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Motivations

® General relativity is perturbatively non-renormalizable. String theory?
Asymptotic safety scenario?

® Power-counting renormalizability can be reconciled with unitarity at the expenses
of a scale anisotropy between space and time. Hofava-Lifshitz gravity.

® Not much is known about the behaviour Hofava-Lifshitz gravity in the UV.
Difficulties coming from the large number of invariants and working on an
anisotropic curved background.
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Horava-Lifshitz gravity

® General relativity is power-counting non-renormalizabile in d > 2. [G] =2 — d.

® Higher-derivative theories can cure the perturbative non-renormalizability, but
they suffer from a lack of unitarity.

1
167 G

Slguvlng = /ddx\/E{Rf'yRQ — B Ry RM —2A}, (1)

® The propagator of spin-2 modes contains a 'poltergeist’ which spoils unitarity.

1

1= ga,

p?host = (,3 G)_l . (2)
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Horava-Lifshitz gravity

® Power-counting renormalizability can be obtained by means of anisotropic scale
dimensions for space and time coordinates, emulating what happens in condensed

matter.

xX]=-1, []=-z2, Ox] =1,  [0]=2.

® As an example, for a Lifshitz scalar field theory we have

S[¢] = / dt d¥x {—¢(t,x) (0] — GO2%) d(t, %) } .

® The propagator of the Lifshitz scalar field is

1
w? — G(k2)=’

3)

4)

(5)

and a term —c2 2 in the action acts now (for z > 1) as a relevant perturbation.
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Horava-Lifshitz gravity

® Introducing a scale anisotropy we can gain perturbative-power counting and
unitarity, but we lose Lorentz invariance.

Invariance under diffeomorphisms is substituted by the invariance under a
foliation-preserving diffeomorphisms, i.e. the reparameterization

=g, i=U1). (6)

® We have to build invariants under the new symmetry group.
We employ the ADM decomposition, with g;; the spatial metric, N; the

shift vector and N the lapse function.

® A natural spacetime topology in presence of a foliation F is
M=NXZ. (@)

where the leaf X is a generic d-dimensional manifold. We will consider A" = R.
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Horava-Lifshitz gravity

® A kinetic action in d + 1 dimensions reads
) 2
SkIN,N', g4l = = /dt d'% /g N (KyjK7 - \K?) , (8)
K

being

Kij = — (0t g5 — DiN;j — D;N;) , (9)

2N
where D; is the spatial covariant derivative.

® At this stage the dynamical critical exponent z enters only in the dimension of

the integration measure
[dt d'x] = —d — z. (10)

® As a consequence, Newton's constant 2 is a marginal parameter for z = d, since

K] = . (11)
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Horava-Lifshitz gravity

® We can add a potential term by constructing spatial invariants

) . 2
S[N, Nt gi] = Sk [N, N, gij] + = /dt dix /g N V(gij). (12)

® In 3+1 dimensions with z = 3 the potential V(g;) will contain marginal
operators like

R®,  RYRyR*, RRyRY  D?R? DyR;; D¥RY <o (13)
plus additional relevant terms as

R?, R4jRY, DR D'DIRy, - (14)

® The number of invariants is reduced if the system features detailed balance,
that is, if the d + 1-dimensional potential is related to a d-dimensional potential

by means of a variational principle.
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The 2 + 1 dimensional case

® The 2 4 1-dimensional case is easier to study, since for z = 2 the potential
contains fewer invariants. Furthermore, the Ricci is the only independent
component of the Riemann tensor study and there are no gravitons.

® The theory with detailed balance has no potential.

® The most general action (non-projectable and without detailed balance) in 2 + 1
dimensions with z = 2 is

2
SN, Ny, gi] = /dtd%vN\/E{n—? (,\K2 — KyiKY —2A + cR—&—vRZ) +c¢ D?R
+esaial + c3 (a; ai)2 +caRa;a* + c5a;a’ DI aj

+as (D7 aj)? + er (Diaj)(D* o) }
(15)

where a; is the acceleration vector, a; = D; log N.
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The 2 + 1-dimensional case

We will consider two simplifications:

® Projectable case, that is, a constant lapse function over the leaf, N = N(t), so
that

2 .
S[N, Ni, gij] = > /dt d%zN+/g {,\K2 — K K9 —2A 4+ cR—l—fyRQ} . (16)

@ Conformal reduction, that is, a scalar toy model in which we integrate only the
conformal degree of freedom of the spatial metric,

Gij » (17)

where gy; is considered as a constant background. We will chose ¥ = S2.

gij = 2@

Questions?
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Quantization procedure

® We will employ as usual the background field method:
gij — gij +€hij; N —N+en; N;— Ni+eng, (18)
and set N =1 and Nj = 0O for the background lapse and shift.

The perturbative parameter € will be set at a later stage.

® The metric fluctuation can be decomposed in a trace and traceless parts as

~ 1 N
hij = hy + 3 gij h, g% hy = 0. (19)

® On a sphere 52 the traceless part fLU contains just longitudinal components. In
our toy model we neglect those contribution and integrate only the trace term.
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Gauge-fixing and ghosts

® We employ as a gauge choices n = 0 and n; = 0. The gauge-fixing action reads

/dt/de g n? +252 dt/dQI g nint. (20)

Taking the limit a — 0 and 8 — 0 leads to a complete decoupling of n and n;

in the second variation of the action.

® For the ghost sector, in order to avoid positivity problems of the Faddeev-Popov

operator M = 9; we will employ the squared root of its determinant,

det(—M?2), which corresponds to the ghost action

Sgh:/dtN/de\/g{?:afc—I—Eiaf 502 b+ b; 52 bf}, (21)

where ¢; and ¢ Grassmannian complex fields and b; and b real bosonic fields.
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One-loop effective action

® We will focus on evaluating only the one-loop correction to the effective action,

T = Sior + h 1717 + O(K?), (22)
being
Stot = S + ng + Sgh7 (23)
and where 1
§'71r = 2 STrin 52 (24)

® The Hessian can be evaluated by the reduced second variation of the action, i.e.

1 1
523*:@/(#(1%\/5{(,\—5) (6th)2+7h(D4+2RD2+R2)h} .
(25)

® The perturbative parameter is chosen so to normalize the kinetic operator, so

that in our case &

e= ———.
-1z

(26)
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Heat kernel techniques

® We will employ heat-kernel techniques to evaluate the one-loop term, i.e.

1
I
g1—leop :%Trln(S(Q)) = 7% /u ﬁTr’i’-l(ac7 58@) =

1 s
el
3 (27)
1
-3 /1“ 5—25 /dtd2x\/§ {ao +s% a1 + sas +O(s%)} ,
e
where as = by Kinij + by K2 4+ b3 R2+ .-+, and p is a renormalization scale.
® For the coefficients b; and b2 we can use the result of Baggio, de Boer and
Holsheimer (1112.6416) for an anisotropic differential operator D action on a
scalar field, i.e.
Dipr, = d; + D* 28
bbh = N\[ ‘N \f L+ (28)
whereas our operator reads instead
1.1 2 2
D=—-(A-5)—=0/g0i+7(D°+ R)". (29)
2 \/§
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Heat-kernel techniques

® As already mentioned, using the expression of € in the background field

decomposition the kinetic part normalizes, i.e.
D=—Lo.g0,+ —(D* + R)2. (30)
V9 A-3
® The normalization of the spatial part can be obtained by working with an
auxiliary metric,

AN

Gij = gij » (31)

(32)

so that we have 1
D=——08:\/§0:+ (D*>+ R)?.
Vi Voo

® We can use the results of Baggio et.al. and obtain for b; and b2
- (33)

1 N 1 -
(ko1 57) 1
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Heat-kernel techniques

® For the coefficient b3 we can use the well known results for higher-derivative

operators in the isotropic case (see Gusynin, Nucl.Phys. B333).

In particular, the heat kernel coefficient of R? for an operator (D2 + X)?

vanishes in two dimensions, so that we have no R? term in our one-loop result.

® The one-loop correction is then equal to

. R 1 - 1 14 .
Trin(D) = - 3 /dtdzx\/;{(A“7#4)E+(A2*u2)m3

A\ 1 1o o 1. 1
In(=) ——-K; K9 —KQ} o<—> }
+n<“) 167r{ g RRT g TO\az

® We are interested only in the logarithmic divergence, which rewritten in terms

1
2

(34)

of the physical metric reads

1
1 A—2)\2 A o1
Stoor — 2] In (7) dt d*z\/g {Kij K9 - K2} . (35)
°9 128 7 ¥ m 2
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® We can obtained the 3-functions by expressing the i-th bare coupling g; ; as
9v,i = 9R,i + 09;, being gr ; a renormalized coupling dg; a counterterm, so that

1
2 2 1 A A
- == In(—),
K% K 128 7 o o

1

2 0 2x 1 [A-1% ? (A> (36)
= — — nl—],

K2 k2 256 5 n

290 _ 27

K% K2

® The renormalized couplings then read

1
2 )\,l 2 A
2 2 K 2 2
= 1 In(= O(12),
Fr=R +2567r< v ) n(u> +OE)
A=At (A 1)%1 <A>+O(h2) (37)
= — — [ — n p—
r 256 ~1/2 2 1 ’

1
K2 A—% 2 A
= 14 —— In (= O(K?).
TR=T +2567r( ~ n(u) +OE)
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® As usual the -functions are obtained stating 0, g5 = 0, so that

4 A= L1\ 2
2 K~ 2
Br2 = pOuky = 56 ( 5 ) )

) )
Br=ndudn =~ Ba,
2
/B’y :Mau"/R: ﬁﬁ;& .
K
® Solving the system we find
256 ™
kKp(w) = 75— »
bt/ (lnﬁ +0)
1 Cy
A =4  —,
Bo
() = _ G
Yr(K) = mE 1 C
)

where C and b = C}/Cx are integration constants.



® Although the Newton’s constant tends to zero in the UV, the interaction

of the theory is defined by ¢, whose running reads

2 1/2
2 KR _ 256 02 (40)
R Ap — L 3/2 .
R 3 Cl

Consequently, at one loop the theory is not asymptotically free.

® However, it is interesting to note that A tends to 1/2. For this value the kinetic

action is invariant under anisotropic Weyl transformations
gij — 62 ¢(t.%) 9ij N — €* o(t.x) N, N; — e2¢(t,x) N;. (41)
We expect the running of A\ to the conformal point to be a feature of the

full model.
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Conclusions and discussion

20/20

Hofava-Lifshitz gravity in d + 1 dimensions with z = d features

simultaneously power-counting renormalizability and unitarity.

Because of the large number of couplings and complications coming from

the anisotropic character of the background the UV has not been explored.

We studied a simpler case, i.e. Horava-Lifshitz gravity in 241 dimensions with

z = 2. We focused on a conformally reduced version of the projectable case.

At one-loop the Newton's constant runs to zero in UV and A to its conformal

value A\ = % The interaction strength, however, is constant along the flow.

What happens at two loops? What happens with gravitons?

We expect A to run to its conformal value also in the full model.

Thanks for the attention.
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