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Introduction

• Investigate asymptotic safety considering the role of the cosmological 
constant. 

• Quantisation of GR: 
!
!
!

• Einstein-Hilbert approximation 
  - Two running couplings: 
  - Degrees of freedom: dynamical graviton + non-propagating   
  conformal fluctuations. 
  - Equations of motion:   
• Convexity of the effective action: 
  - Wrong sign for conformal modes from the naive Wick rotation. 
  - Convexity of EH not guaranteed for small curvature and   
  momentum. !2
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Introduction

• Wish to observe the nature of physical degrees of 
freedom at the level of the flow equation. 

• Ensure effective action remains convex. 
• Key observation: convexity is guaranteed for  
!
!

• Observable quantity : 
!
!

• What are the constraints on this number from 
asymptotic safety?
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Physical degrees of freedom
• Field decomposition: 
!
!
!
!
!

• Physical modes =  
!

• Gauge variant modes = 
!4
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Physical degrees of freedom
• Landau gauge —> ghost and unphysical degrees of 

freedom (dof) cancel. 
• Six physical (i.e. gauge invariant) degrees of freedom. 
• How many propagate? 
• Two polarisations of the graviton. 
• Additional negative dof from the Jacobian in the 

functional measure: 
!
!
!

• Acting on scalars and transverse vectors.
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Physical degrees of freedom
• Number of propagating comes from 

physical dof minus Jacobians : 
!
!

• Hessians (d=4):
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Conformal modes
• Mottola and Mazur ’90, Wick rotation of conformal modes 

implied by de Witt’s supermetric : 

!
!
!

• On shell  cancellations,  i.e. for              , occur between 
conformal fluctuations and the Jacobian: 

!
!

• This leaves the constant mode: 
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Flow equation
• Terms arise from the EH action and from the functional 

measure: 

!
!
!

• Regroup as physical degrees of freedom: 

 - Two polarisations of the graviton 

 - Topological conformal mode  

!
!
!
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Convexity
• For the regulated theory the convexity condition is given by: 

!
!

• Here we take a regulator of the form: 

!
!
!

• Poles in the propagator imply that we violate convexity. 

• These can arise in curvature expansions for which at 
vanishing curvature we have:
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Convexity
• Convexity is ensured if we take 
• Now consider a regulator which depends on the 

full Hessian (Type III) 
!
!

with 
!
!
• Positivity of the argument of the regulator then 

requires
!10

R > 4⇤ .

Rk =
1

16⇡Gk
Rk(�)

�T = �2 + 2

✓
R

4
� ⇤k

◆
, �� = �0 +

4

3

✓
R

4
� ⇤k

◆
,

R > 4⇤ .



Summary
• We have made two observation relating to the 

on shell condition for the curvature: 
!

1. Cancellations between conformal fluctuations 
and the functional measure occur on shell 

2. For curvature greater than the on shell value 
convexity is guaranteed. 
!

!
• We now want to employ a simple approximation 

where the implications of these can be 
observed. !11



Heat kernel expansion
• Since we are interested in effects around the on shell condition we 

want an approximation sensitive to effects  
!
!

• We therefore shall utilise the type III regulator while using the heat 
kernel expansion for the full Hessian:  
!
!
!

• Comments 
!

 - This expansion naturally treats the curvature and cosmological 
 constant on the same footing. 
 - Convexity i.e. positivity of       is required by the anti-Laplace 
transform, hence the argument of the regulator is positive. 
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Heat kernel expansion
• Since we are interested in effects around the on shell condition we 

want an approximation sensitive to effects  
!
!

• We therefore shall utilise the type III regulator while using the heat 
kernel expansion for the full Hessian:  
!
!
!
!

• Our approximation will be to truncate the heat kernel expansion at 
n=1: 

 - Expect to give good UV limit while the curvature remains close 
 to the on shell value. 
 -Convexity is built in. 
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Results
• We can now evaluate the traces to obtain the beta 

functions for the dimensionless couplings: 
!
!
!
!
!

• Here the beta functions depend on regulator dependent 
numbers
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z +R1(z)
, �̃m =

Z 1

0
dzzm�1 R1(z)

z +R1(z)
, �̂m =

Z 1

0
dzzm�1 R

0

1(z)

z +R1(z)
,



UV fixed point
• Fixed points for positive couplings 

!
!
!
!

• Positive and real fixed points for all regulator functions. 
• Critical exponents are real and relevant: 
!
!

 Using the Litim’s optimised cutoff                                .  
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 UV fixed point 
• Regulator dependence:
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UV fixed point at one loop
• One loop flow: 
!
!
!

• Fixed point: 
!
!

• Critical exponents are regulator independent(!):
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Globally safe trajectories

• RG trajectories in the                      
plane: 
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Globally safe trajectories
• By enforcing convexity RG trajectories can 

have classical scaling limits for             by 
reaching the line of IR fixed points: 
!
!

• Globally safe trajectories exist for all values of 
the cosmological constant
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Conformally reduced theory

• New approximation keep just conformal 
fluctuations and the scalar Jacobian. 

• Conformal fluctuations remain topological. 
• If we disregard the Jacobian we get a  

propagating scalar degree of freedom not 
present in GR. 
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Conformally reduced theory
• First we include only the conformal modes without the 

Jacobian. 
!
!
!

• Here we find the regulator dependence is strong and the 
critical exponents can change sign depending on the 
regulator function. 
!
!
!

• This indicates that this is a bad approximation. !21
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Conformally reduced theory

• Including the Jacobian the beta functions are given by: 
!
!
!
!
!
!
!
!

• The beta function for lambda vanishes identically at 

!22

�� = �

0

@�2� 3g⇡�1

�
⇣
3⇡ + g�̂2

⌘⇣
6⇡ � g�̃1

⌘
+ 2g��̂1

⇣
�5⇡ + g�̃1

⌘

1

A

�g = g

0

@2 +
g�1

⇣
3⇡ + 2g��̂1 + g�̂2

⌘

�
⇣
3⇡ + g�̂2

⌘⇣
6⇡ � g�̃1

⌘
+ 2g��̂1

⇣
�5⇡ + g�̃1

⌘

1

A .

� = 0.



Flow diagram
• Flow for driven by conformal modes with non-trivial Jacobian. 
!
!
!
!
!
!
!
!

!
• RG flow contains phase with vanishing CC for all scales. 
• UV fixed point for negative CC. 
• No UV completion for positive CC.             !23
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Critical exponents
• At the            UV fixed point there is only one 

relevant direction. 

!
!

• The relevant exponent corresponds to the critical exponent  

!
!

• Our result is in agreement with lattice calculations of 
quantum Regge calculus by Hamber:
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Regulator dependence
• Critical exponents for the exponential cutoff: 
!
!
!
!
!
!

• The relevant exponent has a very mild regulator dependence
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Critical exponent in the epsilon expansion

• Can generalise this calculation to arbitrary dimension 

• Using the optimised cutoff the relevant critical exponent is then 
given by: 

!
where  
• We note that four dimensions lies on the radius of convergence of 

the epsilon expansion 

!
!

• Truncating at order       and setting d=4 we can compare with the 
two loop result of Aida and Kitazawa ’97:
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Conclusions
• Identified propagating and topological contributions to the flow 

equation with contributions from the action and functional 
measure. 

• Convexity is ensured by taking the curvature to be greater than 
its on shell value. 

• Approximation obtained by a truncation of the heat kernel 
expansion with a built in convexity condition. 

• Obtained real critical exponents at a UV fixed points leading to 
to classical IR limit. 

• New conformally reduced approximation which keeps the 
topological nature of conformal fluctuations. 

• Fixed point for vanishing vacuum energy at all scales. 

• Critical exponents found in good agreement with lattice and 
perturbation theory.
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