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Introduction

¥ Investigate asymptotic safety considering the role of the cosmological
constant.

¥ Quantisation of GR:
|

1
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¥ Einstein-Hilbert approximation
- Two running couplings: G,! | Gy, ! ¢

- Degrees of freedom: dynamical graviton + non-propagating
conformal fluctuations.

- Equations of motion: R =4l
¥ Convexity of the effective action: | (2) > (0
- Wrong sign for conformal modes from the naive Wick rotation.

- Convexity of EH not guaranteed for small curvature and
momentum.




Introduction

¥ Wish to observe the nature of physical degrees of
freedom at the level of the flow equation.

¥ Ensure effective action remains convex.
¥ Key observation: convexity Is guaranteed for

! R > 4A.

¥ Observable quantity :
!
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¥ What are the constraints on this number from
asymptotic safety?



Physical degrees of freedom

¥ Field decomposition:
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¥ Physical modes= {!,h | o)

¥ Gauge variant modes={! wr ]



Physical degrees of freedom

¥ Landau gauge N> ghost and unphysical degrees of
freedom (dof) cancel.

¥ Six physical (I.e. gauge invariant) degrees of freedom.
¥ How many propagate?
¥ Two polarisations of the graviton.

¥ Additional negative dof from the Jacobian in the
functional measure:
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¥ Acting on scalars and transverse vectors.



Physical degrees of freedom

¥ Number of propagating comes from
physical dof minus Jacobians:

Li(d—1) —d = Ld(d — 3)
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Conformal modes

¥ Mottola and MazurNCN)QO, Wick rotation of conformal modes
Implied by de WittOs supermetric :
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¥ On shell cancellations, i.e. for R = 4./occur between
conformal fluctuations and the Jacobian:

! _ % E B B , R
lAa—Ao+3<4 Ak) Do =-V"= 5
¥ This leaves the constant mode:
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Flow equation

¥ Terms arise from the EH action and from the functional
measure:
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¥ Regroup as physical degrees of freedom:
- Two polarisations of the graviton
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Convexity

¥ For the regulated theory the convexity condition is given by:
!

(2)
¥ Here we take a regulator of the form:
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¥ Poles in the propagator imply that we violate convexity.

¥ These can arise in curvature expansions for which at
vanishing curvature we have:
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Convexity

¥ Convexity is ensured if we take R > 4A.

¥ Now consider a regulator which depends on the
full Hessian (Type llI)
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!
¥ Positivity of the argument of the regulator then
requires R~ 4A



Summary

¥ We have made two observation relating to the
on shell condition for the curvature:

1. Cancellations between conformal fluctuations
and the functional measure occur on shell

2. For curvature greater than the on shell value
convexity Is guaranteed.

|
|
¥ We now want to employ a simple approximation

where the implications of these can be
observed.



Heat kernel expansion

¥ Since we are interested In effects around the on shell condition we
want an approximation sensitive to effects

| R~ A4l .

¥ We therefore shall utilise the type Il regulator while using the heat
kernel expansion for the full Hessian:
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- This expansion naturally treats the curvature and cosmological

constant on the same footing.

- Convexity i.e. positivity of | is required by the anti-Laplace
transform, hence the argument of the regulator is positive.



Heat kernel expansion

¥ Since we are interested in effects around the on shell condition we
want an approximation sensitive to effects

; R~ A4,

¥ We therefore shall utilise the type Ill regulator while using the heat
kernel expansion for the full Hessian:
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¥ Our approximation will be to truncate the heat kernel expansion at
n=1:
- Expect to give good UV limit while the curvature remains close
to the on shell value.

-Convexity is built in.
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Results

¥ We can now evaluate the traces to obtain the beta
functions for the dimensionless couplings:
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¥ Here the beta functions depend on regulator dependent
numbers
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UV fixed point

¥ Fixed points for positive couplings
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¥ Positive and real fixed points for all regulator functions.

¥ Critical exponents are real and relevant:
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Using the LitimOs optimised cutoff Rk(z) = (k2! 2)i( k?! 2)



UV fixed point

¥ Regulator dependence:
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UV fixed point at one loop
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¥ Critical exponents are regulator independent(!):
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Globally safe trajectories

¥ RG trajectories inthe {! = G! , g}
plane:
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Globally safe trajectories

¥ By enforcing convexity RG trajectories can
have classical scaling limits for k! (y
reaching the line of IR fixed points:

|
' g =0, !'=const= Gy a , Gg=0Gy.
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¥ Globally safe trajectories exist for all values of
the cosmological constant
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Conformally reduced theory

¥ New approximation keep just conformal
fluctuations and the scalar Jacobian.

¥ Conformal fluctuations remain topological.

¥ If we disregard the Jacobian we get a
propagating scalar degree of freedom not
present in GR.
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Conformally reduced theory

¥ First we include only the conformal modes without the
Jacobian.
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¥ Here we find the regulator dependence is strong and the
critical exponents can change sign depending on the
regulator function.
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¥ This indicates that this is a bad approximation.



Conformally reduced theory

¥ Including the Jacobian the beta functions are given by:
!
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¥ The beta function for lambda vanishes identically at

l =0.



Flow diagram

¥ Flow for driven by conformal modes with non-trivial Jacobian.
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¥ RG flow contains phase with vanishing CC for all scales.
¥ UV fixed point for negative CC.
¥ No UV completion for positive CC.



Critical exponents

¥ Atthe '=0 UV fixed point there is only one
relevant direction.
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¥ The relevant exponent corresponds to the critical exponent
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¥ Our result is in agreement with lattice calculations of
guantum Regge calculus by Hamber:

Continuum FRG: Lattice theory:

| P73 v~ 0.3354




Regulator dependence

¥ Critical exponents for the exponential cutoff:
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¥ The relevant exponent has a very mild regulator dependence



Critical exponent in the epsilon expansion

¥ Can generalise this calculation to arbitrary dimension

¥ Using the optimised cutoff the relevant critical exponent is then

given by:
1 Rogs deg= 2ALTH

1 1!
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where | = d! 2.

¥ We note that four dimensions lies on the radius of convergence of

the epsilon expansion
I n2 n3 n4
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¥ Truncating at order !2and setting d=4 we can compare with the
two loop result of Aida and Kitazawa O97:

FRG| 1/! =4 Two loop: 11 1 44



Conclusions

|dentified propagating and topological contributions to the flow
equation with contributions from the action and functional
measure.

Convexity Is ensured by taking the curvature to be greater than
its on shell value.

Approximation obtained by a truncation of the heat kernel
expansion with a built in convexity condition.

Obtained real critical exponents at a UV fixed points leading to
to classical IR limit.

New conformally reduced approximation which keeps the
topological nature of conformal fluctuations.

Fixed point for vanishing vacuum energy at all scales.

Critical exponents found in good agreement with lattice and
perturbation theory.



