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Introduction

¥ Investigate asymptotic safety considering the role of the cosmological 
constant. 

¥ Quantisation of GR: 

!
!
!

¥ Einstein-Hilbert approximation 

  - Two running couplings: 

  - Degrees of freedom: dynamical graviton + non-propagating   
  conformal fluctuations. 

  - Equations of motion:   

¥ Convexity of the effective action: 

  - Wrong sign for conformal modes from the naive Wick rotation. 

  - Convexity of EH not guaranteed for small curvature and   
  momentum. !2
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Introduction

¥ Wish to observe the nature of physical degrees of 
freedom at the level of the flow equation. 

¥ Ensure effective action remains convex. 

¥ Key observation: convexity is guaranteed for  

!

!

¥ Observable quantity : 

!

!

¥ What are the constraints on this number from 
asymptotic safety?
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Physical degrees of freedom
¥ Field decomposition : 

!

!

!

!

!

¥ Physical modes =  
!

¥ Gauge variant modes = 
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Physical degrees of freedom
¥ Landau gauge Ñ> ghost and unphysical degrees of 

freedom (dof) cancel. 

¥ Six physical (i.e. gauge invariant) degrees of freedom. 

¥ How many propagate? 

¥ Two polarisations of the graviton. 

¥ Additional negative dof from the Jacobian in the 
functional measure: 

!

!

!

¥ Acting on scalars and transverse vectors.
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Physical degrees of freedom
¥ Number of propagating comes from 

physical dof minus Jacobians : 
!

!

¥ Hessians (d=4):
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Conformal modes
¥ Mottola and Mazur Õ90, Wick rotation of conformal modes 

implied by de WittÕs supermetric : 

!

!

!

¥ On shell  cancellations,  i.e. for              , occur between 
conformal fluctuations and the Jacobian: 

!

!

¥ This leaves the constant mode: 
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Flow equation
¥ Terms arise from the EH action and from the functional 

measure: 

!

!

!
¥ Regroup as physical degrees of freedom: 

 - Two polarisations of the graviton 

 - Topological conformal mode  

!
!

!
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Convexity
¥ For the regulated theory the convexity condition is given by: 

!
!

¥ Here we take a regulator of the form: 

!
!
!

¥ Poles in the propagator imply that we violate convexity. 

¥ These can arise in curvature expansions for which at 
vanishing curvature we have:
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Convexity

¥ Convexity is ensured if we take 
¥ Now consider a regulator which depends on the 

full Hessian (Type III) 
!

!

with 
!

!

¥ Positivity of the argument of the regulator then 
requires
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Summary
¥ We have made two observation relating to the 

on shell condition for the curvature: 
!

1. Cancellations between conformal fluctuations 
and the functional measure occur on shell 

2. For curvature greater than the on shell value 
convexity is guaranteed. 
!

!

¥ We now want to employ a simple approximation 
where the implications of these can be 
observed. !11



Heat kernel expansion
¥ Since we are interested in effects around the on shell condition we 

want an approximation sensitive to effects  

!
!

¥ We therefore shall utilise the type III regulator while using the heat 
kernel expansion for the full Hessian:  

!
!
!

¥ Comments 

!
 - This expansion naturally treats the curvature and cosmological 
 constant on the same footing. 

 - Convexity i.e. positivity of       is required by the anti-Laplace 
transform, hence the argument of the regulator is positive. 

!12

R ⇠ 4! k .

Tr[ f (!)] =
!

dsTr[ e! ! s] ÷f (! ) !
1

(4" )
d
2

""

n =0

Q d
2 ! n [f ]An (R, " k )

!

! ! 16!G k " (2)
k



Heat kernel expansion
¥ Since we are interested in effects around the on shell condition we 

want an approximation sensitive to effects  

!
!

¥ We therefore shall utilise the type III regulator while using the heat 
kernel expansion for the full Hessian:  

!
!
!
!

¥ Our approximation will be to truncate the heat kernel expansion at 
n=1: 

 - Expect to give good UV limit while the curvature remains close 
 to the on shell value. 

 -Convexity is built in. 
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Results
¥ We can now evaluate the traces to obtain the beta 

functions for the dimensionless couplings: 

!
!
!
!
!

¥ Here the beta functions depend on regulator dependent 
numbers
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UV fixed point
¥ Fixed points for positive couplings 

!

!

!

!

¥ Positive and real fixed points for all regulator functions. 

¥ Critical exponents are real and relevant: 

!

!

 Using the LitimÕs optimised cutoff                                .  
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 UV fixed point 
¥ Regulator dependence:
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UV fixed point at one loop
¥ One loop flow: 

!

!

!

¥ Fixed point: 
!

!

¥ Critical exponents are regulator independent(!):
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Globally safe trajectories

¥ RG trajectories in the                      
plane: 
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Globally safe trajectories
¥ By enforcing convexity RG trajectories can 

have classical scaling limits for             by 
reaching the line of IR fixed points: 
!

!

¥ Globally safe trajectories exist for all values of 
the cosmological constant
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Conformally reduced theory

¥ New approximation keep just conformal 
fluctuations and the scalar Jacobian. 

¥ Conformal fluctuations remain topological. 
¥ If we disregard the Jacobian we get a  

propagating scalar degree of freedom not 
present in GR. 
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Conformally reduced theory
¥ First we include only the conformal modes without the 

Jacobian. 

!
!
!

¥ Here we find the regulator dependence is strong and the 
critical exponents can change sign depending on the 
regulator function. 

!
!
!

¥ This indicates that this is a bad approximation. !21

! t ! k =
1
2

Tr !!
!

! t R !,k

Zk " ! + R !,k

"

! 0
opt
! 1.53784, ! 1

opt
! " 19.6375

! 0 ! 367.403, ! 1 ! 1.48858 exponential cuto!(b = 2)



Conformally reduced theory

¥ Including the Jacobian the beta functions are given by: 

!
!
!
!
!
!
!
!

¥ The beta function for lambda vanishes identically at 
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Flow diagram
¥ Flow for driven by conformal modes with non-trivial Jacobian. 

!
!
!
!
!
!
!
!

!
¥ RG flow contains phase with vanishing CC for all scales. 

¥ UV fixed point for negative CC. 

¥ No UV completion for positive CC.             !23
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Critical exponents

¥ At the            UV fixed point there is only one 
relevant direction. 

!

!
¥ The relevant exponent corresponds to the critical exponent  

!
!

¥ Our result is in agreement with lattice calculations of 
quantum Regge calculus by Hamber:
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Regulator dependence
¥ Critical exponents for the exponential cutoff: 

!

!

!

!

!

!
¥ The relevant exponent has a very mild regulator dependence
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Critical exponent in the epsilon expansion

¥ Can generalise this calculation to arbitrary dimension 

¥ Using the optimised cutoff the relevant critical exponent is then 
given by: 

!
where  
¥ We note that four dimensions lies on the radius of convergence of 

the epsilon expansion 

!
!

¥ Truncating at order       and setting d=4 we can compare with the 
two loop result of Aida and Kitazawa Õ97:
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Conclusions
¥ Identified propagating and topological contributions to the flow 

equation with contributions from the action and functional 
measure. 

¥ Convexity is ensured by taking the curvature to be greater than 
its on shell value. 

¥ Approximation obtained by a truncation of the heat kernel 
expansion with a built in convexity condition. 

¥ Obtained real critical exponents at a UV fixed points leading to 
to classical IR limit. 

¥ New conformally reduced approximation which keeps the 
topological nature of conformal fluctuations. 

¥ Fixed point for vanishing vacuum energy at all scales. 

¥ Critical exponents found in good agreement with lattice and 
perturbation theory.
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