
Motivation
Spin-base invariance

Spin metric and spin connection
Constructing an action

Path integral
Towards practical FRG computations

Fermions in gravity with local spin-base invariance

Stefan Lippoldt
in collaboration with Holger Gies

TPI/FSU Jena

November 11, 2013

[arXiv:1310.2509 [hep-th]]

1 / 28



Motivation
Spin-base invariance

Spin metric and spin connection
Constructing an action

Path integral
Towards practical FRG computations

Motivation

aim at a theory of quantized gravity and quantized matter

need to know the fundamental degrees of freedom

guidance from classical GR is weak

metric: gµν

vierbein: e a
µ

vierbein and spin connection: e a
µ , ω a

µ b

more complicated ones
[Plebanski ’77; Capovilla, Jacobson and Dell ’89, ’91; Ashtekar and

Lewandowski ’04; Krasnov ’11]

all lead to the same classical equations of motion
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quantized theories are expected to differ, e.g.: gµν = e a
µ e b

ν ηab

leads to a non-trivial Jacobian between Dg and De

explicit examples in FRG context:

vierbein and spin connection [Daum and Reuter ’12]

vierbein [Harst and Reuter ’12]

chiral gravity [Harst, PhD thesis ’13]
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need criteria beyond pure mathematical consistency

fermions occur in our world
⇒ need vierbeins or even more fundamental objects
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typically one introduces vierbeins e a
µ

gµν = e a
µ e b

ν ηab

the covariant derivative ∇(e)
µ of spinors ψ then reads

∇(e)
µψ = ∂µψ +

1

8
ω ab
µ [γ(f)

a, γ
(f)

b]ψ

with spin connection ω a
µ b and flat Dirac matrices γ(f)

a

∇(e)
µe a
ν ≡ ∂µe a

ν − Γκµνe a
κ + ω a

µ be b
ν

!
= 0

{γ(f)
a, γ

(f)
b} = 2ηabI
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Issues:

relevant objects for fermions are the Dirac matrices γµ

{γµ, γν} = 2gµνI

⇒ more solutions than γµ = e a
µ γ(f)

a

not the best choice of basis for some calculations
[Finster, Smoller and Yau ’99; Casals, Dolan, Nolan, Ottewill and

Winstanley ’13]

special inertial coframe e a
µ has to be introduced

SO(3,1) symmetry for e a
µ vs. SL(4,C) symmetry for γµ

6 / 28



Motivation
Spin-base invariance

Spin metric and spin connection
Constructing an action

Path integral
Towards practical FRG computations

need criteria beyond pure mathematical consistency

fermions occur in our world
⇒ need vierbeins or even more fundamental objects... right?

reexamine the necessity of vierbeins in the presence of fermions

try to start from first principles
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Spin-base invariance

Dirac structure:

Clifford algebra (irreducible representation):
{γµ, γν} = 2gµνI, γµ ∈ C4×4, dγ = d = 4

spin-base invariance: S ∈ SL(4,C)
γµ → SγµS−1, ψ → Sψ, ψ̄ → ψ̄S−1

Dirac conjugation with spin metric h:
ψ̄ = ψ†h, |det h| = 1

[Finster ’98, Weldon ’01]
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covariant derivative:

linearity:
∇µ(ψ1 + ψ2) = ∇µψ1 +∇µψ2

product rule:
∇µψψ̄ = (∇µψ)ψ̄ + ψ(∇µψ̄)

spin-base covariance:
∇µψ̄ = ∇µψ, ∇µψ† = (∇µψ)†

coordinate covariance:
∇µ(ψ̄γνψ) = Dµ(ψ̄γνψ) ≡ ∂µ(ψ̄γνψ) + Γνµκ(ψ̄γκψ),

Γνµκ =
{

ν
µκ

}
+K ν

µκ,
{

ν
µκ

}
= 1

2 gνρ(∂µgκρ+∂κgµρ−∂ρgµκ)
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reality of action:

mass term:
(ψ̄ψ)∗ = ψ̄ψ

kinetic term:∫
ddx
√
−g (ψ̄ /∇ψ)∗ =

∫
ddx
√
−g ψ̄ /∇ψ, /∇ψ = γµ∇µψ
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Spin metric and spin connection

construct spin metric h and spin covariant derivative ∇µ

spin metric is implicitly determined through the γµ

Spin metric

γ†µ = −hγµh−1, h† = −h, |det h| = 1
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spin covariant derivative:

∇µψ = ∂µψ+Γ̂µψ+∆Γµψ |Dµvα = ∂µvα+
{

α
µβ

}
vβ+Kα

µβvβ

canonical part of the spin connection Γ̂µ

D(LC)µγ
ν = ∂µγ

ν +
{

ν
µκ

}
γκ = −[Γ̂µ, γ

ν ], tr Γ̂µ = 0

Γ̂µ = pµγ∗ + v α
µ γα + a α

µ γ∗γα + t αβ
µ [γα, γβ],

γ∗ = − i

4!

√
−gεµ1...µ4γ

µ1 . . . γµ4

pµ =
1

32
tr(γ∗γα∂µγ

α),

a α
µ =

1

8
tr(γ∗∂µγ

α),

v α
µ =

1

48
tr([γα, γβ]∂µγ

β),

t β
µα = − 1

32
tr(γα∂µγ

β)− 1

8

{
β
µα

}
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spin torsion ∆Γµ:

0 = [∆Γµ, γ
µ], ∆Γµ = −h−1∆Γ†µh

spin torsion carries 45 real parameters, but only 11 remain within
the Dirac operator /∇:

ψ̄γµ∆Γµψ = M ψ̄ψ −Aµψ̄iγ∗γ
µψ −Fµνψ̄

i
4 [γµ, γν ]ψ

M : mass/scalar field

Aµ : axial vector field

Fµν : anti-symmetric tensor field
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to recover vierbein formalism, set γ(e)
µ = e a

µ γ(f)
a and find

Γ̂µ + ∆Γµ =
1

8
ω ab
µ [γ(f)

a, γ
(f)

b]

∆Γµ =
1

8
Kα β

µ [γ(e)
α, γ

(e)
β]

the vierbein formalism gives an additional constraint on spacetime
torsion: Kα

αµ = 0

or it violates:
∫
ddx
√
−g (ψ̄ /∇ψ)∗ =

∫
ddx
√
−g ψ̄ /∇ψ
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summary part I

impose full nontrivial symmetry of Clifford algebra
⇒ spinbase transformations: SL(4, C)

impose natural conditions on ∇µ
spin metric h and canonical part of the spin connection Γ̂µ are
determined through γµ

vierbein formalism can be recovered (in spacetimes without
torsion)

⇒ seems to suggest γµ as fundamental DoF
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Questions?
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Constructing an action

neglect torsion and spin torsion in the following (inclusion is not
difficult, cf. [arXiv:1310.2509 [hep-th]]): K ν

µκ = 0, ∆Γµ = 0

spinbase invariance is similar to gauge symmetry

⇒ define spin curvature (field strength) Φµν

[∇µ,∇ν ]ψ = Φµνψ

⇒ construct action SΦ to lowest order in Φµν

SΦ =
1

16πG

∫
ddx
√
−g

1

4
tr(γµΦµνγ

ν)
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explicit calculation of Φµν gives

Φµν = ∂µΓν − ∂νΓµ + [Γµ, Γν ]

=
1

8
Rµνλρ[γλ, γρ]

the action then reads

SΦ =
1

16πG

∫
ddx
√
−g

1

8
Rµνρλ

1

4
tr(γµ[γρ, γλ]γν)

=
1

32πG

∫
ddx
√
−g R

⇒ SΦ is equivalent to the Einstein-Hilbert action
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Path integral

can construct action S if γµ are known

naive way:
∫
Dγ eiS (and fermions, gauge fields, ...)

but the Clifford algebra {γµ, γν} = 2gµνI prohibits arbitrary
variations of γµ
⇒ determine degrees of freedom from Clifford algebra

Weldon theorem [Weldon ’01]

δγµ = 1
2 (δgµν)γν + [δSγ , γµ], tr δSγ = 0

δgµν

δSγ
: metric fluctuations

: spin-base fluctuations, SL(4,C)γ
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want to show that the Sγ part factors out

ingredients for proof:

action as a functional of the metric gµν , the fermions ψ, ψ̄
and the spin-base Sγ : S = S [ψ, ψ̄, g ;Sγ ]

spin-base invariance of S :
S [ψ, ψ̄, g ;Sγ ]→ S [Sψ, ψ̄S−1, g ;S ′γ ] ≡ S [ψ, ψ̄, g ;Sγ ]

spin-base invariance of the measure DψDψ̄:
DψDψ̄ → D(Sψ)D(ψ̄S−1) = DψDψ̄
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study expectation value of an operator Ô(ψ, ψ̄, g ;Sγ), which is
scalar under spin-base transformations

consider integration over fermions and metric〈
Ô(ψ, ψ̄, g ;Sγ)

〉
=
∫
DgDψDψ̄ Ô(ψ, ψ̄, g ;Sγ)eiS[ψ,ψ̄,g ;Sγ ]

with spin-base invariance we find〈
Ô(ψ, ψ̄, g ;Sγ)

〉
≡
〈

Ô(ψ, ψ̄, g ;S ′γ)
〉

⇒ integration over SL(4,C)γ is trivial
⇒ in practice: fix spinbasis for purely metric-based quantization

(metric-based quantization also possible for Kähler fermions [Dona

and Percacci ’12])
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Towards practical FRG computations

concrete quantum gravity calculations use propagators (or Γ(2)

k )

need response of γµ up to second order in metric variations δgµν

introduce fiducial background metric ḡ

γµ(ḡ + δg) ' γ̄µ +
∂γµ(g)

∂gρλ

∣∣∣∣
g=ḡ

δgρλ +
1

2

∂2γµ(g)

∂gαβ∂gρλ

∣∣∣∣
g=ḡ

δgαβδgρλ
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using the Weldon theorem

δγµ =
1

2
δgµνγ

ν + [δSγ , γµ]

and smoothness

δSγ = G ρλδgρλ

we get for the first derivative

∂γµ(g)

∂gρλ
=

1

2
δρλµνγ

ν(g) + [G ρλ(g), γµ(g)]
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by choosing part of the spin base we can set: G ρλ(g = ḡ) = 0

for the second derivative we find (at the background g = ḡ)

∂2γµ(g)

∂gαβ∂gρλ

∣∣∣∣
g=ḡ

= − 1

4
δρλµκḡκσδαβσν γ̄

ν +

[
∂G ρλ

∂gαβ

∣∣∣∣
g=ḡ

, γ̄µ

]
= − ωρλαβµν γ̄ν + [Gαβρλ, γ̄µ]
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second derivative must be symmetric under (αβ)↔ (ρλ)

∂2γµ(g)

∂gαβ∂gρλ

∣∣∣∣
g=ḡ

= −ωαβρλ(µν)γ̄
ν +

[
Gαβρλ − 1

8
ωαβρλ[κσ][γ̄

κ, γ̄σ], γ̄µ

]

by fixing even more of the spin base we can set:

Gαβρλ =
1

8
ωαβρλ[κσ][γ̄

κ, γ̄σ]
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the simplest expansion for γµ then reads

γµ(ḡ + δg) ' γ̄µ +
1

2
δρλµν γ̄

νδgρλ −
1

2
ωαβρλ(µν)γ̄

νδgαβδgρλ

it follows

h(g) = h̄ +O(δg 3), γ∗(g) = γ̄∗ +O(δg 3)

equivalent to Lorentz symmetric gauge [Woodard ’84]

used in FRG computations [Eichhorn, Gies ’11]
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summary part II

metric-based quantization with fermions in principle possible

need choice for spinbase, but possible by hand (integration of
spin-base fluctuations not necessary)

simplest choice similar to the commonly used Lorentz
symmetric gauge within vierbein formalism
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Thank you for your attention!
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