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Motivations

• General relativity is perturbatively non-renormalizable. String theory?
Asymptotic safety scenario?

• Power-counting renormalizability can be reconciled with unitarity at the expenses
of a scale anisotropy between space and time. Hǒrava-Lifshitz gravity.

• Not much is known about the behaviour Hǒrava-Lifshitz gravity in the UV.
Difficulties coming from the large number of invariants and working on an
anisotropic curved background.
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Hǒrava-Lifshitz gravity

• General relativity is power-counting non-renormalizabile in d > 2. [G] = 2− d.

• Higher-derivative theories can cure the perturbative non-renormalizability, but
they suffer from a lack of unitarity.

S [gµν ]hd = −
1

16πG

∫
ddx√g {R − γ R2 − βRµν Rµν − 2Λ} , (1)

• The propagator of spin-2 modes contains a ’poltergeist’ which spoils unitarity.

Π(p) =
1

p2 − βG p4 , p2
ghost = (βG)−1 . (2)
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Hǒrava-Lifshitz gravity

• Power-counting renormalizability can be obtained by means of anisotropic scale
dimensions for space and time coordinates, emulating what happens in condensed
matter.

[x] = −1, [t] = −z , [∂x] = 1, [∂t ] = z . (3)

• As an example, for a Lifshitz scalar field theory we have

S [φ] =
∫

dt ddx
{
−φ(t,x) (∂2

t −G ∂2 z
x )φ(t,x)

}
. (4)

• The propagator of the Lifshitz scalar field is

1
ω2 −G(k2)z , (5)

and a term −c2 ∂2
x in the action acts now (for z > 1) as a relevant perturbation.
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Hǒrava-Lifshitz gravity

• Introducing a scale anisotropy we can gain perturbative-power counting and
unitarity, but we lose Lorentz invariance.
Invariance under diffeomorphisms is substituted by the invariance under a
foliation-preserving diffeomorphisms, i.e. the reparameterization

x̃i = x̃i(xj , t), t̃ = t̃(t) . (6)

• We have to build invariants under the new symmetry group.
We employ the ADM decomposition, with gij the spatial metric, Ni the
shift vector and N the lapse function.

• A natural spacetime topology in presence of a foliation F is

M = N × Σ . (7)

where the leaf Σ is a generic d-dimensional manifold. We will consider N = R.
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Hǒrava-Lifshitz gravity

• A kinetic action in d + 1 dimensions reads

SK [N ,N i , gij ] =
2
κ2

∫
dt ddx√g N

(
KijK ij − λK2

)
, (8)

being
Kij =

1
2N

(∂t gij −DiNj −DjNi) , (9)

where Di is the spatial covariant derivative.

• At this stage the dynamical critical exponent z enters only in the dimension of
the integration measure

[dt ddx] = −d − z . (10)

• As a consequence, Newton’s constant κ2 is a marginal parameter for z = d, since

[κ] =
z − d

2
. (11)
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Hǒrava-Lifshitz gravity

• We can add a potential term by constructing spatial invariants

S [N ,N i , gij ] = SK [N ,N i , gij ] +
2
κ2

∫
dt ddx√g N V (gij) . (12)

• In 3+1 dimensions with z = 3 the potential V (gij) will contain marginal
operators like

R3 , Rij Rjk Rk
i , R RijRij D2R2 DkRij DkRij · · · (13)

plus additional relevant terms as

R2 , Rij Rij , D2 R Di Dj Rij , · · · (14)

• The number of invariants is reduced if the system features detailed balance,
that is, if the d + 1-dimensional potential is related to a d-dimensional potential
by means of a variational principle.
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The 2 + 1 dimensional case

• The 2 + 1-dimensional case is easier to study, since for z = 2 the potential
contains fewer invariants. Furthermore, the Ricci is the only independent
component of the Riemann tensor study and there are no gravitons.

• The theory with detailed balance has no potential.

• The most general action (non-projectable and without detailed balance) in 2 + 1
dimensions with z = 2 is

S [N ,Ni , gij ] =
∫

dt d2xN√g
{ 2
κ2

(
λK2 −KijK ij − 2 Λ + c R + γ R2

)
+ c1 D2 R

+c2 ai ai + c3 (ai ai)2 + c4 R ai ai + c5 ai ai Dj aj

+c6 (Dj aj)2 + c7 (Di aj)(Di aj)
}
,

(15)

where ai is the acceleration vector, ai = Di log N .
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The 2 + 1-dimensional case

We will consider two simplifications:

• Projectable case, that is, a constant lapse function over the leaf, N ≡ N(t), so
that

S [N ,Ni , gij ] =
2
κ2

∫
dt d2xN√g

{
λK2 −KijK ij − 2 Λ + c R + γ R2

}
. (16)

• Conformal reduction, that is, a scalar toy model in which we integrate only the
conformal degree of freedom of the spatial metric,

gij = e2φ(x)g̃ij , (17)

where g̃ij is considered as a constant background. We will chose Σ = S2.

Questions?
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Quantization procedure

• We will employ as usual the background field method:

gij → gij + ε hij ; N → N + εn ; Ni → Ni + εni , (18)

and set N = 1 and Nj = 0 for the background lapse and shift.

The perturbative parameter ε will be set at a later stage.

• The metric fluctuation can be decomposed in a trace and traceless parts as

hij = ĥij +
1
2

gij h , gij ĥij = 0. (19)

• On a sphere S2 the traceless part ĥij contains just longitudinal components. In
our toy model we neglect those contribution and integrate only the trace term.
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Gauge-fixing and ghosts

• We employ as a gauge choices n = 0 and ni = 0. The gauge-fixing action reads

Sgf =
1

2α2

∫
dt
∫

d2x√g n2 +
1

2β2

∫
dt
∫

d2x√g ni ni . (20)

Taking the limit α→ 0 and β → 0 leads to a complete decoupling of n and ni

in the second variation of the action.

• For the ghost sector, in order to avoid positivity problems of the Faddeev-Popov

operator M = ∂t we will employ the squared root of its determinant,√
det(−M2), which corresponds to the ghost action

Sgh =
∫

dt N
∫

d2x√g
{

c̄ ∂2
t c + c̄i ∂

2
t ci + b ∂2

t b + bi ∂
2
t bi
}
, (21)

where ci and c Grassmannian complex fields and bi and b real bosonic fields.
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One-loop effective action

• We will focus on evaluating only the one-loop correction to the effective action,

Γ = Stot + }S1−loop +O(}2) , (22)

being
Stot = S + Sgf + Sgh , (23)

and where
S1−loop =

1
2

STr ln S(2)
tot . (24)

• The Hessian can be evaluated by the reduced second variation of the action, i.e.

δ2S =
1

2κ2

∫
dt d2x√g

{(
λ−

1
2

)
(∂th)2 + γ h (D4 + 2 R D2 + R2) h

}
.

(25)

• The perturbative parameter is chosen so to normalize the kinetic operator, so
that in our case

ε =
κ

(λ− 1
2 )

1
2
. (26)
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Heat kernel techniques

• We will employ heat-kernel techniques to evaluate the one-loop term, i.e.

S1−loop =
1
2

Tr ln(S(2)) = −
1
2

∫ 1
µ4

1
Λ4

ds
s

TrH(x, s;S(2)) =

−
1
2

∫ 1
µ4

1
Λ4

ds
s2

∫
dt d2x

√
ĝ
{

a0 + s
1
2 a1 + s a2 +O(s

3
2 )
}
,

(27)

where a2 = b1 KijK ij + b2 K2 + b3 R2 + · · · , and µ is a renormalization scale.

• For the coefficients b1 and b2 we can use the result of Baggio, de Boer and
Holsheimer (1112.6416) for an anisotropic differential operator D action on a
scalar field, i.e.

Dbbh = −
1

N √g
∂t

1
N
√g ∂t + D4 , (28)

whereas our operator reads instead

D = −(λ−
1
2

)
1
√g

∂t
√g ∂t + γ (D2 + R)2 . (29)
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Heat-kernel techniques

• As already mentioned, using the expression of ε in the background field
decomposition the kinetic part normalizes, i.e.

D = −
1
√g

∂t
√g ∂t +

γ

λ− 1
2

(D2 + R)2 . (30)

• The normalization of the spatial part can be obtained by working with an
auxiliary metric,

ĝij =
(
λ− 1

2
γ

) 1
2

gij , (31)

so that we have
D̂ = −

1
√

ĝ
∂t
√

ĝ ∂t + (D̂2 + R̂)2 . (32)

• We can use the results of Baggio et.al. and obtain for b1 and b2

a2 = −
1

256π

(
K̂ij K̂ ij −

1
2

K̂2
)

+ · · · . (33)
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Heat-kernel techniques

• For the coefficient b3 we can use the well known results for higher-derivative

operators in the isotropic case (see Gusynin, Nucl.Phys. B333).

In particular, the heat kernel coefficient of R2 for an operator (D2 + X)2

vanishes in two dimensions, so that we have no R2 term in our one-loop result.

• The one-loop correction is then equal to

1
2

T̂r ln(D̂) =−
1
2

∫
dt d2x

√
ĝ
{

(Λ4 − µ4)
1

16π
+ (Λ2 − µ2)

14
48π3/2 R̂

+ ln
(Λ
µ

) 1
16π

{
−

1
4

K̂ij K̂ ij +
1
8

K̂2
}

+O
( 1

Λ2

)}
.

(34)

• We are interested only in the logarithmic divergence, which rewritten in terms

of the physical metric reads

S1−loop
log =

1
128π

(
λ− 1

2
γ

) 1
2

ln
(Λ
µ

) ∫
dt d2x√g

{
Kij K ij −

1
2

K2
}
. (35)
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β-functions

• We can obtained the β-functions by expressing the i-th bare coupling gb,i as
gb,i = gR,i + δgi , being gR,i a renormalized coupling δgi a counterterm, so that

2
κ2

R
=

2
κ2 −

1
128π

(
λ− 1

2
γ

) 1
2

ln
(Λ
µ

)
,

2λR
κ2

R
=

2λ
κ2 −

1
256π

(
λ− 1

2
γ

) 1
2

ln
(Λ
µ

)
,

2 γR
κ2

R
=

2 γ
κ2 .

(36)

• The renormalized couplings then read

κ2
R = κ2

(
1 +

κ2

256π

(
λ− 1

2
γ

) 1
2

ln
(Λ
µ

))
+O(}2) ,

λR = λ+
1

256π
κ2

γ1/2

(
λ−

1
2

) 3
2

ln
(Λ
µ

)
+O(}2) ,

γR = γ

(
1 +

κ2

256π

(
λ− 1

2
γ

) 1
2

ln
(Λ
µ

))
+O(}2) .

(37)
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β-functions

• As usual the β-functions are obtained stating ∂µ gb = 0, so that

βκ2 = µ∂µ κ
2
R = −

κ4

256π

(
λ− 1

2
γ

) 1
2

,

βλ = µ∂µ λR =

(
λ− 1

2

)
κ2 βκ2 ,

βγ = µ∂µ γR =
γ

κ2 βκ2 .

(38)

• Solving the system we find

k2
R(µ) =

256π
b1/2 (ln µ

µ0
+ C)

,

λR(µ) =
1
2

+
C1

ln µ
µ0

+ C
,

γR(µ) =
C2

ln µ
µ0

+ C
.

(39)

where C and b = C1/C2 are integration constants.
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β-functions

• Although the Newton’s constant tends to zero in the UV, the interaction

of the theory is defined by ε, whose running reads

ε2R =
κ2

R
λR − 1

2
=

256πC1/2
2

C3/2
1

. (40)

Consequently, at one loop the theory is not asymptotically free.

• However, it is interesting to note that λ tends to 1/2. For this value the kinetic

action is invariant under anisotropic Weyl transformations

gij → e2φ(t,x) gij , N → ez φ(t,x) N , Ni → e2φ(t,x) Ni . (41)

We expect the running of λ to the conformal point to be a feature of the

full model.
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Conclusions and discussion

• Hǒrava-Lifshitz gravity in d + 1 dimensions with z = d features
simultaneously power-counting renormalizability and unitarity.

• Because of the large number of couplings and complications coming from
the anisotropic character of the background the UV has not been explored.

• We studied a simpler case, i.e. Hǒrava-Lifshitz gravity in 2+1 dimensions with
z = 2. We focused on a conformally reduced version of the projectable case.

• At one-loop the Newton’s constant runs to zero in UV and λ to its conformal
value λ = 1

2 . The interaction strength, however, is constant along the flow.

• What happens at two loops? What happens with gravitons?
We expect λ to run to its conformal value also in the full model.

Thanks for the attention.
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