Matter matters in Asymptotically Safe gravity

Pietro Donà

International School for Advanced Studies (SISSA)
Trieste, Italy

02/12/2013

based on arXiv: 1311.2898 [hep-th] P. Donà, A. Eichhorn, R. Percacci

Motivation

Matter in Quantum Gravity

- usually ignored or not dynamical
- the addition of matter d.o.f. could alter the character of the theory

 e.g. Yang-Mills theory with too many fermions

Matter in the AS scenario

- Straightforward inclusion of matter early work by Percacci and Perini (improvement)
- Quantum gravity fluctuation generate matter interaction Eichhorn and Gies, Vacca and Zanusso
- Is SM compatible with a gravitational FP?

Review of prevous work by Percacci and Perini¹

RG flow closure

$$\eta_h \equiv \eta_G$$

$$\eta_c = \eta_{\text{matter}} = 0$$

- "Type I" regulator wrong for fermions²
- No max number of fermions or scalars

¹R. Percacci and D. Perini, Phys. Rev. D **67**, 081503 (2003),

R. Percacci and D. Perini, Phys. Rev. D 68, 044018 (2003).

²P. D. and R. Percacci, Phys. Rev. D **87**, no. 4, 045002 (2013)

Why matter matters in AS?

Our truncation is given by

$$\Gamma_k = \Gamma_{\rm EH} + S_{\rm gf} + S_{\rm gh} + \Gamma_{\rm matter}$$

- Einstein-Hilbert Action with the standard gauge fixing and ghosts
- Massless minimally coupled matter and gauge fields (N_S, N_D, N_V) fermions \longrightarrow tetrads formulation. Symmetric gauge fixing. No O(4) ghosts gauge fields \longrightarrow Abelian. No mixing between gauge and diffeo ghosts.
- For a consistent closure of the β functions graviton and matter anomalous dimensions are needed³

³pure gravity by Codello, D'Odorico and Pagani, arXiv:1304.4777 [gr-qc]

The method

Computation of anomalous dimensions

$$\eta_{\Phi} = -\partial_t \ln Z_{\Phi} \qquad \Phi = (h, c, S, D, V)$$

- Look at the two point functional
- Flat background
- Diagrammatic and momentum space techniques

Combined with the usual computation for $\partial_t \tilde{G}$ and $\partial_t \tilde{\Lambda}$

- Spherical background
- Keeping into account all the anomalous dimensions
- Type II cutoff for the matter fields and a Type I cutoff for the graviton and ghosts

The relevant contribution to the graviton wave function renormalization

- tadpole diagrams contributions vanishes
- ignoring gauge ghost contributions

We computed also the running of matter wave function renormalization

One loop analysis

- Neglect anomalous dimensions
- Expand beta functions to first orders in $\tilde{\Lambda}$

$$\beta_{\tilde{G}} = 2\tilde{G} + \frac{\tilde{G}^2}{6\pi} (N_S + 2N_D - 4N_V - 22),$$

$$\beta_{\tilde{\Lambda}} = -2\tilde{\Lambda} + \frac{\tilde{G}}{4\pi} (N_S - 4N_D + 2N_V + 2) + \frac{\tilde{G}\tilde{\Lambda}}{6\pi} (N_S + 2N_D - 4N_V + 8).$$

- red numbers encodes the effect of gravitons and ghosts
- we can study the problem analytically (for simplicity d=4)
- what is the effect of matter in this approximation?

There is a non trivial Fixed point

$$\begin{split} \tilde{\Lambda}_* &= -\frac{3}{4} \frac{N_S - 4N_D + 2N_V + 2}{N_S + 2N_D - 4N_V - 7} \;, \\ \tilde{G}_* &= -\frac{12\pi}{N_S + 2N_D - 4N_V - 22} \;. \end{split}$$

• We required the positivity of \tilde{G}_*

$$N_S + 2N_D - 4N_V - 22 < 0$$

- There are divergences. We consider the region of Fixed points connected with the "no matter" one.
- The critical exponents are both positive in the allowed region
- 2 combination of 3 parameters.

Results for the full system

Selection criteria (continuous deformation of the fixed point without matter)

- we require $\tilde{G}_* > 0$
- discard fixed points with less than two relevant directions
- rule out too large critical exponents (≈ 20 optional)

We find severe restrictions on the number of matter fields compatible with AS gravity.

Anomalous dimensions and predictivity (critical exponents at the FP and anomalous dimension)

$$\mathcal{O} = \Phi^n \longrightarrow g_{\mathcal{O}} = \bar{g}_{\mathcal{O}} \frac{k^{-d + nd_{\Phi}}}{Z_{\Phi}^{\frac{n}{2}}}$$

the relative critical exponent

$$\theta_{\mathcal{O}} = -\frac{\partial \beta_{g_{\mathcal{O}}}}{\partial g_{\mathcal{O}}}|_{g_{\mathcal{O}} = g_{\mathcal{O}*}} = -\left(-d + nd_{\Phi} + \frac{n}{2}\eta_{\Phi}\right) + \dots$$

Requiring just a finite number of operator will be shifted to relevance

$$\eta_{\Phi} > -2d_{\Phi} + \frac{2d}{n} \xrightarrow{n \to \infty} -2d_{\Phi}$$

For the graviton $\eta_h > -d + 2$ is an additional requirement on the fixed point!

Effects of matter

- Scalar fields $\to \tilde{G}_*$ to smaller values and $\tilde{\Lambda}_*$ to larger positive values critical number of scalar fields, strong increase on the critical exponents
- Fermion fields $\to \tilde{G}_*$ to larger values and $\tilde{\Lambda}_*$ to more negative values critical number of fermion fields, small effect on the critical exponents
- Vector fields $\to \tilde{G}_*$ to smaller values and $\tilde{\Lambda}_*$ to larger positive values no maximal number of vector fields but predictivity might not be preserved

Specific matter models

Disclaimer:

- 1. particular truncation
- 2. neglecting matter self interaction
- 3. all the gauge fields are abelian

Model	N_S	N_D	N_V	$ ilde{G}_*$	$ ilde{\Lambda}_*$	$ heta_1$	$ heta_2$	η_h
no matter	0	0	0	1.45	-0.008	3.08	1.55	0.07
SM	4	45/2	12	5.34	-7.03	3.90	1.95	-34.90
SM +dm scalar	5	45/2	12	6.32	-8.19	3.90	1.95	-40.87
SM+ 3 ν 's	4	24	12	8.26	-11.90	3.90	1.98	-53.33
$SM+3\nu$'s								
+ axion+dm	6	24	12	15.38	-21.57	3.90	1.99	-97.33
MSSM	49	61/2	12	-	-	-	-	-
SU(5) GUT	124	24	24	=	-	-	-	-
SO(10) GUT	97	24	45	-	-	-	-	-

- SM and extension are compatible with a Gravitational FP
- large η_h means predictivity needs to be examined carefully

Higher dimensions

- Extra dimensions are not required in AS scenario of pure gravity but compatible
- For d = 5,6 the Standard Model matter degrees of freedom are incompatible with a viable gravitational fixed point

F.P. in d = 5 and 12 gauge fields. Matter matters in Asymptotically Safe gravity

Dynamical Quantum Gravity scale

- In QCD quantum fluctuations lead to the dynamical generation of $\Lambda_{\rm QCD}$
- A quantum-gravity scale will emerge dynamically
 - transition scale to the fixed-point regime
 - the dimensionful Newton coupling pass from constant to a scale-free regime in which $G(k^2) \sim \frac{1}{k^2}$
 - close to the Planck scale in previous studies of the Einstein-Hilbert truncation⁴
- Matter fluctuations change the scale:
 - scalars seem to have little effect on the transition scale
 - fermions shift this scale towards larger values

 $^{^4\}mathrm{M}.$ Reuter and H. Weyer, JCAP $\mathbf{0412},\,001$ (2004)

Conclusions

- Compatibility of matter degrees of freedom with the asymptotic safety scenario for gravity
 - effect of scalar, fermionic and abelian gauge field fluctuations on the existence of an interacting fixed point
 - correct cutoff type on fermion fields
 - fluctuations field anomalous dimensions
 - $predictability\ and\ the\ contraint\ on\ the\ anomalous\ dimension$
 - upper limits on the allowed number of scalar, fermionic and vector degrees of freedom

- Focusing on particular models
 - standard Model matter content is compatible with the existence of a NGFP $\,$
 - $\hbox{-}\ observationally\ motivated\ extensions\ are\ compatible\ too}$
 - the other models are not
- Going to larger dimensions
 - the allowed region shrinks
 - no more compatibility with the SM
- Effect of matter degrees of freedom on the quantum gravity scale

Thank you!