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Motivation.

Spin foams and space time atoms.

Coarse graining without a scale.

The importance of refining states. Tensor network coarse graining algorithms.

Application to spin foams / spin nets.

Classifying (symmetry protected) phases.

New representations and vacua in loop quantum gravity

Expanding the theory around different vacua corresponding to different ways of refinement.



Why loop quantum gravity / spin foams!?

(My personal short list of reasons)

*“minimal assumptions”: theories result from quantizing gravity (as a geometric theory), taking

background independence seriously

[gives you a higher probability to obtain a quantum theory of gravity]

*choice of (connection) variables: originally motivated by “convenience”,
*allowed first rigorous quantization of gravity (kinematical)
*so far leads to the most advanced inclusion of diffeomorphism symmetry
[kinematics: for instance LOST uniqueness theorem, but also BD, Geiller [4]

[conceptually very important in particular for coarse graining / renormalization, key role in regaining gravity]

[dynamics: we know what we are looking for! [for instance in the formulation BD, Steinhaus |3]]

o(in particular spin foams): deep connection to topological field theories,
(because there is) no Wick rotation involved

[topological field theories are fixed points of renormalization flow]

[Wick rotation leads to action unbounded from below: prevents useful continuum limit]



What are spin foams?
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Space time atoms: relation to gravity action

sum over orientations of

J4 / space time atoms

A(J) Y eXp(iSdiscr grav) -+ exp(_isdiscr grav)
4D 1>>1

\ Large j (semi-classical) limit for single building blocks
"‘( gives discrete GR action (for flat building blocks)!

[ Ponzano-Regge, Barrett et al, Conrady-Freidel, ... ]




Many space time atoms!

Is there a phase describing smooth space time!?
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Spin foams as lattice theories

*there is an underlying (auxiliary) lattice: refinement limit with respect to this lattice
suse tools developed in condensed matter, in particular tensor network renormalization.
[Cirac,Levin, Nave, Gu, Wen,Verstraete,Vidal, ...] [‘Emergent gravity’]

*Can deal with complex amplitudes: (we do not Wick rotate!)

*However many conceptional differences:
*result should be independent on choice of lattice (discretization independence)
ediffeomorphism symmetry should emerge (at fixed points of renormalization flow)

*(well supported) conjecture: discrete notion of diffeomorphism symmetry equivalent to

discretization independence - should emerge in refinement limit
[BD 08, Bahr, BD 09, Bahr, BD, Steinhaus |1,BD 12].
*There is no lattice scale, instead notion of scale included in dynamical variables.

*Hope to flow to perfect discretization, mirroring exactly continuum theory at all scales at once.



Coarse graining without a scale
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Fixed point model encodes all scales!

*There is no lattice scale, instead notion of scale included in dynamical variables.

*Hope to flow to perfect discretization, mirroring exactly continuum theory at all scales at once.

View point:

*Scale encoded in boundary state - not in renormalization step.

*The initial model is an approximation (via discretization), which we hope to be valid in a small
curvature regime [determined by choice of boundary states and number of building blocks].

*Models obtained by coarse graining improve this approximation and increase domain of validity.

*Refinement limit corresponds to a * perfect discretization”.
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Fixed point as a continuum theory

If we do not have a lattice scale, how do we know that we reached the continuum limit?

Answer:

*Fixed points of renormalization flow correspond to continuum limit.
(a) “local” amplitudes: topological (discretization independent) theories correspond to phases

(b) “non-local” amplitudes (infinite bond dimension) correspond to phase transitions

)
1.0

0.8

Phase space: (some) parameters in initial
‘model determine end points of coarse
graining flow encoded in different colours

0.6

0.4

0.2

0.0
0.0
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Fixed point as a continuum theory

Fixed point model still looks discrete. How to reconstruct continuum theory?

Answer (here a short summary, expanded upon in the next slides):

*Build continuum theory as inductive limit: standard technique of loop quantum gravity [Ashtekar,

Isham, Lewandowski 92+]

*Based on embedding (or refining) coarser (boundary) states into Hilbert space describing finer

boundary states

*In this way any coarse (discrete looking) state can be understood as a state of the continuum

Hilbert space.

*(Cylindrically) consistency requirements on observables, amplitudes, inner product.

e Surprisingly (condensed matter) tensor network renormalization methods are well adapted to this

technique and can provide embedding maps - determined by dynamics of the system. [BD 12]
*Allows to formulate continuum theory of spin foams based on discrete boundary states

[BD, Steinhaus | 3]
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Inductive limit techniques and

Tensor network coarse graining algorithms.
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Boundary Hilbert spaces and transition
amplitudes

- (local) amplitudes depending on
/ (boundary) variables, represented by blue edges

< summing over (bulk) variables in path integral

— A A A A

S FE E R R boundary Hilbert space (tensor product over local sites)

This represents a transition amplitude built from local amplitudes.
The boundary Hilbert space has two components.

! I
:_ 1 This represents a one-component boundary Hilbert space.

[generalized boundary formalism: Oeckl 03]
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Embedding Hilbert spaces

TS ST ss - it coarser boundary (with four sites) with
<« attached boundary Hilbert space
(tensor product over four sites)

— - finer boundary (16 sites) with
attached boundary Hilbert space

—  (local) embedding map

embedding map identifies coarse states with states
in finer boundary Hilbert space



Good embedding maps?

What are the embedding maps good for!?

Answer:

eefficiency!
*do computation on the most coarse grained level possible

ecan represent continuum theory by discrete (boundary) data

= To be really efficient, embedding maps have to be adjusted to dynamics of the system:
= Coarse Hilbert space should represent = most typical states”

(state describing smooth geometry / low energy)

Whereas initial boundary states may rather describe fundamental excitations, and one expects a

large number of these to describe smooth geometry.

17



Amplitudes encode the dynamics of the system

*embedding maps: 2 Hy — Hy
S S B B
! o ~ N
eorder boundaries into coarser and finer '_¢ | —> —
L 2l L
-
y . | Ay i Hy — C ]
*(transition) amplitudes encode dynamics: b T ! !
. A
[transition amplitudes if there are two boundary components] I ” I_ :
|
— = N |

*(transition) amplitudes for instance defined by path integral
(blue edges represent sum over variables)

*in fact we have a family of (transition) amplitudes labelled by boundaries b

*Cylindrical consistency conditions relate amplitudes for different boundaries b and b’.
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Cylindrically consistent amplitudes

Ap(hy) = Ay (Lo (Us))

Computing the amplitude for a coarse state should give the same result, as
eembedding coarse state to a finer state
eusing the amplitude map for finer states.

Thus, computation for coarse states give already continuum results.
Cylindrically consistent amplitudes define the continuum limit of the theory.

[BD 12, BD, Steinhaus 13]
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What are good choices for the embedding maps
(for the basis of boundary states)?
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Motivation: transfer operator technique

A

A

A

A

Transition amplitude between

two states (11| Al|s)

insert id = ZONB 1) (1]

Truncate by restricting ) onp
to the eigenvectors of 1" with the
x largest (in mod) eigenvalues.

Here coarse states correspond to low energy states.

Results (typically) in non-local embedding maps
(example: Fourier transform for free theories).
Explicit diagonalization difficult for large systems.
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Localized embedding maps

Truncate by restricting > np Localize truncations,
to the eigenvectors of 1" with the diagonalize only subparts
x largest (in mod) eigenvalues. of transfer operator
blocking
iteration procedure —>
H_
’_I_‘ | |+ Determined by (generalized
' H— EV-decon : it |
A Al > J AL —> i Y A ecomposition.
T | T
embedding

embedding map after 3 iterations
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Relation to vacuum

Here coarse states correspond to low energy states / states with few excitations from vacuum.

Embedding maps depend on the dynamics of the system.

However in General Relativity:

What is vacuum!?

Hamiltonian is a constraint and hence zero (and we do not Wick rotate).
Transfer matrix should be a projector if diffeomorphism symmetry is realized
(with eigenvalues one and zero).

NB: In 4D diffeomorphism symmetry is broken, eigenvalues take other values too.

So we can hope that even for GR, unphysical states (eigenvalue zero) are truncated away.

There is however a further mechanism that differentiates states even in GR: radial evolution.

[BD, Steinhaus |3: Time evolution as refining, coarse graining and entangling]
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Radial time evolution and coarse states

Consider a “radial time evolution” from a *smaller” to a “larger” Hilbert space.

(We can easily construct such evolutions for systems based on simplicial discretizations, such as
spin foams).

This time evolution itself defines an embedding map:
The image of the time evolution defines coarser states in the larger Hilbert space.

Conjecture: This definition leads to states describing coarse grained excitations.
(Radial) time evolution can be used to define useful embedding maps.

[BD, Steinhaus |3]

[also BD,Hoehn 11,13, Hoehn 14, BD, Hoehn, Jacobson wip]

NB: Again this definition would lead in general to non-local embedding maps.
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Tensor network renormalization methods

... rather using local embedding maps (to keep algorithms efficient)
but different versions are possible.

44 AL Contract initial amplitudes (sum over bulk variables).
Obtain “effective amplitude” with more boundary
v v variables.

bare/initial amplitude
depending on four variables

Find an approximation (embedding map) that would

T yu R | yul minimize the error as compared to full summation
(dotted lines). For instance using singular value
v yul vl yul decomposition, keeping only the largest ones.
1 EEEREEE , , Leads to field redefinition, and ordering of fields into

more and less relevant.

Use embedding maps to define coarse grained

A A
[
{ } — HA} amplitude with the same (as initial) number of
A A

| boundary variables.
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Tensor network renormalization methods

~|: H } Iteration. Summation over bulk variables are truncated
using the embedding maps.
I I
1 1

Associated embedding maps for boundary Hilbert

|
|
|
|
1
1
1
|
|
B space.
|
|
1
1
1
|
|
|
|
|
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Fixed points give cylindrical consistent amplitudes
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Fixed points corresponding to topological field
theories or interacting field theories

*method works particularly well for convergence to a “gapped phase”
(lead to topological field theories)
*finitely many ground states separated from excited states: determine bond dimension

(number of non-vanishing singular values)

ephase transition: usually involve ‘infinite bond dimension’
eexpect to find interacting theories / propagating degrees of freedom

etruncation can be nevertheless quite good, and provides a method to determine phase transition

(and sometimes even to calculate critical exponents)

* However argument about radial time evolution suggest that better truncations (near phase

transitions) might be possible if non-local embedding maps are incorporated.

* Might even not need infinite bond dimension.
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Applications: (analogue) spin foam models

*4D spin foam models are very very complicated

edevised analogue models capturing the essential dynamical ingredients of spin foams
[similar to 4D lattice gauge and 2D spin system duality]

*these spin nets can actually be interpreted as spin foams based on very special
discretizations

eunlike spin foams the spin net models are non-trivial in 2D

einvestigated the phase diagrams for such models (with quantum group structure)

sthese phase diagrams have a very rich structure

(The details of this and the adaption of the tensor network methods

take easily up another talk.)
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Applications: (analogue) spin foam models

Lattice gauge theory/ Spin nets
Ising like systems

coupling
A
confining phase ‘no space’ phase
e 44””,,///—_
deconfining phase topological phase
(topological phase) (gives 3D gravity!)
>

Much richer phase structure!

[ BD, Martin-Benito, Schnetter 2013, BD, Martin-Benito,
Steinhaus 201 3]

green

blue
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Towards spin foam coarse graining

*So far encouraging results for ‘spin foam analogue’ models.

Conclusions:

*Relevant parameters related to (SU(2)) intertwiners (also appearing in spin/anyon chains)

leading to rich phase space structure.This is expected from the gravity dynamics.

*Need to implement a weak version of discretization independence to uncover these rich phase

spaces (escape the two lattice gauge theory phases).

*Positive indication for finding a geometric phase in spin foams.

*Are now looking at spin foam analogue and actual spin foam models in higher dimensions.

*Need to extend tensor network tools (applicable to lattice gauge theories) to this end. [wip]
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Each phase corresponds to a toplogical field theory.

v

Defines embedding maps and associated vacua.

v

New representations (Hilbert spaces) for

Loop quantum gravity.
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Loop quantum gravity

esucceeded in constructing a quantum representation of geometric operators

[Ashtekar, Lewandowski, Isham, Rovelli, Smolin, Corichi, ... 90’s]

espatial geometric operators (area, volume operators) have discrete eigenvalues
*spin networks based on (finite) graphs give a basis in the (non-separable) LQG Hilbert space
edespite this (discrete) basis the theory is defined in the continuum: via embedding maps

edynamics based on Hamiltonian constraints [Thiemann '96]

So far the theory is based on the
Ashtekar-Lewandowski representation
based on a (AL) vacuum describing

* zero volume spatial geometry

* maximal uncertainty in conjugated variable.
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What is vacuum?

* Ashtekar-Lewandowski representation /vacuum corresponds to confining phase for lattice
gauge theories (i.e. embedding maps coincide).

Question: Can we base the representation on a different vacuum

corresponding to one of the other phases!?
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Loop quantum gravity vacua

geometric variables:

connection

Ashtekar - Lewandowski representation

(90’s)
Upac(A) =1 E=0

peaked on degenerate (spatial) geometry
maximal uncertainty in connection

excitations:
spin network states supported on graphs

(representation)
labels for edges

{A7E\}:5

flux: spatial geometry [BD, Geiller 2014,

BD, Geiller to appear]

BF (topological) theory representation

wvac (EGauss ) =1

peaked on flat connections
maximal uncertainty in spatial geometry

, F(A)=0

excitations:
flux states supported on (d-1) D-surfaces

group) labels
for faces
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We applied this to BF (topological field
theory), corresponding to unconfined
phase. [BD, Geiller 14]

But construction can be generalized to other
topological field theories:
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Excitations and vacuum

(discretized)

topological field

theory /

determine observables stable
under refining time evolution
(non-trivial step)

excitations q

‘inductive limit’
construction

vacuum
state

(dynamics)

continuum
Hilbert space

for excitations
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[BD, Geiller 2014,

Advantages BD, Geiller to appear]

*This new construction allows to expand loop quantum gravity around different vacua

corresponding to the different phases (fixed points) for spin foams.

* Ashtekar-Lewandowski representation: peaked on completely degenerate spatial geometry,
maximal fluctuation in conjugated variable: difficult to built up states corresponding to smooth

geometry

*New representation [BD, Geiller 2014] : peaked on flat connection, maximal fluctuation in spatial
geometry. Corresponds to the physical state in (2+1)D gravity and in general to condensate states
with respect to Ashtekar-Lewandowski representation.

*Facilitates construction of states corresponding to smooth geometries and should be useful for

discussions of i.e. black hole entropy in loop quantum gravity [Sahimann 201 1].

*New representation much easier to interpret geometrically: new handle on the dynamics of the

theory. [need substitute of Thiemanns (1996) quantization of Hamiltonian constraints]
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Phase transitions?

*This new construction allows to expand loop quantum gravity around different vacua

corresponding to the different phases (fixed points) for spin foams.

*What about phase transitions (‘non-trivial’ fixed points)?

*|nstead of topological theory expect conformal theory / propagating degrees of freedom.

*Expect such fixed point amplitudes to be non-local —— non-local embedding maps

(also given by time evolution?)

*Do we regain triangulation independence / diffeomorphism symmetry there!
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Summary

Coarse graining is about refining boundary states.

Tensor network methods construct embeddings of coarse states,
representing “low energy/coarse degrees of freedom”,

into continuum Hilbert space.
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Summary and Outlook:

Quantum Space Time Engineering

*We are on a good way to understand the ‘many body physics’ of spin foams and loop quantum
gravity.

*Corresponds to the ‘continuum limit’ of these models.

*In the path integral approach (spin foams): mapping out the phase diagrams
econnections to condensed matter physics / (new?) topological field theories and phases
echallenge: going to higher dimensions

echallenge: understanding symmetries of phase transition fixed points

*In the canonical approach (loop quantum gravity): expanding around different vacua
ofacilitates investigation/construction of physical states describing extended/smooth geometries

eeach vacuum comes with its own set of excitations: investigate dynamics of these.
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Thank you!



