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We usually start from the path-integral

e
−Γk [φ] =

∫

Dϕ e
−S[ϕ]+

δΓk
δφ

(φ−ϕ)−∆Sk [φ−ϕ]

where φ = 〈ϕ〉.

∆Sk [φ] =
1

2

∫

φRkφ

Rk has all the beautiful properties we ask, but in particular
Rk=0 = 0, so that Γk=0 is the usual effective action of QFT.

We know we reproduce Γ at k = 0,
but what exactly does it mean?
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Perturbation theory

Z =
∫

Dφ e−S[φ]

MS, µ

Scalar φ4-theory:

βλ = µ ∂λ
∂µ

= 3λ2

16π2 − 17λ3

768π4

Functional RG

k ∂
∂k

Γk [φ] = ~

2Tr
k ∂

∂k
Rk

Γ
(2)
k

[φ]+Rk

Γk [φ] =
∑

i giOi [φ]

Scalar φ4-theory:

βλ = k ∂λ
∂k

= 3λ2

16π2
“

1+m2

k2

”3

Why the difference?

Answering this question in the most detailed possible way is
fundamental to bridge a gap between the FRG “community” and
any particle physicist.
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We start by restoring ~ in the flow equation

k
∂

∂k
Γk [ϕ] =

~

2
Tr

k ∂
∂k

Rk

Γ
(2)
k + Rk

Perform two expansions

Γk [ϕ] = SB[ϕ] +
∑

L≥1

~
LΓL, k [ϕ]

SB[ϕ] = SR[ϕ] +
∑

L≥1

~
LδSL[ϕ]

Let us for the moment assume

δSL = −Γdiv
L, k

!!!
= −Γdiv

L, k=0
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Each order in ~ has a flow equation

k
∂

∂k
ΓL, k [ϕ] =

1

L!

∂L

∂~L

(

k
∂

∂k
Γk [ϕ]

)

~=0

For example

k
∂

∂k
SB [ϕ] = 0

k
∂

∂k
Γ1, k [ϕ] =

1

2
Tr

k ∂
∂k

Rk

S
(2)
B [ϕ] + Rk

=
1

2
Tr k

∂

∂k
log

(

S
(2)
B [ϕ] + Rk

)

We can integrate these flows separately but the process introduces
UV-divergences!

Tr k
∂

∂k
= k

∂

∂k
Trreg
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After integration they reproduce exactly perturbation theory, if not
for the presence of Rk

Γ1, k [ϕ] =
1

2
Trreg log

(

S
(2)
B [ϕ] + Rk

)

Γ2, k [ϕ] = − 1

12
+

1

8

We can thus take a step backward and reconstruct the
path-integral:

Z =

∫

[Dφ]reg e
−S[φ]−∆Sk [φ]

[Dφ]reg is the regularized measure we always implicitly assume in
the FRG method.
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Case study: ϕ4 in d = 4 − ǫ

SB [ϕ] =

∫

d
dx

(

1

2
(∂µϕ)2 +

m2
B

2
ϕ2 +

λB

4!
ϕ4

)

The theory is renormalized in the very standard way of
MS-scheme, with the only difference that the propagator is
modified by the IR-cutoff Rk . The requirement µ ∂

∂µ
λB = 0 implies:

βλ = −ǫλ +
3λ2

16π2
− 17λ3

768π4
+ . . .
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A consistency check:

Theorem

For a very general class of cutoffs Rk and in particular all those
used in FRG, we have Γdiv

L, k = Γdiv
L, k=0 ⇒ δSL is k independent.

Remark

The theorem above does not apply to single diagrams!
(And in fact subdivergences are dressed by k.)

divp =
λ3

128π4ε2
+

λ3
(

4 log
(

µ
m

)

− 1
)

256π4ε

−
λ3

(

1
2 log

(

1 + k2

m2

)

− 3k4+2k2m2

4(k2+m2)2

)

64π4ε
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Since k plays no role in the renormalization, λ(µ) is the
MS-coupling “at the scale µ”. Let’s call it λMS(µ).

The FRG coupling is defined implicitly by the expansion:

Γk [ϕ] =

∫

d
4x

λFRG(k)

4!
ϕ4 + . . .

From the finite parts, we have access to the perturbative info

λFRG(k) = λMS(k) + 3
64π2

(

2 log

(

k2 + m2

k2

)

+

+
−k4 + 2k2m2 + 2m4

(k2 + m2)2

)

λ2
MS

(k)

and compute using the 2-loop universal result

βFRG =
3λ2

FRG

16π2
(

1 + m2

k2

)3
+ O

(

λ3
FRG

)
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The scheme change is summarized as:
{

λMS, m2
MS

}

⇐⇒
{

λFRG, m2
FRG, λ6,FRG, . . .

}

and does not belong to the “standard” class that preserves
universality of the beta functions.

[D.F.Litim, J.M.Pawlowski: Phys.Rev.D66:025030,2002] for the loop expansion

[U.Ellwanger: Z.Phys. C76 (1997) 721-727] for the scheme change

[E.Manrique, M.Reuter: Phys.Rev.D79:025008,2009] for the scheme change

Questions?
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The Papenbrock and Wetterich scheme.

1. Consider all operators that are generated at 1-loop.

Γk [ϕ] =

∫

d
4x

(Z

2
(∂µϕ)2 + λ2ϕ

2 + λ4ϕ
4 + ϕ2f1(∆)ϕ2

+λ6ϕ
6 + f2(∆1,∆2,∆3)ϕ

2
1ϕ

2
2ϕ

2
3

)

2. Define the dimensionless renormalized couplings and form
factors.

λ2 = Zk2λ̃2 , ϕR =
√

Zϕ ,

λ4 = Z 2λ̃4 , f1(q
2) = Z 2f̃1(q

2/k2) ,

λ6 = Z 3k−2λ̃6 , f2(q
2
1 , q2

2 , q
2
3) = Z 3k−2 f̃2(q

2
1/k

2, q2
2/k2, q2

3/k
2)
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3. Set all renormalized couplings and form factors but λ̃4 at their
FP as a function of λ4 to the desired order.

Local couplings are easy to set:

Gq = (q2 + Rk(q2))−1

k
∂

∂k
λ̃2 = −2λ̃2 −

6λ̃4

k2

∫

q

G 2
q k

∂

∂k
Rk(q2) + O

(

λ3
4

)

λ̃2 ∗ = −3λ̃4

k2

∫

q

G 2
q k

∂

∂k
Rk(q2) + O

(

λ3
4

)

12/18



Form factors are slightly more involved to deal with:

k
∂

∂k
f̃1−2ηf̃1−2f̃ ′1

q2

k2
= 72λ̃2

4

∫

Q

(GQ+q − GQ) G 2
Qk

∂

∂k
RQ +O

(

λ3
4

)

They are PDE that can be solved with the method of
characteristics:

f̃1 ∗(x) = − λ̃2
4

2

∫ x

0

G1(y)

y
dy + O

(

λ3
4

)

G1

(

q2

k2

)

≡ 72

∫

Q

(GQ+q − GQ)G 2
Qk

∂

∂k
RQ
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The form factors can be evaluated explicitly, but it proves
convenient to manipulate them in such a way that the y

integration cancels with the log k-derivative:

f̃1 ∗(x) = −72λ̃2
4 I (q2/k2)

I (q2/k2) =
1

2

∫

Q

(GQ+q − GQ)GQ

This shows that the form factor at the FP takes the 1-loop form.

Remark.

I (q2/k2) uses an implicit regularization that will play no role in the
final result.

Repeat this for all other operators in Γk .

14/18



Inserting the FP values in the FRG beta-function of λ̃4 we define
the flow in the PW-scheme

β
λ̃4

(η∗(λ̃4), λ̃2 ∗(λ̃4), λ̃4, f̃1 ∗(λ̃4), λ̃6 ∗(λ̃4), f̃2 ∗(λ̃4)) ≡ βPW(λ̃4)

βPW = 2η∗λ̃4 + 72λ̃2
4

∫

q

G 3
q Ṙq − 432λ̃2

4λ̃2 ∗

∫

q

G 4
q Ṙq

+96λ̃4

∫

q

G 3
q Ṙq f̃1 ∗(q

2/k2) − 15
λ̃6 ∗

k2

∫

q

G 2
q Ṙq

−8
λ̃3

4

k2

∫

q

G 2
q Ṙq f̃2 ∗(q

2/k2) + O
(

λ̃4
4

)

The “dot” is just a shorthand for ∂/∂ log k.
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Using the standard normalization

λ̃4 ≡ λPW/4!

the result displays universality

η∗ =
1

1536π4
λ2

PW + O
(

λ3
PW

)

βPW =
3

16π2
λ2

PW − 17

768π4
λ3

PW + O
(

λ4
PW

)

But do not get fooled, this is not the MS coupling!

λPW(k) = λMS(k) +
log 8 − 3γ

32π2
λ2

MS
(k)

[T.Papenbrock, C.Wetterich: Z.Phys. C65 (1995) 519-535]
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Conclusions.

The questions we answered:

◮ What scheme is FRG and how does it relate to the others?

◮ How one-coupling beta functions and infinite-couplings beta
functions relate?

◮ Does FRG violate universality?

The question we did not answer yet:

◮ Why the FRG method works so well?
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An interesting attempt.

A truncation that encodes the effects of any desired operator
∆Γk [ϕ] and is at the same time 2-loops “universal” would be

Γk [ϕ] =

∫

d
4x

(Z∗

2
(∂µϕ)2 + λ2 ∗ϕ

2 + λ4 ∗ϕ
4 + ϕ2f1 ∗(∆)ϕ2

+λ6 ∗ϕ
6 + f2 ∗(∆1,∆2,∆3)ϕ

2
1ϕ

2
2ϕ

2
3

)

+ ∆Γk [ϕ]

Thank you for your attention.
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