is going on?

1) Dim-reg vs cutoff regularization — why the difference?

2) Running with (Energy)?
- dimensional coupling constant

3) Why don’t other similar effective field theories use running couplings?

4) Application in physical processes
- does the running coupling work?
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Asymptotic Safety motivation #1:

If A =0 at low energy, is it non-zero and running at higher energy?

-
-
-

—
-——
-

-—
—
-
-
-
-
—— -
- — o — - — = —

-0.4 -

-
-
-_
-

-
_____
= RFp==—m—===—"

0.6 -

FIG. 3. Solution (4.5) to the naive flow equation for different
initial values .‘7\(}?) and G(O)= 1.

Does G run in the perturbative regime?

Can we see indications of AS in Lorentzian perturbation theory?

_ Applications — cosmology
-- _ i.e. Entropy generation
__________ —--" from variable CC. (Reuter)



Asymptotic safety motivation #2:

Can we see signs of AS in real cross-sections?

LA P
G2 i
2 (0 ut’ ol T )

Dimensionless running couplings — running to UV fixed point

a(N, G, i, pa) =

Weinberg’s
original
phrasing
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Apparent conflict between EFT and gravity contribution

to running couplings:

Gravitational corrections modify different operator
- at higher order in energy expansion
- R? rather than R

But certainly logically possible
— renormalize at higher energy scale E
Amp; = a;g> + b;g°k*q’
7 "'l ) Y T D 7 )
— a,—g*(l + iJlusrnEh) + b.g“k“(q~ — E-)
d;

= a.g%(E) + b,g*(E)k*(¢* — E?),
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R+W

Result.—At this point the Gaussian integrals over the
quantum fields in Eq. (10) are formally defined, but the
resulting functional determinants contain ultraviolet diver-
gences. We subtract them at a reference energy E,. We find
the one-loop effective action at energy scale E is

S.ilg a] = fa“x[ 4#) ——(E* — E})

E?

In— |F2, Fad 18
(47:')" ] o (%
where b, depends on the gauge and matter content inde-
pendently of whether gravitation is included in the calcu-
lation. Taking E differentially close to E,, we read off the
one-loop S function

K gE2 (19)

___ b s_
B(g, E) g 3(417)-

(4m)?
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Conditions for success:
1) Definition 1s useful
- like a (g%) sums up a set of radiative corrections
2) Definition is universal
- like a (q%) comes from the universal renormalization of a

We will find two big obstructions

1) The crossing problem — kinematic
2 does not have a definite sign - renormalize at ¢° = +E° or ¢° = —E*,
- occurs differently in different processes — with different signs
- since really higher order operator
Amp; = a,g> + b,g*k*q’
2) The universality problem _ a,_gz(, Lbhio Ez) b2k (g — E?)
- b/a, highly process dependent i
- no definition works for other process
-since really not renormalization of original operator

= a,g%(E) + b;g*(E)x*(g° — E?),

My claim: No definition is useful and universal (in perturbative regime) 41



Consider gravity corrections to gauge interactions: (Anber,

El Houssienny,
JFD)

-we have done this in great detail for Yukawa
- | will be schematic for gauge interactions in order to highlight key points

Lowest order operator:

- 1
E[’.O — ‘(j‘IA'-\:.llL“A‘lil I-"EO — _EF;“/E“/

Higher order operator

T a¢ . 1wy A
ﬁ}“, = (_;'21_'1'},‘(."(_)24‘1“ Eh.o. - _A(),(JF d E\I'

Equations of motion

oA =
Equivalent contact operator:

Lo = Py, vy = cpJ,J*
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Direct calculation

Vertex (fermions on shell) found to be:
V=4 [07.‘“ - (‘1(q2)crf2q21,.-“] T

with

‘ I 1
a(q®) = ag [E + Elnﬂﬁr —

bo | -2

- %lﬂ(—qg/ :u-ﬁ)}
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Physical process:

FIG. 4: Tree diagram for the on-shell scattering processes
involving fermion.The filled circle denotes the set of vertex
renormalization diagrams.

Overall matrix element:
. B H o 1
M = a [62‘}‘“ + Cz(l(qz)ﬁzqz’)'”} u q—2 Uyt + h.c. + couy* vy, u
2

e* , . .
= uy'u uy,u [—_, 4 (c.’z(,u.) — e2agK? ln(—qz/uz))]
q.—

Describes the two reactions:

¢ > 0 forf+f—=>f+Ff
< 0 forf+fo2>7r+7f

Renormalization of higher order operator:

1 1 /
cy = €9 — Qg E+§ln4w_%}
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Similar in the modification of photon properties

Photon propagator correction:

_ 2
i =ey Like

Again looks like contact interaction:

1

Eh.(?. — —A'(';)“FNIJ(:),\F‘/\V

’ S 1 =7 Hip? AV — WO o [ g
M =a'u — |e” +e‘ck’q’| — wy,u + couy uty,u

)

q- q-
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Can this be packaged as a running coupling?

Propose:

2(M?) = ¢ [1 + bor? M)

Is the amplitude equal to?

‘ e*(M?)
M 7= a+'u uy,u [—, + [_:.';))]

o ¢ > 0 forf+Ff—=f+7f

. 3 (j 12211(),‘\‘2_‘12 o < 0 f 'f"" Pl a 2
'=7 wuwupu|5+—+ () of+f=>f+]
q- q- -
Recall
1
_ 9 9 9 9 9 _ _ _
M = u {f“ﬁ,“ + (r“r.z(q")h'“q“ﬁ..“} u — Uy,u + h.c. + iy vy, u
q‘-
— M — €” T -2 2 2 )
= uY'uuyu|— + ((-.2(;1.) — e“apk” In(—q° /p*)
qn—

You can make the definition work for either process but not for both

- No universal definition
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Other forms of non-universality:

Other processes have other divergences and other operators:

Lowest order:
Cf.u = .(][m.’,u L”fl“
Different higher order operator is relevant
Eh.o. — (‘344# Li‘\,'pdg W

Calculation of the vertex corrections:

V=1 {e*;r“ + b{pz)e.ﬁﬁngﬁ“} U
Different value for the correction (verified in Yukawa case)

b(q*) # alq®)

Different correction to matrix element

9 2y 92 2 1 v T v
M = e’e, (ll’}‘“ [1 + b((q + p1)°)“(q + p1 )“} 147 Y'u+ h.c. + czuy* (4 + PIY u) 4
1



What about calculations with dimensionful cutoff?

- above agrees with EFT logic and dim-reg conclusions
- new papers with cutoff make very different claim

Work with:

1 . :
Ay = —ill, D,— 0, +1A,

=)

Quadradic dependence on the cutoff:
- different methods but find effective action

B 1 + cx2A2

.C — _]: 2 F;L:/F#V 1T b].l][.-."\Q)EM/dQF#V
g E?G

Toms and others interpret this as a running coupling constant

e?(A) = e%(1 — ck?A?)

a2

(ﬁ)(,"“ L )
— = —cK“e“A”°
C)J\

B(e?) = A

1 o . B
Fa FFHI'FM £y ’«"IE)L.'

0
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But this cutoff dependence is unphysical artifact

- wavefuntion/charge renormalization
- disappears from physical processes

.
€p e” 1

An(1 + ck2A2) 4 137

The quadratic cutoff dependence disappears in physical processes

M =

2 242 2
2 + ar’e”—q ) In e

—+ ] + 9
q

After renormalization, obtain exactly the dim-reg result:

(T‘Q I 9 9 oy 3
‘\/[ = — T ((3(/1) + (’IHz(f‘“ lll !
q- L

1) Quadratic cutoff dependence is NOT running of charge
2) Agreement of different schemes
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Summary of gauge coupling section:

-We have addressed renormalization of effective field theories
-Organized as a series of operators

- Running coupling is NOT an accurate description of quantum loops
in the EFT regime

- Confusion in the literature is understood as misunderstanding of
results calculated with a dimensionful cutoff

-There is no scheme dependence to physical processes

Could gravity influenced running couplings eventually play a role?
- Maybe after EFT regime
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Test cases for running of G:

1) Graviton propagator — vacuum polarization

2) Graviton-graviton scattering

3) Massless scalars scattering gravitationally
a) identical scalars — permutation symmetry

b) non-identical scalars — channel dependence

4) Massive gravitational potential

Anber, JFD
Phys. Rev. D 85, 104016 (2012)
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1) Vacuum polarization in the graviton propagator:

Including vacuum polarization and renormalizing
AL= ]()TT" ]"[)R " "[}R sR
we find the one-loop corrected propagator to be

(Db ur = DBy 4 (DB 5 i DPTEY

— i 2 a v av 7 — ] —q’ 7 —q
== qu (1 + 2B(g*)[L mpBv 4 Javy Bu Alg®) = — T("ln(#’—%) W("ln(#—%),
> 5y = 1 Gam(ZL
— LeBLmY] — !;A(‘? ) . Bla) = g0z 60! (#,g )
o o L3 2 l 2 —q°
Not a unique definition: 6la’) = o[ 1 + g6 '(#—Q)
a) 00,00 component (non-rel. masses) + =Gt =L ‘f)].
My

1 101 2) — YR(2)) = 7 0 (~T
b) Proportional to original propagator G(¢?) = G(1 + 2B(g?) = 0(1 +55-Gg m(#_g)).

Has crossing problem: which sign of g should be used? Also know that
p; drop out in
If Euclidean-ized, q?> — -qg? the effective strength increases pure gravity
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2) Lets look at graviton —graviton scattering

Lowest order amplitude:

AT ) = —
4 tu

One loop: Dunbar and Norridge

AL toopy p —i - (52 N u?)
. L ' 3072072
|
AlTeor AR
2 2 o .
Al—loop; . \ K [ I-] - E-I[ I-] e giree . \ ‘o \ QN
A (47 4 T 1 —2e AT ) % (st 23]
21l —u) Ini—t; i —s) l —t —u
x —( | ) (=)
€ st S tu 5 5 5
[ —u) In(—s) I In(—¢)In{ —s) In{ —%)In(—s)
- S 1 ts
where
—t —u (F 4 2028+ (260 28%0 — 20 200 | 2ut) po ot 9
f(—,_—) = (]11 — W)
s s 5 u
(f— ) (341 + 160983y + 25668202 + 16090 :1-111;4][ t
— 1n—
Alg? i

1922¢ + 014383 + 146226202 + 9143t + 19224t
1804 '




Infrared divergences are not issue:

JFD +
Torma
-soft graviton radiation

-made finite in usual way

1/€ -> In(1/resolution) (gives scale to loops)
-cross section finite

(ffr:r) I (da) I (do)
ds? free df} rad. dtl nonrad,
-4 5 .2
K5 RS —t — tu —t —u
—.io 3 I , [ — I — | —f(__)
2045 mat=u® 1672 s s D2 s’ s
t —t u — . s ED
_ (— [ — | — [“_) (:’rl]][f?rzjl byt In S | 2 i MMl L Yig j) ] } ‘
5 s S s

A2 > M F O Yy )

Correction is positive in physical region: B
- increases strength of interaction o

4G E? & 2297
“G(E) =G o -
G(E) C [1—1— = (111 + 144())]
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3) Gravitational scattering of a massless scalar

- permutation symmetry
- here there is a non-vanishing higher order operator which gets renormalized

L

L=c D".‘OD'“O).—
Lowest order:
broe HQ 1 o 9. 1 9 9. 1 o 9.
M7 = o |—(t" +u") + (8" + u”) + (s + 1)
2 s t (7}
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One |00p order: Dunbar and Norridge

- done by unitarity method
- IR portion identified (and here subtracted off)

v, - L 2 +t2 2+u? u?4t?
M= 720 T2 T
]- 2 1 9 ]. 2
A1 -loop 5" \/ X [—511 log™(—u) — Eslog‘(—s) — Stlog“(—t)‘
" B s . 1 [s% 44 i st +ut )
+ [ — log(—s) log(—t) + — log(—s) log(—u)
2 st su
My = Mot — M ut 414
" o e 55 log(—t)log(—u)]
tu
1 By ¢ 9 ) . o 0 ) g
1 [(s® + 2% 4 2u?) log®(—s) + (28 + t* + 2u?) log?®(—t

— [(-—1352 + 283t% + 283u?) log(—s/u2)
+ (2835 + 43t* + 283u?) log(—t/u2)

+ (2838% +283¢2 + 43u%) log(—u/u2)]) O



Evaluate this at the central physical point:

_[) 9 9 : .l. h-QEQ
= " x2E% |1 |
=g [ 180 1672

(17()(— l()gz(ﬂ) + 7%) 4+ 609 lng(_EQ,f"/if) + 123 lng(?))]

\

Really associated
Negative effect with higher order operator
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4) Two different types of massless particles M. Anber

A+B - A+ B

. 7
IK-8U
Mtree =T

= j K Il ﬁﬁl (—s)In{—1) + I/"rﬁl (—u)In(—1) ) — 1 (53 + 13 +ffullllf—f1+iff31|13(—fl+ wln*(—u))
h Im[g(T (1] sin T n ) in ) E ) . llﬁ . .

us 1 1
; 2 —g) + Y - 4 2y 4 5§ — 2 — ; 2 —5) + 2 _ . /
+ T ﬁf{fll] (—s) + fAn*(—1) + uln=(—u)) _24D”1m 11¢%) In(—7) —mff In(—s) + u” In( uﬂ] (4

This reaction is not crossing symmetric
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Again try to define effective gravitational strength for these reactions

A+B->A+B
ik2E? KE? E? ) . ,
M ot > |:] — TEPE ((] 0 + ](}In_}ln(ﬁ) + 5(7* — (In2 ]}ln_))].
A+A->B+B

. EEE IE,'-_' EE
Mlnlal = K [] + K = ([) l]](—,)
8 10(dm)2 e

— 57 4+ (19 + 5In2) lnz)].

Both crossing problem and universality problem
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5) Gravity matter coupling — non-relativistic masses:

Recall:  v7(p) = —

Gmymes | 43 G(my + mo) . _41 G‘i}
7 7 107 r=

Including all diagrams:
‘\Glr) = G [1 41 (;}
R 107 7

Excluding box plus crossed box:

347 G]

CGlr) =G [1 —
607 r

Vac. pol. + vertex corrections:

167 G
“Gr)" =G |1 — —
() [ 157 -r]
- Only vacuum polarization”
“G(r)” =G [1 - 4,'3 3}
157 r



Components of log in matter coupling

Wz g
Lowest order: (1) W (1m2)
F e ks
k2 ‘ ‘k4 k2 k 4 ka
. (m1) Y ma)  -42/3 n) &a@&m)
Vertex corrections: k1 4 & k1 4 ks
koo iu 4'3;4 ko \Q 4k4
Vacuum polarization: (m) ,&@M omyy  F43/15 e ek
(Duff 1974) koA b & b d A
5 \w(k
2 4
Box and crossed box (ml) ' 1 {mg) +94/3 ml) “_J,_r—ffj (mz)
,4'
ko
I
\@‘k“ +44-56  ( T}( )
] (ml) (m2) my) o
Others: ko ’,( \‘ o kg\\
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Summary — gravitational running in EKT

1) No useful, universal running coupling seen in perturbative calculations
2) Kinematic ambiguity resurfaces

3) Tasks for asymptotic safety program
- continuing back to Lorentzian spacetimes
- addition of matter couplings
- universality of effects
- matching to perturbative results

But already some conclusions:

- no evidence for generating a cosmological constant if A = 0 at low energy
- no evidence for scattering behavior that Weinberg was after
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Asymptotic Safety to one loop Thanks for discussions
with Percacci,

Cordello, Reuter

Defining a Euclidean theory — scaling to u = 0, u = oo: but they are not to
Integrate out modes above u be held responsible
’.
~
-
I - #2 7
A
¥
P-

- a G = Gyt

UV fixed point = finite bare theory
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In practice:

Expand around background field JaB = Jap T / lag

Define function that suppresses all low momentum modes, integrate out high modes

- bi-linear — mass-like

AL = h(p) My (p)h(p)

Calculate effective action variation with scale

J
O,u

1 1 9,
Dep=="Tr M
k=5 } [D + *U{;u}] Oﬂ {n}

Truncate action to manageable set of terms
- simplest 1s just the Einstein action
- locate UV fixed pt. — for example:

oG _ o 167 5 G =
ou T 151
Running G )= &»
\ 1+ IG;C :Uz

#o

S
/M -

G

:. > p

U 1s scale, not
Lorentz index

Cutof typa Ib, ded
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Matching to Effective Field Theory

- one-loop running down to u = 0

Running of effective action:

| 1 -
9, Ty = —5 0 Trin [D(3) + M|

Expand w.r.t background field to get individual matrix elements
- evaluated with running coupling

| 1 o o 1 1
O M= —=G*u*>o, Tr |V V
* SRR [ D + My, D+£'..1'{HJ

Integrate from fixed point down to u = 0

1 [“du 0 dq 1 1
M= =Mm+—/ —G*(j) i / o - . 5 f(a.p)
h= 2J0 1 (#) ou J (2m)* g% + My, (q?) (¢ + p)* + My, ((g + p)?)
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Reproduces structure of effective field theory

1 dp d d'q 1 1
J‘l\‘/t = :.,Mm—'——/ ;2 ,lu _L‘[, 1 o f Q“p
h= 2)0 n () o J (2m) q% + My (q?) (g + p)? + My, ((g +p)?) (@)

External momentum can be continued to Lorentzian space

Long distance parts of loops reproduced
-at low scales  G(p) ~ Gy = const.

1 12/ diq 1 1
= ;,— |~ =Gy | ——= >f(q,p)
/u op 27N ) (2m)tq? (¢ +p)? (

High energy dependence on G (u) appears local at low energy
- match to coefficients of EFT

More formally shown by ‘non-local heat kernel expansion”  Satz, Cordello, Mazzitelli

Cordello, Zanusso
Regularized version of EFT
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Weinberg’s original goal does not seem satisfied

1 A »
O'(A, G Ci:pa.) — _O-(_. G[LQ? él’, L)

pe ot j
This is not the form of the Lorentzian result in the perturbative region

In principle, end up with EFT with infinite numbers of local terms in Lagrangian,
but with related coefficients and with regularized loops.

Will this make infinite number of reactions well-behaved in all kinematic regions?

67



Summary of AS section

AS appears capable of reproducing EFT
In principle predictive (relationships among couplings). In practice, not yet.

But, Euclidean running with p does not translate into running with energy
in the physical perturbative region

Implication - not appropriate to assume running G, A in FLRW applications

Still unsure 1f Weinberg’s asymptotic hypothesis emerges from present AS practice
- well defined Lorentzian QFT at high scales?

Needed tests:
- run to k=0
- then test several Lorentzian processes with E — oo
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Overall:

EFT treatment useful in perturbative region

Running couplings with gravity fail two criteria:
Not useful — do not encapsulate a well defined set of quantum corrections
- e.g. the crossing problem even within related reactions

Not universal — not a renormalization of the basic coupling
- quantum effects very different in different reactions

Many cutoff calculations mis-applied
Asymptotic Safety
- compatible with EFT treatment

- difference between Euclidean running to define theory and physical processes
- but no special definition of running couplings in Lorentzian perturbative region.
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