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e Motivation for our work

* Problems of the single field approximation

* The shift Ward identity and its use in the LPA of scalar field theory

« Comments on the shift Ward identity in gravity



* A non-perturbative RG trajectory defining quantum gravity:

-

/P*[(I)] UV completion

-

- ~

IR part of the theory -~

~~~~~

* If this works, gravity is non-perturbatively renormalisable

* Itis safe to remove the cutoff at the non-perturbative fixed point,
whence asymptotic safety weinberg, 1979
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* Eigenoperators become redundant, if they describe an infinitesimal
change of field variable for the effective action

* In the f(R) truncation this happens because the equations of motion
never vanish on fixed point solutions:

E(R) = 2f«(R) — Rf.(R) # 0

e This leads to a collapse of eigenspaces for the f(R) truncation

Where could this redundancy come from and
how can it be fixed?

Possible answer: Treatment of background field!




e The effective action is a functional of two metrics:

'y = Fk[g,um gpa]

* Here, §uv = Guv + hW is the total metric split into the
background metric g,,,, and the fluctuation field f,, .

This is necessary for various reasons, e.g.
e the background Laplacian —V?2 defines the momenta
which are compared to k?,
* the background field is needed for gauge fixing M. Reuter
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M. Reuter et al. recognised the need to keep both metrics:

— Bi-metric conformal gravity (Reuter, Manrique '09)
— Matter induced bi-metric gravity (Reuter, Manrique, Saueressig '10)
— Bi-metric Einstein-Hilbert truncation (Reuter, Manrique, Saueressig '10)

* In each case the results point towards asymptotic safety

e But: calculation for an f(R, R) - type truncation would be hard

ﬁ Investigate the role of the background field in the simpler setting of
scalar field theory.



Scalar field theory is much simpler
Established results are available (e.g. Wilson-Fisher fixed point)

Make the single field approximation and
show things go wrong (additional fixed I [¢]
points, redundant eigenoperators)

Perform the corresponding bi-field | [90 @]
calculations and show that this reproduces 7
the correct results O=p+

In doing so, it is important to mimic the approach adopted for gravity!
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The effective action is decomposed as

where ¢ = © + ¢ is the total field and

The effect of this is:
sm? (¢ + @) + 3m*@* —

1
§m
., @] captures the deviation J

of I'.[w, @] from being a function T[]
of the total field ¢ 4+ ¢ only.



The effective action is decomposed as

where ¢ :/+ © is the total field and

The effect of this is:
sm? (¢ + @) + 3m*@* —

1
§m
., @] captures the deviation J

of I'.[w, @] from being a function T[]
of the total field ¢ 4+ ¢ only.

single field approximation
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 The LPA in scalar field theory is given by

rufel = [ de {5 0.0+ V(o) |

* In Gravity the cutoff depends on the background metric. In
particular, we use the replacement

—V? = —V? + cR.

* Implement the same idea in scalar field theory:
Ry (—0%,¢) = (k* + 0% — ok %%%) 0 (k* + 0° — ak*95?)

* Inthe single field approximation the background field ©

in this cutoff turns into a ¢
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Fixed-point equations with background field

(1—a¢?)”? (1 - Lag?)
1 —a¢?+ V!

3V, — %qbV*’ — 0 (1 - a¢?)

and without background field:

1
1+ V/

1
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For large field,
Vi(¢) = A¢°

We vary A to get this curve

The Wilson-Fisher fixed
point is described by an
even potential:

Viyp(0) =0
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For large field,
Vi(¢) = A¢°

We vary A to get these
curves

The Wilson-Fisher fixed
point has an even potential:

Viyp(0) =0

First the Gaussian, then the
Wilson-Fisher fixed point
disappears!
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For negative «
additional fixed points
appear

Decreasing a further
leads to more and more
fixed points
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Here, an eigenoperator is
redundant if

For the fixed points

d
(2)-(8) all odd -

eigenoperators are
redundant

This is similar to what
happened for gravity!
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 We also considered a second choice of regulator:

R(—0% ¢) = (k*+ 0% —aV"(p)) 0 (k* + 0% — aV" (p))

Again we find:
* Additional fixed points appear fora >0
* There appear to be no non-trivial solutions to the
eigenoperator equation for non-Gaussian fixed points
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* Neglecting fk[gp, @] and thereby adopting the single field
approximation leads to inaccurate results

« If we keep I'x[p, @] we have to deal with an effective action
depending on two fields: I'x [y, @]
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e Scalar field theory
— Litim, Pawlowski, 2002:
* Polynomial potentials in the LPA

* Qualitative agreement but large quantitative deviations for critical
exponent

* No conclusive result for the V"/(p) case
— Litim, 2002:

* Introduces an additional t-dependent effective mass term in the
optimised cutoff: m, = V" (¢o)
* This is shown not to affect the results

* Yang Mills
— Gies 2002, Litim 2002
* Background field affects the one-loop beta function

Here: Possible problems in the single field approximation can be much more severe.
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Any questions?



Z[J, ¢l = [ Doexp (=S[p + @] — Sklp, @] + J - ¢)

 The bare action depends only on the total field ¢ = © + ¢
* The cutoff action S, introduces a separate p-dependence

* The cutoff action breaks the shift symmetry

90'_>90+57 @H@_g

of the bare action.
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* This broken symmetry leads to the modified shift Ward identity (sW1)

5T, 0T 1 ((52Fk R )‘1 SRy, |
Sp(x)  bp() S ) 8p(x) |

* |t keeps track of the separate background field dependence
introduced by the cutoff

* It “knows” about the the fact that S| + | depends only on the
total field

* |tis conserved along the flow

The sWI must hold in addition to the usual flow
equation; it is an extra constraint on I,
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* Suppose we have a solution I'; [, @] of the flow equation
« ThenT; =T';[p, §] + F[@] is another solution

e But the sWI no longer holds as T, corresponds to a bare action

Sle + ¢] — Flg]

e This violates the shift symmetry

In full bi-field computations the sWI ensures uniqueness of the
effective action.
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With background-field dependence the LPA becomes

1 1

ulpdl = [ do 5 @u0) +5 (00 +10,00% + Vi, o) |

and we choose the cutoff operator
Ry (=0% ¢) = (k* + 0 — hye(9)) 0 (k* + 0° — hi())

with a general t-dependent function h ().

The previous two choices where:

hi (@) — ak?~ ¢ hi (@) = oV (@)

24



The flow equation becomes:

1

(1= h)¥?
1-h+02V

(1 —h — %&h + i(d — 2)¢h’> O(1 — h)

As opposed to just (h = 0):
OV — L(d—2)¢V' +dV =

And the sWi is:

h/ (1 . h)d/2
21— h+ 02V
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The single-field flow is:

(1—ag?)™? (1 Lag?)
1 —ag? + V"

0,V + 3V — %qﬁV’ — 6 (1— ag?)

The bi-field flow is (remember ¢ = © + © ):

1
OV +3V = S (90, + ¢,V =
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The single-field flow is:

(1—ag?)™? (1 Lag?)
1 —ag? + V"

@V+3V—%MW: 6 (1— ag?)

The bi-field flow complemented by the sWI (remember ¢ = ¢ + ¢ ):

~2\3/2 1, =2
1 o oy L (L—ag?)" " (1 - 5007 P
8tV—|—3V—§(908¢V—|—90(9¢V)— [ ag? {2V 0(1—ap?)
1 — o0& 3/2
0,V — 05V = ¢ (= ag) 0(1 — ag?)

1 —ap?+ 02V
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’OV—%(d—Q) (00, V + @0,V + dV |

t
_@=mE ol Lo ovar ) ar1
=gy (1 g gd-2gn ) o —n)
h/ 1_hd/2
ST RV Clull) ey TS

| 21— h+02V ;

Change of variables:

V=01-h"V, o=01-hT¢—¢ t=t-InvI—h
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Flow equation
b

shift Ward iclentity

change of variables

This is back to the standard d-dim. flow!
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 There is a one to one correspondence between the fixed points of
both flows:

Volie, @) = (1= ha(@) 2 V(1 = he(2) T (9 + 9))

* Looking at eigenoperators
— Before change of variables

Vi(o, @) = Vilp, p) + ev(p, p) exp(—At)
— After change of variables
Vi(@) = Vi) + £ 8() exp(—Af)
— The change of variables then implies
hi(p) = (@) + € Sh(t, @)
= h.(p) + € k(@) exp(—Xt)
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 The linearisation of the complicated system reduces to the
linearisation of the standard flow equation

* The eigenspectra are identical and the eigenoperators are related
via

1

d _
v=(1-h,)"= o— gt

ﬁ *
2 140

SN

Statement of universality

In particular: in d=3 these relations completely resolve all
previously described issues of the single field approximation.
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e Scalar field theory
— Litim, Pawlowski, 2002

* Yang-Mills theory
— Reuter, Wetterich, 1994, 1997
— Litim, Pawlowski, 1998, 2002

 Scalar QED
— Reuter, Wetterich, 1994

 Conformal gravity
— Manrique, Reuter, 2010

Here: In scalar field theory the sWI is enough to recover exact universality!
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* In gravity, the dependence on the background field is much more
involved: gauge fixing, ghosts, auxiliary fields

* The sWI is far more complicated

* Inscalar field theory the sWI effectively removes the background-
field dependence as introduced by the cutoff

* In gravity, the background field is an intrinsic component of the
construction of the effective action and not just put in by hand via
the cutoff

33



Single field approximation can lead to inaccurate results if there is a
background field dependence in the regulator

This can include additional fixed points, previously existing fixed point can
disappear, eigenspectra can be modified and redundant eigenoperators can
appear

In bi-field calculations the sWI determines the background field dependence
of the effective action and ensures its uniqueness

In the LPA of scalar field theory the sWI as a complement to the flow
equation is enough to recover exact universality

Thank you!
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