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We usually start from the path-integral
e—nw1:U/Dwe—ﬂm+2gw—m—AaW—m
where ¢ = (p).

aSo] =5 [ oo

Ry has all the beautiful properties we ask, but in particular
Ri—og = 0, so that 'y—q is the usual effective action of QFT.

We know we reproduce I' at kK = 0,
but what exactly does it mean?
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Perturbation theory
Z = [Dpe>ll
MS, p

Scalar ¢*-theory:

By = ox _ 332 17X
A= Han = 1672 ~ 76878

Functional RG

a
L
r?[¢]+Re

Cklo] =32, 8i0i[4]

k2T i[¢] = 2Tx

Scalar ¢*-theory:

oA 3)2
R
Ok 1672 (143 )

Why the difference?

Answering this question in the most detailed possible way is
fundamental to bridge a gap between the FRG “community” and

any particle physicist.
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We start by restoring £ in the flow equation
L0 h k2 Ry
rk[‘P] T
F + Ry

Perform two expansions

Mkle] = Sele] + Z AL kle]
>1

Spliel = Sl + Y htoSile]
L>1

Let us for the moment assume

_ div m div
5SL - _rL,k - _rL, k=0
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Each order in A has a flow equation

0 1 ot 0
— | k=T
Kok Lwlel = IJ8HL< Ok dwoh:o
For example
0
kﬁSB[SO] =0

1 k2R 1 0
Tr—0kTk TYk— log (51(32) [¢] + Rk)

k2 el =
8k MLy 2)[¢]+R Ok

We can integrate these flows separately but the process introduces

UV-divergences!
0 0
Trk— = k— Try
Tk T ok e
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After integration they reproduce exactly perturbation theory, if not
for the presence of Ry

1
1 le] = 5 Trves log (551l + Re

We can thus take a step backward and reconstruct the
path-integral:

z::/kpdnge—ﬂm—A&w1
[D(;S]reg is the regularized measure we always implicitly assume in

the FRG method.
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Case study: @*ind =4 —¢
1 AB
Sele] :/ddx (2( u‘P) + = B ©* + 41 804>

The theory is renormalized in the very standard way of
MS-scheme, with the only difference that the propagator is
modified by the IR-cutoff Rx. The requirement ua Ap = 0 implies:

3\2 173

——e 2
Ir=—A+ 167~ 7ea8
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A consistency check:

Theorem
For a very general class of cutoffs Ry and in particular all those
used in FRG, we have rf“}( = r%“;zo = 05, is k independent.

Remark

The theorem above does not apply to single diagrams!
(And in fact subdivergences are dressed by k.)

23 A3 (4log (£) —1)

di =
vp 128742 25674e
2 4 2,2
(e ) g
64mle
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Since k plays no role in the renormalization, A(u) is the
MS-coupling “at the scale p". Let's call it Ayzs(p).

The FRG coupling is defined implicitly by the expansion:

ArrG (K
Ckle] = /d“x%& +

From the finite parts, we have access to the perturbative info

k? 4+ m?
Aﬂmw)zﬁﬁu)+a%( m%< >+

k2
—k* + 2k?m? 4 2m* 2 (K
(k2 + m?)? ) ws(h)

and compute using the 2-loop universal result

3)\2
BFrRG = FRG 3+ O(Mra)
1672 (1+ %)
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The scheme change is summarized as:

{Am7 mi/[—s} < {AFRG, MERG: A6, FRG, - - - }
and does not belong to the “standard” class that preserves
universality of the beta functions.

[D.F.Litim, J.M.Pawlowski: Phys.Rev.D66:025030,2002] for the loop expansion
[U.Ellwanger: Z.Phys. C76 (1997) 721-727] for the scheme change
[E.Manrique, M.Reuter: Phys.Rev.D79:025008,2009] for the scheme change

Questions?
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The Papenbrock and Wetterich scheme.

1. Consider all operators that are generated at 1-loop.

V4
el = [ @x(5 @ +dae? + et + 2h(2)°
A6 + H(A1, B, D3)¢e3e3)

2. Define the dimensionless renormalized couplings and form
factors.

Ao =ZKXo,  or=VZp,
No=2°N,  A(g°) = Z°A(dP/K),
Xe =2k N6, h(ad,45.5)=2kh(q/K, a3/K, a5 /K)
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3. Set all renormalized couplings and form factors but A4 at their
FP as a function of A4 to the desired order.

Local couplings are easy to set:

Gq = (¢° + Ru(q?)) "}
d « 5 64
koo = —~ /ng—Rk )+ O(A])

- 3\
Xo, = — 4/@3 8kRk( ) +0(\3)
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Form factors are slightly more involved to deal with:

= = %G < 9
kychi—2nf 282 :72A§/Q(GQ+C,— Go) G3k5Ra+0O (X))

They are PDE that can be solved with the method of
characteristics:

N ;\2 X &%
AL = _?4/0 #dyw(xz)

@\ _ PR
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The form factors can be evaluated explicitly, but it proves
convenient to manipulate them in such a way that the y
integration cancels with the log k-derivative:

Rux) = —12R1(¢%/i)
I(g*/K?) = %/Q(qu — GQ)Gq
This shows that the form factor at the FP takes the 1-loop form.
Remark.

1(g?/k®) uses an implicit regularization that will play no role in the
final result.

Repeat this for all other operators in .
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Inserting the FP values in the FRG beta-function of X4 we define
the flow in the PW-scheme

B5, (1:(Ma), A2 w(Ma), Mg, (M), A6 (Ma), 24 (Aa)) = Bow (Aa)

Opw = 277*5\4—1—725\‘2‘/

GR, — 43232%,, / GiR,
q

q

)\ x
+96)\4/G3R f.(q?/K?) — 1572 /GgRq
q

—8—4/62R b.(q /k2)+0<)\4)

The “dot” is just a shorthand for 9/0 log k.
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Using the standard normalization
5\4 = )\pw/‘”

the result displays universality

1
3 2
Bew = WAPW oo W*O(Af’vﬂ

But do not get fooled, this is not the MS coupling!

log 8 — 3
Apw (k) = Mys(k) + W)\I%/TS(")

[T.Papenbrock, C.Wetterich: Z.Phys. C65 (1995) 519-535]
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Conclusions.

The questions we answered:
» What scheme is FRG and how does it relate to the others?

» How one-coupling beta functions and infinite-couplings beta
functions relate?

» Does FRG violate universality?

The question we did not answer yet:
» Why the FRG method works so well?
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An interesting attempt.

A truncation that encodes the effects of any desired operator
AT i [¢] and is at the same time 2-loops “universal” would be

Z,
il = [ (2 @ e+ Mg+ PR

FAowp® + fou(B1, Do, Bs)pdeBed ) + ATkle]
Thank you for your attention.
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