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I will be explaining about . . .

• . . . primordial inflation and the observational success of the Starobinsky
model

• . . . embedding Starobinsky inflation within the scenario of Asymptotic
Safety for quantum gravity

• . . . asymptotic freedom as a key ingredient for an observationally viable
Starobinsky inflation in this context
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Inflation and the origin of structure

• Inflation is a very rapid expansion of the Universe in the very early universe. A

source producing antigravity effects is needed: A scalar field φ .

I Field φ slowly rolls down the potential:(
1

a(t)
da(t)

dt

)2
≡ H(t)2 ' U(φ)

m2
p
�
(

dφ
dt

)2

I Spacetime is assumed to be
homogeneous and isotropic:

ds2 = −dt2 + a(t)2dx2

I Universe expands in accelerating

manner: d2

dt2 a(t) > 0

• Inflation provides with an explanation of the initial conditions for the large scale
structure we observe today, using fundamental physics

• As of now, there does not exist a fully convincing inflationary model
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Primordial quantum fluctuations

• Quantum fluctuations during inflation acted as the seed for the large scale fluctuations we
observe today (i.e galaxies, clusters of galaxies, e.t.c)

φ + δφ ←→ gµν + δgµν

δ̈φ(t) + 3H(t) ˙δφ(t) + c2
S

k2

a(t)2 δφ(t) = 0 ḧTT
ij (t) + 3H(t)ḣTT

ij (t) + c2
T

k2

a(t)2 hTT
ij (t) = 0

• The amplitudes and spectral indices of the power of scalar (Pscalar ) and tensor (Ptensor )
fluctuations respectivel are observables on the sky (Planck satellite, BICEP2, . . . )

PS |k=aH ∼
1

ε
G × U(φ) PT |k=aH ∼ G × U(φ) [ε ≡ −

1

H2

dH

dt
]

• The space dependence of the power spectra is described through the corresponding spectral
indices

nS − 1 ≡
dPS

dlnk

∣∣∣∣
k=aH

nT ≡
dPT

dlnk

∣∣∣∣
k=aH

5 / 23



Inflation and asymptotic safety

• The value and running of the gravitational couplings under the RG is important for the
predictions and viability of inflationary models:

→ How much inflation?

→ How strong/weak the primordial, quantum fluctuations are?

→ Does the correct IR limit exist?

• Cosmological predictions of asymptotic safety are in principle falsifiable through the
calculated values for the corresponding fixed point(s)/eigenvalue(s)

→ Scalar field inflation has been shown to be viable for particular choices of the scalar
potential 1

→ Inflation not viable in the fixed point regime for specific (higher order) truncations due to

the small amount of e–foldings 2

→ Within the Einstein–Hilbert truncation, accelerating solutions with sufficient number of
e-foldings shown to exist in the UV, but3,

(G × Λ)fixed point ∼ O(10−3)� 10−10  Amplitude of tensor waves too large!

1
A. Contillo, M. Hindmarsh, C. Rahmede (2012) & M.Hindmarsh, D. Litim, C. Rahmede (2011)

2
M. Reuter & F. Saueressig (2005), arXiv: 0507167 [hep-th] | S. Weinberg (2010), arXiv:0911.3165 [hep-th]

3
M. Hindmarsh & I.D.S (2013), arXiv:1203.3957 [gr-qc], Y. Cai & D. Easson (2011), arXiv:1107.5815

see also: A. Bonanno, A. Contillo, R. Percacci (2011) arXiv:1006.0192
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Why Starobinsky inflation?

S =

∫
d4x
√
−g
(

1

16πG
R +

1

b
R2

)
• Excellent agreement with the CMB data according to the Planck satellite results!

• Recently revisited also by many authors in a a supergravity context 4

4
S. Ferrara, R. Kallosh, A. Van Proeyen (2013), J. Ellis, D. V. Nanopoulos, and K. A. Olive (2013), J. Alexandre N. Houston, N.

Mavromatos (2013)
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The mechanism behind Starobinsky inflation

∫ √
−g

(
1

16πG
R +

1

b
R2

)
g̃αβ = gαβe

√
2/3

φ
mp

←−−−−−−−−−−−−→
∫ √

−g̃

(
R

16πG
+

1

2
(∂φ)2 + U(φ)

)

U(φ)

m4
p

∼ b ×
(

1− e
−
√

2/3 φ
mp

)2

• Domination of the R2 term inflates the universe

• The coupling b is our order parameter: Control on the magnitude of the
primordial fluctuations produced during inflation

• Significance of quantum corrections for the dynamics of the model? 5

5Notice that, the study of quantum corrections in this work is performed in the Jordan frame.
8 / 23



The rise and fall (?) of Starobinsky inflation

The Planck satellite 6 (left) and BICEP2 7 (right) experiments put strong bounds on
inflationary models

The BICEP2 results disfavour the Starobinsky model, but they still have to be
confirmed with the upcoming Planck satellite CMB polarisation results

6P. Ade et al. (Planck Collaboration), (2013), arXiv:1303.5082 [astro-ph.CO].
7The BICEP2 Collaboration, (2014), arXiv: 1403.3985 [astro-ph]
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The key points and questions so far

• The Starobinsky model is the most favoured one according to the Planck satellite
results

• Can we embed the Starobinsky inflationary model within Asymptotic Safety?

• What is the fixed point structure and the associated RG dynamics for the
Starobinsky action?

• Can we explain the initial conditions for the two couplings of the Starobinsky
action needed for a viable inflation in this context?
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Calculating quantum corrections
• An Exact Renormalisation Group Equation (ERGE) for the scale dependent effective action Γk

8

∂
∂ ln k

Γk = 1
2
Trace

[(
Γ

(2)
k

+ Rk

)−1

· k∂k Rk

]

δΓ
(2)
k

:=
∫
δφ · Γ

(2)
k
· δφ

Rk := k-dependent regulator suppressing momenta with p2 < k2

• An effective action ansatz,

Γk =

∫
d4x
√

g
∑

i

ci (k) · Oi [gαβ , ∂gαβ , ∂
2gαβ , . . .]

• Solution: A family of effective actions Γk smoothly connected from UV (k →∞) to IR (k → 0)

d

d ln k
ci (k) = βi (c1, c2, . . . , cj )

Existence of an attractive, non–trivial UV fixed point under the RG,
ensures that the couplings do not diverge as k → ∞: Theory is
“Asymptotically Safe” (S. Weinberg, 1979)

8
C. Wetterich Phys. Lett. B 301, 90 (1993) | M. Bonini, M. D Attanasio and G. Marchesini, Nucl. Phys. B 409 (1993) 441

T. R. Morris, Int. J. Mod. Phys. A 9 (1994) 2411.
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The RG flow of the Starobinsky action
• The starting point is the exact RG equation for the effective action:

∂

∂ ln k
Γk [gµν ] =

1

2
Tr

[(
Γ

(2)
k

+ Rk

)−1
k∂k Rk

]

Γk =

∫
S4

d4x
√

g

(
−

1

16πGk

R +
1

bk

R2
)
≡
∫

S4
d4x
√

g f (R, k)

• The exact RG equation is evaluated under the following assumptions:

◦ Background space-time: a Euclidean sphere S4

◦ A choice of gauge: Landau type gauge

◦ A choice for the form of the regulator Rk : Opitimised (Litim’s) cut–off 9

• Evaluation of the trace on the r.h.s of the exact RG equation yields the flow equation 10

384π2
(
∂µ f̃ + 4f̃ − 2R̃ f̃

R̃

)
=

dΓk

dµ

[
f̃ , f̃

R̃
, f̃

R̃R
, ∂µG̃k , ∂µbk

]
︸ ︷︷ ︸

non–trivial function of couplings and their RG derivatives

∂µ ≡ ∂
∂ ln k

f̃ ≡ f
k4 , R̃ ≡ R

k4 , G̃ ≡ k2G

• The beta functions are extracted by comparing the two sides of the flow equation

d

d ln k
G̃(k) = β

G̃
(G̃ , b),

d

d ln k
b(k) = βb(G̃ , b)

9
D. Litim (2000) arXiv: 0005245 [hep–th]

10
for an explicit calculation see P.F. Machado & F. Saueressig arXiv:0712.0445 [hep-th] | A. Codello, R. Percacci & C. Rahmede

(2008) arXiv:0805.2909 [hep-th] 12 / 23



The (not so inspiring) form of the beta functions

The explicit form of the beta functions is quite complex . . .

d
d ln k

G̃ = β
G̃

(G̃ , b) ≡ A0(1−B2)+A2B0
1−A1−B2+A1B2−A2B1

d
d ln k

b = β
G̃

(G̃ , b) ≡ B0(1−A1)+A0B1
1−A1−B2+A1B2−A2B1

A0 ≡
G̃
(

b3(144π−301G̃)+3456πb2(17G̃−8π)G̃+9216π2b(144π−323G̃)G̃2+17694720π3G̃4
)

72πb(b−96πG̃)2

A1 ≡
4G̃
(

b3−225πb2G̃+15840π2bG̃2−276480π3G̃3
)

9πb(b−96πG̃)2

A2 ≡
16G̃3

(
b2−200πbG̃+7680π2G̃2

)
b2(b−96πG̃)2

B0 ≡ − 491b5−157088πb4G̃+18275328π2b3G̃2−916586496π3b2G̃3+17694720000π4bG̃4−135895449600π5G̃5

2880π2(b−96πG̃)3

B1 ≡ −−89b5+31818πb4G̃−4328064π2b3G̃2+276203520π3b2G̃3−8493465600π4bG̃4+101921587200π5G̃5

4320π2G̃(b−96πG̃)3

B2 ≡
G̃
(

731b4−222912πb3G̃+24247296π2b2G̃2−1150156800π3bG̃3+16986931200π4G̃4
)

720πb(b−96πG̃)3
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The fixed point structure of the Starobinsky action

The theory can be asymptotically safe/free only if the appropriate fixed point(s) of the corresponding RG flow exists

• On a fixed point, the beta functions equal to zero

β
G̃

(G̃ , b) = 0, βb(G̃ , b) = 0

• For the Starobinsky action, we find a Gaussian (“free”) and two non–trivial UV fixed points

Fixed Points Associated eigenvalues

Gaussian fixed point (G̃ , b) = (0, 0) (λ
G̃
, λb) = (2, 0)

Asympt. Safe UV fixed point (G̃ , b)1 = (2.451, 914.57) (λ
G̃
, λb)1 = (−39.79,−2.71)

Asympt. Safe/Free UV fixed point (!) (G̃ , b)2 = (24π/17, 0) (λ
G̃
, λb)2 = (−102/41,−2)

• The Gaussian, (“free”) fixed point: the regime where perturbation theory is usually applied (“small
coupling” regime). The associated eigenvalues correspond to the canonical mass dimension of the coupling,
implying that quantum corrections are turned off.

• The two UV fixed points: non–trivial, UV-attractive fixed points of the RG flow, ensuring the absence of
divergences as the infinite cut–off limit is taken (k →∞).

• The asymptotically safe and free fixed point will be crucial for the realisation of Starobinsky inflation. The
large eigenvalue (= −2) for the coupling b declares that the fixed point is of a non–perturbative nature.
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1–loop beta functions and analytic solutions

• The asymptotically safe/free fixed point provides us with a small parameter at high energies (the coupling
b). We can expand the RG flow in the Planck regime,

At k ∼ mp : b � 1, G̃ ≡ k2G . 1

• The beta functions acquire an 1–loop form which captures all the essential features of the RG flow needed
to study inflation,

d
d ln k

G̃ ' 2G̃− 41
36π

G̃ 2 +O(G̃ 3, b) G̃(k) ' G̃0

1+
41G̃0
72π

(
k

k0

)2

(
k

k0

)2

d
d ln k

b ' − 41
36π

G̃b +O(G̃ 2, b2) b(k) ' b0

1+
41G̃0
72π

(
k

k0

)2

◦ k0 := an arbitrary reference scale

◦ G̃0, b0 := integration contstants to be fixed through appropriate renormalisation conditions

◦ The high/low energy limits:

As k/k0 →∞ , b → 0, and G̃ → 72π/41 [i.e Asymptotically free and safe respectively]

As k/k0 � 1 , b → b0 = const., and G̃ ' G̃0(k/k0)2 or G ' G̃0/k2
0 = const. [Classical regime]

RG evolution from the UV to IR: The numerical solution

for G̃(k) and b(k)× 108 is in very good agreement

with the analytic 1–loop one

-4 -2 0 2 4

0

1

2

3

4

ln
k
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Setting the renormalisation conditions

• We can conveniently choose in the 1–loop solutions, for the reference scale k0 = mp :

G̃(k) ' G̃0

1+
41G̃0
72π

(
k

mp

)2

(
k

mp

)2
b(k) ' b0

1+
41G̃0
72π

(
k

mp

)2 ,
b0 � 1 (so-
lutions are
derived around
b = 0)

• Determining the value of the initial conditions G̃0, b0 requires matching with observations, i.e
setting appropriate renormalisation conditions at the scale k where the corresponding
measurement of the coupling is performed

• Each of the two couplings has to be matched with the observations at different scales:

◦ Newton’s coupling G is measured at earth/solar scales

At scales k ∼ ksolar � k0 = mp : G = G̃(k)k−2 = 1/m2
p → G̃0 ' 1 .

◦ The R2 coupling b(k) is responsible for setting the scale of inflation: b0 will be

determined from CMB observations

At scales k ∼ kinflation � k0 = mp : b = bCMB ' b0
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A coarse grained view of the cosmological evolution

• The scale dependent, Lorentzian Starobinsky action,

S =

∫
d4x
√
−g

(
1

16πG(k)
R +

1

b(k)
R2
)

• The RG–improved action defines a family of actions dependent on the cut–off k

What is the value of the cut–off scale during inflation? 11

Think of the universe’s horizon as defining the typical scale
of correlations between different degrees of freedom

k2 ∼ H2 ∼ R

 Integrating out degrees of freedom proceeds along
with the expansion of the universe

• We expect inflation to occur at scales well below the Planck mass, k2/m2
p ∼ R/m2

p � 1

k2G(k) ≡ G̃(k) '
1

1 + 41G̃0/72π
(

k/mp
)2

(
k/mp

)2

︸ ︷︷ ︸
⇒ G ' 1/m2

p

, b(k) '
b0

1 +
41G̃0
72π

(
k/mp

)2︸ ︷︷ ︸
⇒ b ' b0 = const.

 The RG-improved Starobinsky action then takes the standard form

S '
∫

d4x
√
−g

[
m2

p

16π
R +

1

b0

R2 +O

(
1

b0

R3

m2
p

)]
11

A. Bonanno, A. Contillo, R. Percacci (2011) arXiv:1006.0192 | V. Frolov, J. Guo (2011), arXiv:1101.4995 |
A. Bonanno (2012), arXiv:1203.1962 [hep-th] | M.Hindmarsh & IDS (2012), arXiv: 203.3957
M. Reuter & F. Saueressig (2005), arXiv: 0507167 | Y. Cai & D. Easson (2011), arXiv:1107.5815
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Slow-roll inflationary dynamics

S '
∫

d4x
√
−g

(
m2

p

16π
R +

1

b0

R2

)
≡
∫

d4x
√
−gf (R), ds2 = −dt2 + a(t)2dx2

• The Friedmann equation for a generic f (R) model takes the form

fR

H2
(1− ε) + 6fRR

(
4ε +

ε̇

H
− 2ε2

)
−

1

6

f

H4
= 0, [.≡ d/dt, fR ≡ df (R)/dR, ε ≡ −Ḣ/H2]

◦ We are interested in slow–roll, (quasi-) de Sitter solutions of the background dynamics,

ε̇, ε
2 � ε� 1

◦ In the slow–roll regime, the Hubble parameter evolves as

H(t) ' H0 −
1

576π
b0m2

p (t − t0)
(
 ε '

1

36

m2
p/16π

1/b0

1

H(t)2

)
• The amount of inflation is quantified by the number of e-foldings N

N ≡ −
∫ Hend

H

d log H

ε
'

288π

b0m2
p

(H2 − H2
end) '

1

2ε

(
H2 � Hend

)
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Generation of linear primordial fluctuations

• The small fluctuations of the metric field during inflation are expected to produce the observed temperature
anisotropies in the CMB sky 12

During slow-roll:  fR ' 24/b0H2
, ε ' 1/2N

Theory Planck data at the pivot scale 0.002Mpc−1

Pscalar ' 1
48π2

H2

fR

1
ε2 '

N2

288π2 b0 ln(1010Pscalar ) = 3.089+0.024
−0.027

Ptensor ' 1
π2

H2

fR
' 1

24π2 b0 —

r ≡ Ptensor
Pscalar

' 48ε2 ' 12
N2 r0.002 < 0.12 ( ε < 0.009)

nscalar − 1 ' −4ε, ntensor ' 0 nscalar = (0.9603± 0.0073)

• The data place a bound on the Hubble parameter H during inflation which in turn places a bound on the
cut–off scale k

H

mp
∼

k

mp
. O(1)× 10−5

• For N = 55 e-foldings and the Planck bound for PS , we extract the renormalisation condition for the
coupling b,

b0 ' b
(

k ∼ 10−5
)
' O(1)× 10−9

• The approximate constancy of the coupling b for scales well below the Planck mass (k/mp � 1), is crucial
for the approximate constancy of the spectral index

1–loop beta function for b  

∣∣∣∣k db

dk

∣∣∣∣ ' 10−9G̃ � 1

12
see for example: V.F. Mukhanov, H.A. Feldman, R.H. Brandenberger (1992)
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Putting all pieces together

• The scale of inflation in the Starobinsky model is set by the R2 coupling b: The coupling has to be tuned
to be small for small primordial fluctuations to remain small.

• The asymptotic freedom of the R2 coupling in the UV provides us with a natural way of realising
Starobinsky inflation:
 The coupling can be made naturally small for a wide range of energy scales. What is more, its constancy
for energies below mp ensures negligible running of the spectral indices

• Newton’s coupling is asymptotically safe in the UV, and its running correctly recovers GR in the IR

• The bound on the R2 coupling at solar scales based only on classical considerations is very weak:

b > 10−115.
 The renormalisation condition of the R2 coupling for a viable inflation, combined with the coupling’s
constancy in the IR, provides with a much stronger bound on the coupling b at classical scales

bIR ∼ 10−9

• As long as in the UV the cou-
plings start close to b � 1 and
G̃ ' O(1), the coupling b remains
small, and the RG flow is stable and
attracted towards the IR. The CMB
observations specify the precise or-
der of the coupling b for a viable
inflation, which is consistent for a
wide range of scales along the RG
flow.

-4 -2 0 2 4

0

1

2

3

4

ln
k

mP
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What if the BICEP2 results are confirmed?

• It will be the first experimental confirmation of quantum gravity!

• Starobinsky inflation disfavoured, but a scale of inflation ∼ 10−2mp implies that the effect
higher order curvature operators should not be naively ignored

Γk =

∫
d4x
√

g

(
f (R, φ)R +

1

b(k)
R2 + . . . + CαβγδCαβγδ +

1

2
(∂φ)2 + U(φ)

)

Some of the challenges for Asymptotic Safety:

• Are there viable RG trajectories connecting the UV fixed point with the IR, yielding on the
same time observationally viable inflationary periods at the scale predicted by BICEP2, for
higher order truncations?

• How important are the quantum gravity corrections for inflationary observables for energies
close to the Planck scale?

• Can inflation be realised purely in the curvature sector beyond the Starobinsky truncation?
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Conclusions

• For the Starobinsky action, an attractive, UV fixed point exists under the RG, where

Newton’s coupling is asymptotically safe, and the R2 coupling asymptotically free.

• The asymptotic freedom of the R2 coupling, b(k →∞) = 0, ensures that the universe

enters into a de Sitter-like expansion at some sufficiently high cut–off scale, as the R2 term
comes to dominate the action (1/b(k)� 1)

• The fixed point further provides us with a mechanism of naturally producing small primordial
fluctuations, and inflation can occur for a wide range of cut–off scales: from the GUT scale
down to the electroweak scale. The CMB data provide us with the appropriate
renormalisation condition for the coupling b along the RG flow

• The RG evolution is stable and connects smoothly the UV with the IR regime
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Thank you!
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