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Overview 

Motivation.

Spin foams and space time atoms.

Coarse graining without a scale.

The importance of refining states.  Tensor network coarse graining algorithms.

Application to spin foams / spin nets.

Classifying (symmetry protected) phases.

New representations and vacua in loop quantum gravity

Expanding the theory around different vacua corresponding to different ways of refinement.
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Why loop quantum gravity / spin foams?
(My personal short list of reasons)

•“minimal assumptions”: theories result from quantizing gravity (as a geometric theory), taking 
background independence seriously

    [gives you a higher probability to obtain a quantum theory of gravity]

•choice of (connection) variables: originally motivated by “convenience”,

•allowed first rigorous quantization of gravity (kinematical)

•so far leads to the most advanced inclusion  of diffeomorphism symmetry 

        [kinematics: for instance LOST uniqueness theorem, but also BD, Geiller 14]

        [conceptually very important in particular for coarse graining / renormalization, key role in regaining gravity]

           [dynamics: we know what we are looking for! [for instance in the formulation BD, Steinhaus 13]]

•(in particular spin foams): deep connection to topological field theories, 

  (because there is) no Wick rotation involved

             [topological field theories are fixed points of renormalization flow]

                 [Wick rotation leads to action unbounded from below: prevents useful continuum limit]
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What are spin foams?

Embeddings determined by the dynamics of the system. Represent the physical vacuum for
finer degrees of freedom.

S3, permutation of 3 elements, has 6 elements: unit element, three 2-cycles, two 3-cylces.

E–functions invariant under Z2 generated by first 2-cycle element:

E(g) = δ(unit, g) + a (δ(1. 2-cycle, g)) + b (δ(2. 2-cycle, g) + δ(3. 2-cylce, g)) +

c (δ(1. 3-cylce, g) + δ(2. 3-cycle, g))

⇒ Phase space parametrized by a, b, c.

If a = b, models can be rewritten
into standard ‘edge models’.

Obvious fixed points:

• zero temp (BF, weak coupling):
a = b = c = 0

• BF on quotient group Z2 = S3/Z3:
a = b = 0, c = 1

• high temp (strong coupling):
a = b = c = 1

a "= b

• Barrett Crane analogue model:
a = 1, b = c = 0
(not a fixed point)

a = b c

b = 0 0.1 × a

1/2 1 3/2
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Space time atoms: relation to gravity action

ψvac(EGauss) ≡ 1 , F (A) ≡ 0

∫
dT e−S(T ) (0.168)

hγ (0.169)

Xπ , Xσ (0.170)

{Xk
e , ge} = geT

k (0.171)

{Xk
e ,X l

e} = fklmXm
e (0.172)

π E(π)

ηAL(A) ≡ 1

ψ{j}(A) = ψ{j}(A) · ηAL(A)

µ(ψ{j}) = δ{j},

χ{α!} := R{Adt!
(α!)}ηBF =̇

∏

%

δ(g%α%). (0.173)

µBF (χ{α!}) =
∏

%

δ̃(α%) (0.174)

∫
R{α′−1

! α!}

∏

%

δ(g%)
∏

%′

δ(g%′) d|L|g% =
∏

%

δ
(
α′−1
% α%

)
,

RCe ∼ EF

∫
exp(iS(geom)) Dgeom (0.175)

∑

geom labels

A( geom labels) (0.176)

A( geom labels) =
∏

fund building blocks

Afbb( geom labels) (0.177)

j1 j2 j3 j4 j5 j6

29

ψvac(EGauss) ≡ 1 , F (A) ≡ 0

∫
dT e−S(T ) (0.168)

hγ (0.169)

Xπ , Xσ (0.170)

{Xk
e , ge} = geT

k (0.171)

{Xk
e ,X l

e} = fklmXm
e (0.172)

π E(π)

ηAL(A) ≡ 1

ψ{j}(A) = ψ{j}(A) · ηAL(A)

µ(ψ{j}) = δ{j},

χ{α!} := R{Adt!
(α!)}ηBF =̇

∏

%

δ(g%α%). (0.173)

µBF (χ{α!}) =
∏

%

δ̃(α%) (0.174)

∫
R{α′−1

! α!}

∏

%

δ(g%)
∏

%′

δ(g%′) d|L|g% =
∏

%

δ
(
α′−1
% α%

)
,

RCe ∼ EF

∫
exp(iS(geom)) Dgeom (0.175)

∑

geom labels

A( geom labels) (0.176)

A( geom labels) =
∏

fund building blocks

Afbb( geom labels) (0.177)

j1 j2 j3 j4 j5 j6

29

ψvac(EGauss) ≡ 1 , F (A) ≡ 0

∫
dT e−S(T ) (0.168)

hγ (0.169)

Xπ , Xσ (0.170)

{Xk
e , ge} = geT

k (0.171)

{Xk
e ,X l

e} = fklmXm
e (0.172)

π E(π)

ηAL(A) ≡ 1

ψ{j}(A) = ψ{j}(A) · ηAL(A)

µ(ψ{j}) = δ{j},

χ{α!} := R{Adt!
(α!)}ηBF =̇

∏

%

δ(g%α%). (0.173)

µBF (χ{α!}) =
∏

%

δ̃(α%) (0.174)

∫
R{α′−1

! α!}

∏

%

δ(g%)
∏

%′

δ(g%′) d|L|g% =
∏

%

δ
(
α′−1
% α%

)
,

RCe ∼ EF

∫
exp(iS(geom)) Dgeom (0.175)

∑

geom labels

A( geom labels) (0.176)

A( geom labels) =
∏

fund building blocks

Afbb( geom labels) (0.177)

j1 j2 j3 j4 j5 j6

29

ψvac(EGauss) ≡ 1 , F (A) ≡ 0

∫
dT e−S(T ) (0.168)

hγ (0.169)

Xπ , Xσ (0.170)

{Xk
e , ge} = geT

k (0.171)

{Xk
e ,X l

e} = fklmXm
e (0.172)

π E(π)

ηAL(A) ≡ 1

ψ{j}(A) = ψ{j}(A) · ηAL(A)

µ(ψ{j}) = δ{j},

χ{α!} := R{Adt!
(α!)}ηBF =̇

∏

%

δ(g%α%). (0.173)

µBF (χ{α!}) =
∏

%

δ̃(α%) (0.174)

∫
R{α′−1

! α!}

∏

%

δ(g%)
∏

%′

δ(g%′) d|L|g% =
∏

%

δ
(
α′−1
% α%

)
,

RCe ∼ EF

∫
exp(iS(geom)) Dgeom (0.175)

∑

geom labels

A( geom labels) (0.176)

A( geom labels) =
∏

fund building blocks

Afbb( geom labels) (0.177)

j1 j2 j3 j4 j5 j6

29

ψvac(EGauss) ≡ 1 , F (A) ≡ 0

∫
dT e−S(T ) (0.168)

hγ (0.169)

Xπ , Xσ (0.170)

{Xk
e , ge} = geT

k (0.171)

{Xk
e ,X l

e} = fklmXm
e (0.172)

π E(π)

ηAL(A) ≡ 1

ψ{j}(A) = ψ{j}(A) · ηAL(A)

µ(ψ{j}) = δ{j},

χ{α!} := R{Adt!
(α!)}ηBF =̇

∏

%

δ(g%α%). (0.173)

µBF (χ{α!}) =
∏

%

δ̃(α%) (0.174)

∫
R{α′−1

! α!}

∏

%

δ(g%)
∏

%′

δ(g%′) d|L|g% =
∏

%

δ
(
α′−1
% α%

)
,

RCe ∼ EF

∫
exp(iS(geom)) Dgeom (0.175)

∑

geom labels

A( geom labels) (0.176)

A( geom labels) =
∏

fund building blocks

Afbb( geom labels) (0.177)

j1 j2 j3 j4 j5 j6

29

ψvac(EGauss) ≡ 1 , F (A) ≡ 0

∫
dT e−S(T ) (0.168)

hγ (0.169)

Xπ , Xσ (0.170)

{Xk
e , ge} = geT

k (0.171)

{Xk
e ,X l

e} = fklmXm
e (0.172)

π E(π)

ηAL(A) ≡ 1

ψ{j}(A) = ψ{j}(A) · ηAL(A)

µ(ψ{j}) = δ{j},

χ{α!} := R{Adt!
(α!)}ηBF =̇

∏

%

δ(g%α%). (0.173)

µBF (χ{α!}) =
∏

%

δ̃(α%) (0.174)

∫
R{α′−1

! α!}

∏

%

δ(g%)
∏

%′

δ(g%′) d|L|g% =
∏

%

δ
(
α′−1
% α%

)
,

RCe ∼ EF

∫
exp(iS(geom)) Dgeom (0.175)

∑

geom labels

A( geom labels) (0.176)

A( geom labels) =
∏

fund building blocks

Afbb( geom labels) (0.177)

j1 j2 j3 j4 j5 j6

29

3D

ψvac(EGauss) ≡ 1 , F (A) ≡ 0

∫
dT e−S(T ) (0.168)

hγ (0.169)

Xπ , Xσ (0.170)

{Xk
e , ge} = geT

k (0.171)

{Xk
e ,X l

e} = fklmXm
e (0.172)

π E(π)

ηAL(A) ≡ 1

ψ{j}(A) = ψ{j}(A) · ηAL(A)

µ(ψ{j}) = δ{j},

χ{α!} := R{Adt!
(α!)}ηBF =̇

∏

%

δ(g%α%). (0.173)

µBF (χ{α!}) =
∏

%

δ̃(α%) (0.174)

∫
R{α′−1

! α!}

∏

%

δ(g%)
∏

%′

δ(g%′) d|L|g% =
∏

%

δ
(
α′−1
% α%

)
,

RCe ∼ EF

∫
exp(iS(geom)) Dgeom (0.175)

∑

geom labels

A( geom labels) (0.176)

A( geom labels) =
∏

fund building blocks

Afbb( geom labels) (0.177)

j1 j2 j3 j4 j5 j6

29

ψvac(EGauss) ≡ 1 , F (A) ≡ 0

∫
dT e−S(T ) (0.168)

hγ (0.169)

Xπ , Xσ (0.170)

{Xk
e , ge} = geT

k (0.171)

{Xk
e ,X l

e} = fklmXm
e (0.172)

π E(π)

ηAL(A) ≡ 1

ψ{j}(A) = ψ{j}(A) · ηAL(A)

µ(ψ{j}) = δ{j},

χ{α!} := R{Adt!
(α!)}ηBF =̇

∏

%

δ(g%α%). (0.173)

µBF (χ{α!}) =
∏

%

δ̃(α%) (0.174)

∫
R{α′−1

! α!}

∏

%

δ(g%)
∏

%′

δ(g%′) d|L|g% =
∏

%

δ
(
α′−1
% α%

)
,

RCe ∼ EF

∫
exp(iS(geom)) Dgeom (0.175)

∑

geom labels

A( geom labels) (0.176)

A( geom labels) =
∏

fund building blocks

Afbb( geom labels) (0.177)

j1 j2 j3 j4 j5 j6

29

ψvac(EGauss) ≡ 1 , F (A) ≡ 0

∫
dT e−S(T ) (0.168)

hγ (0.169)

Xπ , Xσ (0.170)

{Xk
e , ge} = geT

k (0.171)

{Xk
e ,X l

e} = fklmXm
e (0.172)

π E(π)

ηAL(A) ≡ 1

ψ{j}(A) = ψ{j}(A) · ηAL(A)

µ(ψ{j}) = δ{j},

χ{α!} := R{Adt!
(α!)}ηBF =̇

∏

%

δ(g%α%). (0.173)

µBF (χ{α!}) =
∏

%

δ̃(α%) (0.174)

∫
R{α′−1

! α!}

∏

%

δ(g%)
∏

%′

δ(g%′) d|L|g% =
∏

%

δ
(
α′−1
% α%

)
,

RCe ∼ EF

∫
exp(iS(geom)) Dgeom (0.175)

∑

geom labels

A( geom labels) (0.176)

A( geom labels) =
∏

fund building blocks

Afbb( geom labels) (0.177)

j1 j2 j3 j4 j5 j6

29

A( geom labels) =
∏

fund building blocks

Afbb( geom labels) (0.177)

j1 j2 j3 j4 j5 j6

j10 i1 i5

30

A( geom labels) =
∏

fund building blocks

Afbb( geom labels) (0.177)

j1 j2 j3 j4 j5 j6

j10 i1 i5

30

A( geom labels) =
∏

fund building blocks

Afbb( geom labels) (0.177)

j1 j2 j3 j4 j5 j6

j10 i1 i5

30

4D

sum over orientations of 
space time atoms

Large j (semi-classical) limit for single building blocks 
gives discrete GR action (for flat building blocks)!

[ Ponzano-Regge, Barrett et al,  Conrady-Freidel, ... ]

∑

geom labels

A( geom labels) (0.177)

A( geom labels) =
∏

fund building blocks
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j1 j2 j3 j4 j5 j6
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A(j) ∼
j>>1

exp(iSdiscr grav) + exp(−iSdiscr grav) (0.179)

ψ(j) ∼
j>>1

cos(Sdiscr grav) (0.180)

ψ(j) ∼
j>>1

cos(Sdiscr grav) (0.181)
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Many space time atoms?

Is there a phase describing smooth space time?

Do we get General Relativity at “large scales”?

What are the phases of spin foam theories 
(and in loop quantum gravity)?

8



Spin foams as lattice theories
•there is an underlying (auxiliary) lattice: refinement limit with respect to this lattice

•use tools developed in condensed matter, in particular tensor network renormalization.

  [Cirac,Levin, Nave, Gu, Wen, Verstraete, Vidal, ...]  [‘Emergent gravity’]

•Can deal with complex amplitudes: (we do not Wick rotate!)

•However many conceptional differences:

•result should be independent on choice of lattice (discretization independence)

•diffeomorphism symmetry should emerge (at fixed points of renormalization flow)

•(well supported) conjecture: discrete notion of diffeomorphism symmetry equivalent to 
discretization independence - should emerge in refinement limit 

     [BD 08, Bahr, BD 09, Bahr, BD, Steinhaus 11, BD 12] .

•There is no lattice scale, instead notion of scale included in dynamical variables.

•Hope to flow to perfect discretization, mirroring exactly continuum theory at all scales at once. 

         

9



Coarse graining without a scale 
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Fixed point model encodes all scales!
•There is no lattice scale, instead notion of scale included in dynamical variables.

•Hope to flow to perfect discretization, mirroring exactly continuum theory at all scales at once. 

•Scale encoded in boundary state  - not in renormalization step. 

•The initial model is an approximation (via discretization), which we hope to be valid in a small 
curvature regime  [determined by choice of boundary states and number of building blocks].

•Models obtained by coarse graining improve this approximation and increase domain of validity.

•Refinement limit corresponds to a ``perfect discretization’’.

View point: 

11



Fixed point as a continuum theory
If we do not have a lattice scale, how do we know that we reached the continuum limit?

Answer: 

•Fixed points of renormalization flow correspond to continuum limit.

       (a) “local” amplitudes: topological (discretization independent) theories correspond to  phases

       (b)  “non-local” amplitudes (infinite bond dimension) correspond to phase transitions

6.2.2 Phase diagram for k = 8

For the quantum group with k = 8, we discuss the linear combintation of four fixed point intertwiners, each labelled
with a maximal (even) spin 1  J  4, where we neglect J = 0 as argued above. Together with the requirement
that

P
J ↵J = 1, we have three free parameters. In figure 9 we show the full parameter space, with a raster of

coloured points indicating the fixed point they flow to. In figure 10 we show the interesting slice, where ↵3 = 0.

0.0

0.5

1.0

a1

0.0
0.5

1.0

a 2

0.0

0.5

1.0

a 3

Figure 9: Phase diagram for k = 8 with ↵0 = 0. The coloured dots indicate to which fixed point the respective
initial models flow to: The green dots show the factorizing models, lighter green for J = 1 (area that starts at the
vertex (↵1,↵2,↵3) = (1, 0, 0)), darker for J = 2 (area that starts at the vertex (0,1,0)). Analogue BF theory is
blue (area that starts at the vertex (0,0,1)). The so-called ‘mixed’ fixed point is orange (area that starts at the
vertex (0,0,0)).
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Figure 10: Slice of the phase diagram for k = 8 with ↵0 = ↵3 = 0. The colouring is the same as in the previous
diagram, namely the right corner corresponds to models flowing to the factorizing fixed point with J = 1, the upper
left corner corresponds to models that flow to the factorizing fixed point with J = 2, the models at the bottom left
corner flow to the ‘mixed’ fixed point, and the phase in between these three phases corresponds to analogue BF.

As in the previous diagram, we find extended phases for all fixed points, here the two factorizing fixed points for
J = 1 and J = 2, a phase for analogue BF theory and one for the ‘mixed’ fixed point. Again, the two dominating
phases are analogue BF theory and the factorizing fixed point with J = 1. Of particular interest is the special
slice that we picked in figure 10 because of the following two observations: First this slice shows clearly that the
analogue BF fixed point is very attractive, since in this slice its associated fixed point intertwiner is not excited,
↵3 = 0. Even if we stay on the line given by ↵1 + ↵2 = 1, i.e. the diagonal boundary in figure 10, the system
flows to BF for an intermediate region between the two phases and spoils a direct phase transition between the

26

Phase space: (some) parameters in initial 
model determine end points of coarse 
graining flow encoded in different colours
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Fixed point model still looks discrete. How to reconstruct continuum theory?

Fixed point as a continuum theory

Answer (here a short summary, expanded upon in the next slides): 

•Build continuum theory as inductive limit: standard technique of loop quantum gravity  [Ashtekar, 

Isham, Lewandowski 92+]

•Based on embedding (or refining) coarser (boundary) states into Hilbert space describing finer 
boundary states

•In this way any coarse (discrete looking) state can be understood as a state of the continuum 
Hilbert space.

•(Cylindrically) consistency requirements on observables, amplitudes, inner product.

•Surprisingly (condensed matter) tensor network renormalization methods are well adapted to this 
technique and can provide embedding maps - determined by dynamics of the system. [BD 12]

•Allows to formulate continuum theory of spin foams based on discrete boundary states

  [BD, Steinhaus 13] 
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Inductive limit techniques and

Tensor network coarse graining algorithms.
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Boundary Hilbert spaces and transition 
amplitudes

A

A

AA

AAA

AA

A A

AAAAAAA

AAAA

AAAA

AAAA

AAAA

AAAA

∑

ONB

T

T

T

T

A′A′A′

= id

22

(local) amplitudes depending on
(boundary) variables, represented by blue edges 

boundary Hilbert space (tensor product over local sites)

summing over (bulk) variables in path integral 

This represents a transition amplitude built from local amplitudes.  
The boundary Hilbert space has two components.

ψ1

ψ1

ψ1

ψ2

ψ2

A

A

A

A

AA

AA

A

A

ψψ

A′

A′A′

A(x1, x2, x3, x4) =
∑

xbulk
a(x1, x2, x3, x4, xbulk)

where x are boundary data

ψ(x1, x2, x3, x4) is a boundary wave function

A is an (anti-)linear functional on space of ψ’s,
defines transition amplitudes

State sum models associate amplitudes to space time regions with boundary (data)

18

This represents a one-component boundary Hilbert space.

[generalized boundary formalism: Oeckl 03]
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coarser boundary (with four sites) with
attached boundary Hilbert space
(tensor product over four sites) 

Embedding Hilbert spaces

finer boundary (16 sites) with 
attached boundary Hilbert space 

(local) embedding map 
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is a boundary wave function

A is an (anti-)linear functional
on bdry Hilbert space H1,

A(ψ) =
∑
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A(xi)ψ̄(xi) (0.148)

defines (transition) amplitudes

State sum models associate amplitudes to space time regions with boundary (data)

Amplitude for a ‘larger’ region
glued from amplitudes of smaller regions,
acts on ‘refined’ bdry Hilbert space H2

18
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embedding map identifies coarse states with states
in finer boundary Hilbert space
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Good embedding maps?
What are the embedding maps good for?

Answer: 

•efficiency!

•do computation on the most coarse grained level possible

•can represent continuum theory by discrete (boundary) data

➡ To be really efficient, embedding maps have to be adjusted to dynamics of the system: 

➡Coarse Hilbert space should represent ``most typical states” 

    (state describing smooth geometry / low energy)

Whereas initial boundary states may rather describe fundamental excitations, and one expects a 
large number of these to describe smooth geometry.

17



Amplitudes encode the dynamics of the system

associate Hilbert spaces H
b

. As for the classical case we have to choose injection maps ◆
bb

0 that
embed the Hilbert space H

b

into H
bb

0 . Such injections can be naturally constructed if we have
projections ⇡

b

0
b

: C
b

0 ! C
b

on the configuration spaces at our disposal: assuming a polarization
in which the quantum states are functions on the configuration space we can use the pullback
of the projections to define injections:

◆
bb

0 : H
b

! H
b

0

 
b

7!  
b

0 where  
b

0(c
b

0) =  
b

(⇡
b

0
b

(c
b

0)) . (7.2) {q2}

The reader will note that in the classical case we also used injections instead of projections.
In the case we discussed here we can however obtain projections by ‘forgetting’ the fluctuation
variables. I.e. in the case that coarse graining was based on piecewise linear fields and for
a refinement which doubled the number of fields, {�

i

} to {�
i

,�
i,i+1

}, we perform a variable
transformation �

ij

= �
ij

� 1

2

(�
i

+ �
j

) and define the projection as

⇡
b

0
b

(�
1

, �
12

,�
2

, . . .) = (�
1

,�
2

, . . .) . (7.3) {q3}

Such a projection satisfies ⇡
b

0
b

� ◆class

bb

0 = Id
b

where here the ◆class

b

is the classical embedding map
for the configuration spaces.

A measure (which here will be just understood as linear functional) on a family of inductive
Hilbert spaces can be defined by providing a representation on each of the Hilbert spaces H

b

.
Such a family of measures {µ}

b

is cylindrically consistent if

µ
b

( 
b

) = µ
b

0(◆
bb

0( 
b

)) . (7.4) {q4}

The Ashtekar–Lewandowki measure [?, ?] for the kinematical Hilbert spaces in loop quantum
gravity satisfies such consistency relations. One way to define the dynamics (and the physical
inner product) would be via the path integrals acting as functionals (rigging maps []) on these
kinematical Hilbert spaces (technically on some dense subspace of these Hilbert spaces) as in
(7.1). Cylindrical consistent dynamics would then mean to have a cylindrical consistent family
of (anti–linear) maps

P
b

: H
b

! C . (7.5) {q5}

As an example we can again consider the massless free scalar field. The kinematical Hilbert
space associated to the boundary with N vertices will be L2(RN ), here we will have the case
N = 4 and N = 8. We define the path integral map for the boundary b of the basic square as4

P
b

( 
b

) =
1

N
b

Z Y

i=1,...,4

d�
i

eiSb(�i)  
b

(�
i

) (7.6) {q6}

where N
b

is a normalization factor. The path integral map for a refinement b0 that subdivides
a squares into four would be given by

P
b

0( 
b

0) =
1

N
b

0

Z
d�

0

Y

i=1,...,4

d�
i

d�
i,i+1

eiSb0 (�i,�i,i+1,�0)  
b

0(�
i

, �
i,i+1

) (7.7) {q7}

where �
0

is the scalar field on the inner vertex and �
i,i+1

the variables introduced in (7.3) and
S

b

0 is here the action for four squares obtained by summing the basic action S
b

over the four
4The complex conjugation of the kinematical wave function can be interpreted as the kinematical wave function

being associated with the other orientation of the boundary [?].
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•embedding maps: 

ι : (φ1,φ2, . . .) !→ (φ1,
3
4φ1 + 1

4φ2,
1
2 (φ1 + φ2),

1
4φ1 + 3

4φ2,φ2, . . .) (0.130)

S′
4 = (φ1 + φ2)

2 + (φ2 + φ3)
2 + (φ3 + φ4)

2 + (φ4 + φ1)
2 − α(φ1 − φ2 + φ3 − φ4)

2 (0.131)

S4 = (φ1 + φ2)
2 + (φ2 + φ3)

2 + (φ3 + φ4)
2 + (φ4 + φ1)

2 (0.132)

α =
2

3
(0.133)

S∗
8 = S∗

4(φi) +

φ1γ12 + . . . − φ1γ23 + . . . +

2.28γ2
12 + . . . − 1.20γ12γ23 + . . . − 0.34γ12γ34 + . . . (0.134)

S∗
16 = S∗

4(φi) +

φ1γ12 + . . . − φ1γ23 + . . . +

2.20γ2
12 + . . . − 1.18γ12γ23 + . . . 0.36γ12γ34 + . . . +

φ · κ + γ · κ + κ · κ –terms (0.135)

S = . . . λa2(φ4
1 + φ4

2 + φ4
3 + φ4

4)

S∗
4 = . . . − 0.0039λ2a4φ6

1 + . . .

S∗
8 = . . . − 0.0050λ2a4φ6

1 + . . .

cb ∼ cb′

A family of functions {Sb}b∈B is cylindrically consistent on the inductive family defined by
(Cb, ιb), if

Sb = ι∗bb′Sb′ , i.e. Sb(c) = Sb′(ιbb′(c)) ∀c ∈ Cb (0.136)

where ι∗bb′ is the pullback of ιbb′ . This just implements that the value of the function F should
not depend on the representative on which one chooses to evaluate.

Ab : Hb !→ C . (0.137)

ιbb′ : ψb !→ ψb′ where ψb′(φ1, γ12,φ2, . . .) = ψb(φ1,φ2, . . .) . (0.138)
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defines (transition) amplitudes

State sum models associate amplitudes to space time regions with boundary (data)

Amplitude for a ‘larger’ region
glued from amplitudes of smaller regions,
acts on ‘refined’ bdry Hilbert space H2
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•(transition) amplitudes encode dynamics:

[transition amplitudes if there are two boundary components]

•in fact we have a family of (transition) amplitudes labelled by boundaries b

•order boundaries into coarser and finer
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where x are boundary data

ψ(x1, x2, x3, x4)
is a boundary wave function

A is an (anti-)linear functional
on space of ψ’s,

A(ψ) =
∑

xi

A(xi)ψ̄(xi) (0.148)

defines (transition) amplitudes

State sum models associate amplitudes to space time regions with boundary (data)

18

•(transition) amplitudes for instance defined by path integral
  (blue edges represent sum over variables)

•Cylindrical consistency conditions relate amplitudes for different boundaries b and b’.
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Cylindrically consistent amplitudes

Computing the amplitude for a coarse state should give the same result, as
•embedding coarse state to a finer state
•using the amplitude map for finer states.
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ψb
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ιbb′(ψb)

ιbb′(ψb)

A

A

A

A

A

AA

AA

A

ψψ
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AbAb
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ψ(x1, x2, x3, x4)
is a boundary wave function

A is an (anti-)linear functional
on bdry Hilbert space H1,

A(ψ) =
∑

xi

A(xi)ψ̄(xi) (0.152)

defines (transition) amplitudes

State sum models associate amplitudes to space time regions with boundary (data)

Amplitude for a ‘larger’ region
glued from amplitudes of smaller regions,
acts on ‘refined’ bdry Hilbert space H2
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State sum models associate amplitudes to space time regions with boundary (data)

Amplitude for a ‘larger’ region
glued from amplitudes of smaller regions,
acts on ‘refined’ bdry Hilbert space H2
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generalizes correspondence between
4D lattice gauge theories and

2D Ising like models

T = K · W · K (0.160)

blocking of finer field
variables

B(ψ) = Ψ (0.161)

Z =
∑

ψ

a(ψ) =
∑

Ψ

∑

ψ: B(ψ)=Ψ

a(ψ) =
∑

Ψ

a′(Ψ) (0.162)

ι"bb′S
b
b′ = S∗

b (0.163)

Sb = ι"bb′Sb′ i.e. Sb(c) = Sb′(ιbb′(c)) ∀c ∈ Cb (0.164)

Ab(ψb) = Ab′(ιbb′(ψb)) (0.165)

coarse field variables

amplitude function

effective amplitude
includes sum over
finer field variables

Localize truncations,
diagonalize only subparts
of transfer operator

iteration procedure

determine embedding maps

embedding map after 3 iterations
Plateau (scale free dynamics) of almost constant embedding maps around phase transition

25

Thus, computation for coarse states give already continuum results.
Cylindrically consistent amplitudes define the continuum limit of the theory.

[BD 12, BD, Steinhaus 13]
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What are good choices for the embedding maps 
(for the basis of boundary states)?
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Motivation: transfer operator technique
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free boundary fields

eom’s have been solved for these fields

approximated fields in first iteration

approximated fields in second iteration

approximated fields in second iteration

S′
4(φ1, . . . ,φ4) =

S8(φ1, . . . ,
1
2(φ1 + φ2), . . .) (0.150)

iterate

diagonal couplings

flow in parameter α:

fixed point: α∗ = 2
3

After N iteration find an approximation to Hamilton’s function for square with 2N basic squares
and ‘edge wise’ linear boundary fields.

Fixed point: approximation to continuum Hamilton’s function evaluated on ‘edge wise’ linear
boundary data.

For free massless scalar
field actually exact!

The same procedure for squares with refined boundary data will in general give a correction to
this approximation.

set γ233, . . . = 0

Transition amplitude between
two states 〈ψ|A|ψ2〉

insert id =
∑

ONB |ψ〉〈ψ|
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A = TN

Truncate by restricting
∑

ONB
to the eigenvectors of T with the
χ largest (in mod) eigenvalues.

23
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Motivation: transfer operator technique

Here coarse states correspond to low energy states.
Results (typically) in non-local embedding maps 
(example: Fourier transform for free theories).
Explicit diagonalization difficult for large systems.
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Localized embedding maps
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A = TN

Truncate by restricting
∑

ONB
to the eigenvectors of T with the
χ largest (in mod) eigenvalues.

Expect good approximation if ψ1,ψ2

are in span of these eigenvectors.

But: explicit diagonalization of T difficult.

Determined by (generalized)
EV-decomposition.

blocking

embedding
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amplitude function

effective amplitude

Localize truncations,
diagonalize only subparts
of transfer operator

27

amplitude function

effective amplitude

Localize truncations,
diagonalize only subparts
of transfer operator

iteration procedure
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amplitude function

effective amplitude

Localize truncations,
diagonalize only subparts
of transfer operator

iteration procedure

determine embedding maps

embedding map after 3 iterations
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Relation to vacuum
Here coarse states correspond to low energy states / states with few excitations from vacuum.

Embedding maps depend on the dynamics of the system.

However in General Relativity:  
What is vacuum? 
Hamiltonian is a constraint and hence zero (and we do not Wick rotate).
Transfer matrix should be a projector if diffeomorphism symmetry is realized 
(with eigenvalues one and zero).
NB: In 4D diffeomorphism symmetry is broken, eigenvalues take other values too.

So we can hope that even for GR, unphysical states (eigenvalue zero) are truncated away.

There is however a further mechanism that differentiates states even in GR: radial evolution. 

[BD, Steinhaus 13:  Time evolution as refining, coarse graining and entangling]
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• •• •

•

•

•

•

•

•

Figure 6: Illustration of radial time evolution in tensor networks: By adding eight additional tensor (in
gray) we perform one time evolution step. The boundary data grows exponentially from �4 to �48.

The radial time evolution can be split into steps with time evolution operators

T (R1, R2) = exp(�
Z R2

R1

Hrdr) . (6.1)

This is a refining time evolution in the sense that the Hilbert space H2 at R2 will have more kinematical
degrees of freedom than the Hilbert space H1 at R1. The main idea is to truncate the degrees of freedom
in H2. Ideally one would perform a singular value decomposition of T (R1, R2). This would give a maximal
number of dim(H1) singular values. Hence T (R1, R2) will have a non–trivial co–image in H2, which can
be projected out.

Such a scheme might be indeed worthwhile to investigate further (for statistical systems), in order to
obtain an intuition about the truncations. One would expect that the reorganization of the degrees of
freedom via the singular value decomposition will be highly non–local, as we have seen for the example
in section 2.1. The time evolution considered there exactly corresponds to T (R1, R2).

Even such a classical investigation might be worthwhile: the radial evolution as a refining time
evolution will result in post constraints. Below we will introduce coarse graining time evolution steps,
that will implement a truncation, and should classically lead to pre–constraints. This suggest that for a
good choice of truncation, the pre–constraints should match to the post–constraints.

As a remark, we now see why tensor network coarse graining should also work for theories in which
evolution between equal size Hilbert space is actually unitary. (For statistical systems one usually works
with exp(�H), so the path integral is Wick rotated. Here we refer to a non–Wick rotated path integral.)
In such a case one might argue that all singular values of the transfer matrix should be equal to one.
However adopting the picture of radial evolution, we do not have a unitary evolution – rather one expects
an isometric embedding of coarser states into a Hilbert space of finer states. Thus the transfer matrix
should lead to a set of singular values equal to one and others vanishing. A good truncation would then
identify these vanishing singular values. In this way the singular value decomposition and the associated
embeddings V can rather be understood as a field redefinition, which automatically defines appropriate
coarse grained observables of the theory.

6.2 Embedding maps via singular value decomposition

In praxis, other schemes are preferred due to computational e�ciency. These involve rather local trun-
cation maps. The basic idea is as follows. Imagine two space time regions or e↵ective vertices connected
with each other by two edges, representing the summation over a certain set of variables, see figure 7. We
would like to replace these edges carrying an index pair {↵,�} of size �2 with an e↵ective edge carrying
only a number � of indices. We choose an optimal truncation for the summation over the index pair
{↵,�}, which is given by the singular value decomposition of MA↵� :

MA↵� =
�2X

i=1

UAi�iVi ↵� (6.2)

17

Radial time evolution and coarse states

Consider a “radial time evolution” from a ``smaller” to a “larger” Hilbert space. 

(We can easily construct such evolutions for systems based on simplicial discretizations, such as 
spin foams).

This time evolution itself defines an embedding map: 
The image of the time evolution defines coarser states in the larger Hilbert space.

Conjecture: This definition leads to states describing coarse grained excitations. 
                  (Radial) time evolution can be used to define useful embedding maps.
                   [BD, Steinhaus 13]

[also  BD, Hoehn 11,13, Hoehn 14, BD, Hoehn, Jacobson wip]

NB:  Again this definition would lead in general to non-local embedding maps.
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Tensor network renormalization methods
... rather using local embedding maps (to keep algorithms efficient)
   but different versions are possible.

bare/initial amplitude 
depending on four variables
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Contract initial amplitudes (sum over bulk variables).
Obtain “effective amplitude” with more boundary 
variables. 
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Find an approximation (embedding map) that would 
minimize the error as compared to full summation 
(dotted lines). For instance using singular value 
decomposition, keeping only the largest ones.
Leads to field redefinition, and ordering of fields into 
more and less relevant.

AA

AA

A′
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AA
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25

Use embedding maps to define coarse grained 
amplitude with the same (as initial) number of 
boundary variables.
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Tensor network renormalization methods

Iteration. Summation over bulk variables are truncated 
using the embedding maps.

Associated embedding maps for boundary Hilbert 
space.
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Fixed points give cylindrical consistent amplitudes
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Fixed points corresponding to topological field 
theories or interacting field theories

•method works particularly well for convergence to a “gapped phase” 

  (lead to topological field theories)

•finitely many ground states separated from excited states: determine bond dimension 

  (number of non-vanishing singular values)

•phase transition: usually involve ‘infinite bond dimension’

•expect to find interacting theories / propagating degrees of freedom

•truncation can be nevertheless quite good, and provides a method to determine phase transition 
(and sometimes even to calculate critical exponents)

•However argument about radial time evolution suggest that better truncations (near phase 
transitions) might be possible if non-local embedding maps are incorporated. 

•Might even not need infinite bond dimension.
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Applications: (analogue) spin foam models

•4D spin foam models are very very complicated 

•devised analogue models capturing the essential dynamical ingredients of spin foams

  [similar to 4D lattice gauge and 2D spin system duality]

•these spin nets can actually be interpreted as spin foams based on very special 

  discretizations

•unlike spin foams the spin net models are non-trivial in 2D

•investigated the phase diagrams for such models (with quantum group structure)

•these phase diagrams have a very rich structure

(The details of this and the adaption of the tensor network methods

take easily up another talk.)

29



Lattice gauge theory/ 
Ising like systems

deconfining phase
(topological phase)

coupling

confining phase

Spin nets

‘no space’ phase

topological phase
(gives 3D gravity!)

6.2.2 Phase diagram for k = 8

For the quantum group with k = 8, we discuss the linear combintation of four fixed point intertwiners, each labelled
with a maximal (even) spin 1  J  4, where we neglect J = 0 as argued above. Together with the requirement
that

P
J ↵J = 1, we have three free parameters. In figure 9 we show the full parameter space, with a raster of

coloured points indicating the fixed point they flow to. In figure 10 we show the interesting slice, where ↵3 = 0.
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Figure 9: Phase diagram for k = 8 with ↵0 = 0. The coloured dots indicate to which fixed point the respective
initial models flow to: The green dots show the factorizing models, lighter green for J = 1 (area that starts at the
vertex (↵1,↵2,↵3) = (1, 0, 0)), darker for J = 2 (area that starts at the vertex (0,1,0)). Analogue BF theory is
blue (area that starts at the vertex (0,0,1)). The so-called ‘mixed’ fixed point is orange (area that starts at the
vertex (0,0,0)).
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Figure 10: Slice of the phase diagram for k = 8 with ↵0 = ↵3 = 0. The colouring is the same as in the previous
diagram, namely the right corner corresponds to models flowing to the factorizing fixed point with J = 1, the upper
left corner corresponds to models that flow to the factorizing fixed point with J = 2, the models at the bottom left
corner flow to the ‘mixed’ fixed point, and the phase in between these three phases corresponds to analogue BF.

As in the previous diagram, we find extended phases for all fixed points, here the two factorizing fixed points for
J = 1 and J = 2, a phase for analogue BF theory and one for the ‘mixed’ fixed point. Again, the two dominating
phases are analogue BF theory and the factorizing fixed point with J = 1. Of particular interest is the special
slice that we picked in figure 10 because of the following two observations: First this slice shows clearly that the
analogue BF fixed point is very attractive, since in this slice its associated fixed point intertwiner is not excited,
↵3 = 0. Even if we stay on the line given by ↵1 + ↵2 = 1, i.e. the diagonal boundary in figure 10, the system
flows to BF for an intermediate region between the two phases and spoils a direct phase transition between the

26

 Much richer phase structure!
[ BD, Martin-Benito, Schnetter 2013, BD, Martin-Benito, 

Steinhaus 2013]

Applications: (analogue) spin foam models

Interpretation: different phases describe uncoupled 
space time atoms (green) and coupled space time 
atoms (orange,blue).
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Towards spin foam coarse graining

•So far encouraging results for ‘spin foam analogue’ models.

Conclusions: 

•Relevant parameters related to (SU(2)) intertwiners (also appearing in spin/anyon chains) 
leading to rich phase space structure. This is expected from the gravity dynamics.

•Need to implement a weak version of discretization independence to uncover these rich phase 
spaces (escape the two lattice gauge theory phases).

•Positive indication for finding a geometric phase in spin foams.

•Are now looking at spin foam analogue and actual spin foam models  in higher dimensions. 

•Need to extend tensor network tools (applicable to lattice gauge theories) to this end.  [wip]

31



Defines embedding maps and associated vacua.

Each phase corresponds to a toplogical field theory. 

New representations (Hilbert spaces) for

Loop quantum gravity. 
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Loop quantum gravity
•succeeded in constructing a quantum representation of geometric operators 

  [Ashtekar, Lewandowski, Isham, Rovelli, Smolin, Corichi, ... 90’s]

  

•spatial geometric operators (area, volume operators) have discrete eigenvalues   

•spin networks based on (finite) graphs give a basis in the (non-separable) LQG Hilbert space

•despite this (discrete) basis the theory is defined in the continuum: via embedding maps

•dynamics based on Hamiltonian constraints [Thiemann ’96]

 So far the theory is based on the 

  Ashtekar-Lewandowski representation

  based on a (AL) vacuum describing

•    zero volume spatial geometry

•   maximal uncertainty in conjugated variable.
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What is vacuum?

•Ashtekar-Lewandowski representation /vacuum corresponds to confining phase for lattice 
gauge theories (i.e. embedding maps coincide).

Question: Can we base the representation on a different vacuum 
corresponding to one of the other phases?
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Loop quantum gravity vacua

Ashtekar - Lewandowski representation 
(90’s)

geometric variables:

j = 5
j = 0

T = exp(−H)

TN →
N→∞

j

j′

j′′

∑

j,j′,j′′,...

(0.166)

︸ ︷︷ ︸
︷ ︸︸ ︷
︷ ︸︸ ︷

Hb = (⊕j Vj)
N (0.167)

a(j1, j2, j3)
Z(bdry) =

∑
bulk j

∏
∆ a(j, j′, j′)

⊃
Hcoarser Hfiner

|j1,m1; j2,m2; j3,m3, . . .〉

Z ′
finer = (dim - factors) × Zfiner

Zcyl
b1,b2

=
√

dim(j)

Zcyl
∞,∞[ιb1∞(ψb1), ιb2,∞(ψb2)] = Zcyl

b1,b2
[ψb1 ,ψb2 ]

Ĉ = I2−

{A , E} = δ

ψvac(A) ≡ 1 , E ≡ 0

28

connection flux: spatial geometry
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28
peaked on degenerate (spatial) geometry

maximal uncertainty in connection

excitations: 
spin network states supported on graphs

BF (topological) theory representation

[BD, Geiller 2014,
BD, Geiller to appear]

ψvac(EGauss) ≡ 1 , F (A) ≡ 0

29

peaked on flat connections
maximal uncertainty in spatial geometry

excitations: 
flux states supported on (d-1) D-surfaces

(representation) 
labels for edges

(group) labels 
 for faces

35



We applied this to BF (topological field 
theory), corresponding to unconfined 
phase. [BD, Geiller 14]

But construction can be generalized to other 
topological field theories:
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(discretized)

topological field

theory

excitations

vacuum

state

(dynamics)

‘inductive limit’ 
construction

 

continuum

Hilbert space 

for excitations

determine observables stable 
under refining time evolution

 (non-trivial step)

Excitations and vacuum
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Advantages
•This new construction allows to expand loop quantum gravity around different vacua 
corresponding to the different phases (fixed points) for spin foams.

•Ashtekar-Lewandowski representation: peaked on completely degenerate spatial geometry, 
maximal fluctuation in conjugated variable: difficult to built up states corresponding to smooth 
geometry

•New representation [BD, Geiller 2014] : peaked on flat connection, maximal fluctuation in spatial 
geometry. Corresponds to the physical state in (2+1)D gravity and in general to condensate states 
with respect to Ashtekar-Lewandowski representation.

•Facilitates construction of states corresponding to smooth geometries and should be useful for 
discussions of i.e. black hole entropy in loop quantum gravity [Sahlmann 2011].

•New representation much easier to interpret geometrically: new handle on the dynamics of the 
theory. [need substitute of Thiemanns (1996) quantization of Hamiltonian constraints]

[BD, Geiller 2014,
BD, Geiller to appear]
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Phase transitions?

6.2.2 Phase diagram for k = 8

For the quantum group with k = 8, we discuss the linear combintation of four fixed point intertwiners, each labelled
with a maximal (even) spin 1  J  4, where we neglect J = 0 as argued above. Together with the requirement
that

P
J ↵J = 1, we have three free parameters. In figure 9 we show the full parameter space, with a raster of

coloured points indicating the fixed point they flow to. In figure 10 we show the interesting slice, where ↵3 = 0.

0.0
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0.0
0.5

1.0

a 2

0.0

0.5

1.0

a 3

Figure 9: Phase diagram for k = 8 with ↵0 = 0. The coloured dots indicate to which fixed point the respective
initial models flow to: The green dots show the factorizing models, lighter green for J = 1 (area that starts at the
vertex (↵1,↵2,↵3) = (1, 0, 0)), darker for J = 2 (area that starts at the vertex (0,1,0)). Analogue BF theory is
blue (area that starts at the vertex (0,0,1)). The so-called ‘mixed’ fixed point is orange (area that starts at the
vertex (0,0,0)).
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Figure 10: Slice of the phase diagram for k = 8 with ↵0 = ↵3 = 0. The colouring is the same as in the previous
diagram, namely the right corner corresponds to models flowing to the factorizing fixed point with J = 1, the upper
left corner corresponds to models that flow to the factorizing fixed point with J = 2, the models at the bottom left
corner flow to the ‘mixed’ fixed point, and the phase in between these three phases corresponds to analogue BF.

As in the previous diagram, we find extended phases for all fixed points, here the two factorizing fixed points for
J = 1 and J = 2, a phase for analogue BF theory and one for the ‘mixed’ fixed point. Again, the two dominating
phases are analogue BF theory and the factorizing fixed point with J = 1. Of particular interest is the special
slice that we picked in figure 10 because of the following two observations: First this slice shows clearly that the
analogue BF fixed point is very attractive, since in this slice its associated fixed point intertwiner is not excited,
↵3 = 0. Even if we stay on the line given by ↵1 + ↵2 = 1, i.e. the diagonal boundary in figure 10, the system
flows to BF for an intermediate region between the two phases and spoils a direct phase transition between the
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•This new construction allows to expand loop quantum gravity around different vacua 
corresponding to the different phases (fixed points) for spin foams.

•What about phase transitions  (‘non-trivial’ fixed points)?

•Instead of topological theory expect conformal theory / propagating degrees of freedom.

•Expect such fixed point amplitudes to be non-local          non-local embedding maps 

                                                                                     (also given by time evolution?)

•Do we regain triangulation independence / diffeomorphism symmetry there?
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Summary 

Coarse graining is about refining boundary states.

Tensor network methods construct embeddings of coarse states, 
representing  “low energy/coarse degrees of freedom”,

into continuum Hilbert space.
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Summary and Outlook: 

Quantum Space Time Engineering 

•We are on a good way to understand the ‘many body physics’ of spin foams and loop quantum 
gravity.

•Corresponds to the ‘continuum limit’ of these models.

 

•In the path integral approach (spin foams):  mapping out the phase diagrams

•connections to condensed matter physics / (new?) topological field theories and phases

•challenge: going to higher dimensions

•challenge: understanding symmetries of phase transition fixed points

•In the canonical approach (loop quantum gravity): expanding around different vacua

•facilitates investigation/construction of physical states describing extended/smooth geometries

•each vacuum comes with its own set of excitations: investigate dynamics of these.
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Thank you!
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