Global Completeness of Quantum Gravity

Benjamin Knorr

Jena University

in collaboration with N. Christiansen, J.M. Pawlowski & A. Rodigast (Heidelberg University)

arxiv:1403.1232

May 19, 2014

Outline	Introduction	Our setup	Results	Summary
		00		

Quantum Gravity and Asymptotic Safety Earlier results

Our setup

Present truncation Anomalous dimensions, gravitational coupling and cosmological constant Constant parts of vertices

Results

Summary

"Ah, gravity - thou art a heartless bitch."

- well-known: GR is perturbatively non-renormalizable
- how do we know?

$$S_{EH} = rac{1}{16\pi G_N} \int \sqrt{-\det g} (R - 2\Lambda)$$

 $\Rightarrow [G_N] = -2$

- what now?
- \longrightarrow non-perturbative techniques

Outline	Introduction	Our setup	Results	Summary
	○● ○○○	0000 0000 00		
		FRG		

• use effective average action and the Wetterich equation

$$\dot{\Gamma}_{k} = rac{1}{2} \mathsf{STr} rac{\dot{R}_{k}}{\Gamma_{k}^{(2)} + R_{k}}$$

 look for UV fixed point which renders theory finite, check stability by improving truncation

	+			

Our setup 0000 0000 Resul

Summary

Earlier results

- UVFP indeed exists in Einstein-Hilbert truncation
- several authors confirmed this result within larger truncations, e.g.
 - higher powers of R
 - f(R) gravity
 - coupling to matter (fermions, scalars, gauge fields, dilaton)
 - arbitrary dimensions
 - ...

Introduction 00 000 Our setup 0000 0000 Result

Summary

Earlier results

[N.C., D. F. Litim, J.M.P., A.R. '12]

Outline	Introduction	Our setup 0000	Results	Summary
		00		

We are not done yet!

- some points of worry:
 - up to now: no higher order derivatives, i.e. momentum dependence \rightarrow crucial in the UV!
 - in standard approach: split metric g in background \overline{g} and fluctuation h, then evaluate flow equation \rightarrow unphysical background dependence

$$\frac{\delta^2 \Gamma_k[\overline{g},h]}{\delta h^2}\Big|_{h=0} \neq \frac{\delta^2 \Gamma_k[\overline{g},0]}{\delta \overline{g}^2}$$

(no split symmetry due to Nielsen identity)

- n-graviton vertices
- IR completeness (aka: do we exist?)

Introduction 00 000

Result

Summary

Key features of our setup

• vertex expansion of the effective action:

$$\Gamma_{k}[\overline{g},\phi] = \sum \frac{1}{n!} \Gamma_{k}^{(n)}[\overline{g},0]\phi^{n}$$

- classical tensor structures (i.e. from EH action with gauge fixing and ghosts)
- rescalings of the fields as

$$h o \sqrt{G_k Z_{h,k}} h, \ (c,\overline{c}) o \sqrt{Z_{c,k}} (c,\overline{c})$$

reason: canonical kinetic term, correct RG scaling properties of vertices

ntroduction 00 000 Our setup

Result

Summary

Key features of our setup

• form of vertex functions:

$$\Gamma_k^{(\phi_1\dots\phi_n)} = \left(\prod_{i=1}^n \sqrt{Z_{\phi_i,k}}\right) G_{n,k}^{\frac{n}{2}-1} T_k^{(n)}(\Lambda_{n,k})$$

in particular, two-point function:

$$\Gamma^{(2h)}_{\mu
u
ho\sigma} = Z_{h,k}(p^2 - 2\Lambda_{2,k})\mathcal{T}_{\mu
u
ho\sigma}$$

 $ightarrow M_k^2 \equiv -2\Lambda_{2,k}$ is effective graviton mass parameter

momentum-dependent wave function renormalizations:

$$Z_{\phi,k} o Z_{\phi,k}(p^2)$$

Introduction 00 000 Our setup

Results

Summary

Key features of our setup

• to avoid background dependence of standard flow: use flow equation for two-point function \rightarrow schematically,

$$\dot{\Gamma}^{(2h)} = -\frac{1}{2}\Gamma^{(4h)}G_h\dot{R}_hG_h + \Gamma^{(3h)}G_h\Gamma^{(3h)}G_h\dot{R}_hG_h$$
$$-2\Gamma^{(h\overline{c}c)}G_c\Gamma^{(h\overline{c}c)}G_c\dot{R}_cG_c$$

- identify cosmological constant $\Lambda\equiv\Lambda_{1,k}$ from one-point function
- close the system with running of gravitational coupling from geometric approach: $\forall n, G_{n,k} \equiv G_{geo,k}$

Key features of our setup - Summary

- parameters of our theory:
 - gravitational coupling $g = G_N k^2$
 - effective graviton mass $\mu = M^2/k^2 \parallel {\sf NEW}$
 - momentum-dependent anomalous dimensions $\eta_{\phi}(p^2) = -\frac{\dot{Z}_{\phi}(p^2)}{Z_{\phi}(p^2)}$ for *h* and $c/\overline{c} \parallel \text{NEW}$
 - cosmological constant $\lambda = \Lambda/k^2$
 - higher order vertex constant parts $\lambda_n = \Lambda_n/k^2$ (need ansatz for these) || NEW
- using flow of $\Gamma^{(2h)} = Z_h(p^2)(p^2 + \mu)$, $\Gamma^{(\overline{c}c)} = Z_c(p^2)p^2$, can employ flat metric as expansion point

Results

Summary

Anomalous dimensions

• general structure of flow equations of two-point functions:

$$egin{aligned} &-\eta_h(p^2)(p^2+\mu)+\dot{\mu}+2\mu=rac{\dot{\Gamma}^{(2h)}(p^2)}{Z_h(p^2)}\ &-\eta_c(p^2)=rac{\dot{\Gamma}^{(ar{c}c)}(p^2)}{Z_c(p^2)p^2} \end{aligned}$$

• RHS only depend on η_{ϕ} , not on Z_{ϕ}

Result

Summary

Anomalous dimensions

• resulting flow equation for mass parameter:

$$\dot{\mu} = -2\mu + \frac{\dot{\Gamma}^{(2h)}(-\mu)}{Z_h(-\mu)}$$

• coupled set of integral equations for anomalous dimensions:

$$\eta_h(p^2) = -\frac{\frac{\dot{\Gamma}^{(2h)}(p^2)}{Z_h(p^2)} - \frac{\dot{\Gamma}^{(2h)}(-\mu)}{Z_h(-\mu)}}{p^2 + \mu} [\eta_h, \eta_c]$$
$$\eta_c(p^2) = -\frac{\dot{\Gamma}^{(\bar{c}c)}(p^2)}{Z_c(p^2)p^2} [\eta_h, \eta_c]$$

Introduction 00 000 Our setup

Result

Summary

Geometric flow equations

- geometric approach allows for diff-invariant flow equations for gravitational coupling directly from the effective action, without unphysical background dependence
- distinguishes background and dynamical coupling
- dynamical coupling enters other flow equations
- physical observables (S-matrix) are constructed from background coupling
- incorporation: solve system with dynamical coupling, calculate flow of background coupling on the solution
- details: [Donkin, J.M.P. '12]

Introduction 00 000 Our setup

Results

Summary

Cosmological constant

- running cosmological constant from one-point function $\Gamma^{(h)}$
- Γ^(h) does not enter RHS of any flow equation → flow completely decouples
 → calculate flow of cosmological constant on the solution of

other flow equations

Our setup

Results

Summary

λ_n - a divergence analysis

$$\Gamma^{(nh)} \sim Z_h^{n/2}(p^2)g^{n/2-1}(p^2-2\lambda_n)$$

- crucial point: behaviour of λ_n near $\mu=-1$
- EH truncation is no consistent truncation near this point
- ansatz: $\lambda_{\it n} \propto (1+\mu)^{lpha_{\it n}}$
- compare/match degree of divergence on both sides of flow equations for λ_n

Outline Introduction Our setup Results

$$\lambda_n$$
 - a divergence analysis

0.

• find recursion relation with undetermined α_3 and α_4 :

$$\alpha_{2n} = (n-1)\alpha_4 - (n-2)$$

$$\alpha_{2n+1} = \alpha_3 + (n-1)\alpha_4 - (n-1)$$

$$\alpha_4 \le 2\alpha_3 - 1$$

- in particular, $\alpha_n < 0$
- results here: restrict to equality and $lpha_3 \sim -0.1$

Introducti 00 000 Our setu 0000 0000 Results

Summary

Phase diagram

Our setu 0000 0000 Results

Summary

Anomalous dimensions at UVFP

B. Knorr (Uni Jena)

AS Seminar: Global Completeness of QG

Introduction 000 000 Our setur

Results

Summary

Running of couplings

 $g,\overline{g}\propto k^2,\,\lambda\propto k^{-2}\Rightarrow {\cal G}_N,\Lambda$ are constants!

Outline	Introduction	Our setup	
		0000 0000 00	

• globally complete phase diagram

- UVFP, physical couplings have real critical exponents
- EH truncation is inconsistent near divergent line \rightarrow consistent scaling of vertices necessary for IRFP
- classical scaling at IRFP
- fully momentum-dependent anomalous dimensions