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Outline of the talk

• The idea behind unimodular gravity, its implementation, and a
diffeomorphism invariant formulation of it at the level of the action

• The study of the unimodular theory’s UV completion within the
Exact Renormalisation Group and Asymptotic Safety

• The similarity between its UV completion with that of General
Relativity (GR), as well as the main differences of the two theories in
this context
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Introducing unimodular gravity
• General Relativity: A Diffeomorphism (Diff) invariant, and successful theory of

gravity at solar and cosmological (?) scales

S =

∫
d4x
√
−g

R − 2Λ

16πG
+ Smatter

• Motivation: The cosmological constant problem, |Λ + 8πG < ρ >matter | ∼ H2
0

• The idea of unimodular gravity: Change the status of the coupling Λ by
decoupling it from the gravitational dynamics 1

δ

δgµν

√
−g = 0 Unimodularity condition

• The classical dynamics of unimodular gravity:

Bianchi identities: R − 8πGTµ
µ = const. ≡ 4λ0

Field equations: Gµν + λ0gµν = 8πGTµν

• Bianchi identities are no longer identically satisfied due to the enforcement of the
unimodularity condition

Classical equations are equivalent with those of GR, but now the cosmological
constant appears as a constant of integration

1
The first one to introduce unimodular gravity was Einstein himself, but in a different context, A. Einstein, Annalen der Physik, vol.

354, 769?822 (1916)
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Unimodular gravity and diffeomorphism symmetry
• The gauge symmmetry of the metric field in GR is the symmery under

diffeomorphisms

gαβ → gαβ + δgαβ ≡ gαβ +∇αξβ +∇βξα (1)

• Imposing the unimodularity condition, classically or
quantum–mechanically, restricts the allowed variations of the metric field

δ
δgµν

√
−g = 0  ∇µξµ = 0 (restricted symmetry:TDiff) (2)

• Classically, the unimodularity condition implies a modification of the
Bianchi identities

• Different ways to impose unimodularity: Quantum mechanically, they lead
to different quantisation procedures

• This talk: A quantisation of a fully-diffeomorphism unimodular action for
gravity within the exact renormalisation group and asymptotic safety
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A fully diffeomorphism-invariant action for unimodular gravity
• Unimodularity in action: The unimodularity condition can be implemented as an on–shell

condition through a lagrange multiplier λ(x) 2

S =

∫
d4x

[√
−g

R

16πG
− λ

(√
−g − ε0)

]
(3)

• Stückelberg-ing the action: Introduce four Stückelberg fields φα(x), following the pattern

of a general coordinate transformation: xα → φ
α(x), α = 0, . . . 3 3

∫
d4xλ

(√
−g − ε0

)
→

∫
d4xλ

(√
−g − ε0 |Jαβ |

)
≡
∫
d4x
√
−gλ (1− ε0ψ) (4)

The Stückelberg Jacobian:
∣∣Jαβ∣∣ ≡ ∣∣∣∣∂φα(x)

∂xβ

∣∣∣∣ with ψ ≡
|Jαβ |√
−g

, α, β = 0, . . . , 3

(5)

• A generalised and Diff-invariant unimodular formulation of GR 4

S =

∫
d4x
√
−g
[

R

16πG
− λf (ψ)− q (ψ)

]
(6)

 Its easy to see that the equations of motion for the fields λ and ψ ensure the classical
dynamics are the same as those of GR

2
W. Buchmuller and N. Dragon, Phys.Lett., vol. B223, p. 313 (1989).

3
See also K. V. Kuchar PRD43, 3332?3344 (1991)

4
A. Paddila and I. D. Saltas, arXiv:1409.3573 [gr–qc]
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A fully diffeomorphism-invariant action for unimodular gravity

S =

∫
d4x
√
−g
[

R

16πG
− λf (ψ)− q (ψ)

]
+ Smatter (7)

• The classical equations result from variation with respect to the metric
(gµν), Lagrange multipler (λ) and Stückelberg fields (φα) 5

Gµν = 8πG
[
Tµν + gµν (λV (ψ) + U(ψ))

]
(8)

f (ψ) = 0, ∂α
(
λf ′(ψ) + q′(ψ)

)
= 0, (9)

ψ ≡

∣∣∣∂αφβ∣∣∣
√
−g

, V (ψ) ≡ ψf ′(ψ)− f (ψ), U(ψ) ≡ ψq′(ψ)− q(ψ)

• Classical dynamics of the theory are the same as in GR with a
cosmological constant

• The new constraint equations ensure the Bianchi identities are satisfied
5

A. Paddila and I. D. Saltas, arXiv:1409.3573 [gr–qc]
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Unimodular gravity and asymptotic safety: A brief review of previous work

• A conceptually different approach has been followed before in the literature 6

• The main key of the approach: Define a TDiff-invariant quantisation of the
Einstein–Hilbert truncation (without a cosmological constant)

Z [J] =
∫
Dgµν e iS[gµν ]+i

∫
Jαβgαβ+∆Sk , (10)

S[gµν ] =

∫
d4x
√
−g

R

16πG
+ STDiff-gauge fixing + STDiff-ghost (11)

• Usual gauge fixing condition Fµ acted upon with a transverse projector

Fµ → FTDiff
µ ≡ Pµ

κFκ, Pµν = 1
∇̄2 (gµν∇̄2 − ∇̄µ∇̄ν) (12)

• Unimodularity condition imposed up to second order in expansion of the metric:

δ
(1)
g
√
g = 0, δ

(2)
g
√
g = 0 → Γ

(2)
TDiff (13)

• Theory was found to be asymptotically safe with a UV fixed point G∗ = 2.65 and
eigenvalue = −2.341

6
A. Eichhorn Class.Quant.Grav., vol. 30, p. 115016 (2013)
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Setting up the calculation: Generating functional and gauge fixing
• The starting point is the generating functional, where all fields of the theory are coupled to

external sources

Z [J] =
∫
DgµνDφ

αDλ e iS[ΦA ]+i
∫

JAΦA+∆Sk , ΦA = {gµν , λ, φα} (14)

S[ΦA] =

∫
d4x
√
−g
[
R − 2Λ

16πG
+ λ(x)f (ψ) + q(ψ)

]
+ Sgauge fixing + S ghost, ψ ≡ 1√

g

∣∣∣ ∂φα(x)

∂xβ

∣∣∣
(15)

∆Sk =
1

2

∫
d4x
√
−g ΦA RAB

k (−�) ΦB , (16)

• The theory is Diff invariant, and the gauge fixing sector defines the de Donder gauge

Sgauge fixing = ZG

∫
d4x
√

ḡ ḡµνhαβFαβµ F
γδ
ν hγδ, Fαβµ ≡ δβµ ḡ

αγ∇̄γ − 1
2 ḡ
αβ∇̄µ

(17)

• There are two ghost contributions: One from the gauge fixing and another from the
Stückelberg sector

SGF ghost = −
∫

d4x
√

ḡ C̄µ

(
−δµν�−

1

4
δ
µ
νR

)
Cν ZGF ghost = 1 (18)

SStück. ghost ≡ −
1

2

∫
d4x
√

ḡ η̄(−�)η ZStück. ghost = 1 (19)

• Why introduce the cosmological constant term in the action?
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Setting up the calculation: Field expansion and background choice
• Our tool: The Exact Renormalisation Group Equation (ERGE) 7

∂tΓk =
1

2
Tr

[(
Γ

(2)
k + Rk

)−1
k∂kRk

]
,

Γk = −
∫

d4x
√
g
[
ZG (R − 2Λ)− λ f (ψ) − q(ψ)

]
+ Sghosts + Sgauge fixing

(20)

• The metric, Lagrange multiplier and Stückelberg fields fluctuate as

gµν = ḡµν + G
1/2
0 ĥµν + 1

4G
1/2
0 ḡµνh

λ = λ̄+ G
−1/2
0 δλ

φα = φ̄α + G
1/2
0 δφ̂α + G0∇̄αδφ (21)

• Background choice:

R̄αβγδ = 1
12 R̄

(
ḡαγ ḡβδ − ḡβγ ḡαδ

)
, φ̄α = εxα, ψ ≡ |J

α
β |√
−g = ε4

√
ḡ

R̄ = const., λ̄ = const. (22)

7
C. Wetterich Phys. Lett. B 301, 90 (1993) |T. R. Morris, Int. J. Mod. Phys. A 9 (1994) 2411.
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Evaluating the exact RG equation

Γk [gµν , λ, ψ] = −
∫

d4x
√
g
[
R − 2Λk

16πGk
− λfk(ψ)− qk(ψ)

]
+ Sghosts + Sgauge fixing

(23)

• A cosmological–constant type modification to the ”Einstein–Hilbert”
Hessians[

Γ
(2)

(ĥĥ)

]µν
ρσ

= Zĥĥ

[
−�− 2Λ +

2

3
R −Z−1

G (λV (ψ) + U(ψ))
] (
δµνρσ −

1

4
gµνgρσ

)
,

(24)

Γ
(2)
(hh)

= Zhh

[
−�− 2Λ −Z−1

G (λV (ψ) + U(ψ))− 2Z−1
G ψ2

(
λf ′′(ψ) + q′′(ψ)

) ]
(25)

Zĥĥ ≡
1

32π
G0
Gk
, Zhh ≡ − 1

128π
G0
Gk
, V (ψ) ≡ f (ψ)− ψf ′(ψ)

(26)

• New, non–trivial interactions in the scalar sector

Γ
(2)
φφ[−�], Γ

(2)
φλ[−�], Γ

(2)
hφ [−�] (27)

• Stückelberg sector: Only longitudinal mode (φ) propagates, transverse one

(φ̂α) is integrated out (R
φ̂φ̂

= 0)
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Solving the flow equation

Γk [gµν , λ, ψ] = −
∫

d4x
√
g
[
ZG (R − 2Λ)− λ f (ψ) − q(ψ)

]
+ Sghosts + Sgauge fixing

• We choose a Type 1 cut–off, with −�→ −� + Rk (−�), together with the optimised

regulator Rk
8

• The trace over momenta in the ERGE is evaluated asymptotically on S4 using a heat kernel
expansion. The flow equation takes schematically the form(

Ṽol
)−1

∂tΓk = ∂tΓk |T+∂tΓk |Scalar+∂tΓk |Ghosts ≡ ∂tΓk [G
(0,1)
k , Λ

(0,1)
k ; f ′k

(0,1)
, f ′′k

(0,1); f ↔ q],

(28)

• We solve the flow equation approximately through a polynomial ansatz in the Stückelberg
sector

f (ψ) =
∑Nf

i=0
1
i!ρiψ

i q(ψ) =
∑Nq

i=1
1
i!σiψ

i (29)

• The beta functions are derived by expanding w.r.t ˜̄R, ψ̄, ˜̄λ and projecting out similar
operators on both sides

Einstein–Hilbert sector: k∂k Λ̃ = (−2 + ηΛ̃)Λ̃, k∂k G̃ = (2 + ηG̃ )G̃

[c̃ ≡ c/kd , ηc ≡
k∂k c

c ]

Stückelberg sector: k∂k ρ̃i = (−2 + ηρ̃i )ρ̃i , k∂k σ̃i = (−4 + ησ̃i )σ̃i

• The beta functions for G̃ , Λ̃ receive contirbutions from ρ̃, σ̃ and vice versa:

ηi = ηi (G̃ , Λ̃; ρ̃j , σ̃j )
8

D. F. Litim, Phys.Lett., B486, 92–99 (2000)
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Fixed points and critical exponents: The minimal unimodular case

Fixed points: βc̃i (G̃ , Λ̃; ρ̃j , σ̃m) = 0

Eigenvalues: ∂t c̃i =
∑

j
∂βi (c̃n)
∂c̃j

∣∣∣
c̃j=c̃j∗

× (c̃j − c̃j∗)

• The GR truncation: f (ψ) = 0, q(ψ) = 0, L =
√
gZG (R − 2Λ)

Fixed points: (Λ̃, G̃) = (0.193, 0.707)

Eigenvalues: (γΛ, γG ) ' (−1.99± 3.829i)

G̃ × Λ̃ ' 0.136 (30)

• The minimal unimodular case:
f (ψ) = ρ0 +ρ1ψ, q(ψ) = 0, L =

√
gZG (R − 2Λ)− λ(

√
g − |Jαβ |)

Fixed points: (Λ̃, G̃ , ρ̃0, ρ̃1) = (0.206, 0.661, 0, 0)

Eigenvalues: (γΛ̃,G̃ , γρ̃0
, γρ̃1

) = (−1.611± 3.2446i ,−6.066,−2)

G̃ × Λ̃ ' 0.136 (31)
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Higher order Stückelberg interactions

L =
√
g
[
ZG (R − 2Λ)− λ f (ψ) − q(ψ)

]
• Beyond the minimal unimodular ansatz

f (ψ) =
∑4

i=0
1
i!ρiψ

i , q(ψ) =
∑4

i=1
1
i!σiψ

i (32)

• Fixed point and attractive, complex eigen-values of (Λ̃, G̃) persist and
show good quantitative stability as we increase the interations in the
Stückelberg sector

• The Stückelberg couplings ρ̃i , σ̃j remain trivial in the UV, while the
associated eigenvalues remain negative as we increase the truncation order

• The effective actions for GR and the unimodular theory look similar in the
UV

ΓUnim.
∣∣∣
k/k0�1

' ΓGR
∣∣∣
k/k0�1

(33)

G̃∗Λ̃∗
∣∣
Unimod.

' G̃∗Λ̃∗
∣∣
GR
' 0.13 (34)

• The Diff-invariant unimodular theory and GR share similar UV
completions

13 / 18



The full results: Fixed points and eigenvalues for up to fourth order Stückelberg sector
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RG dynamics away from the UV fixed point

• Away from the fixed point regime, the RG flow will drive the
Stückelberg sector of the Diff-invariant unimodular theory

away from triviality: fk(ψ) 6= 0 , qk(ψ) 6= 0

• The non–trivial Stückelberg interactions generated by the RG
flow at lower energies imply that in principle

ΓUnim. 6= ΓGR, away from the fixed point regime (35)

→ The two theories are in principle not equivalent to each
other quantum–mechanically (Reminder: The Lagrange
multiplier and Stückelberg fields were coupled to external
sources in the path integral!)
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Predictivity of the theory in the UV
• An apparent problem: The number of relevant couplings in the

Stückelberg sector increases with the order of truncation in ψ, as the
anomalous dimension remains much smaller than the canonical one for
ρ̃ (= −2) and σ̃ (= −4)

• Root of the problem: The dimensionless nature of the field ψ ≡

∣∣∣∂αφβ∣∣∣
√
−g

(In contrast with usual scalar field theories)

• Canonically normalising the field ψ,

ψ → ψ/Z
1/2
ψ , [Zψ] = 2 (36)

shifts all Stückelberg eigenvalues as

γρ̃n → γρ̃n + n (37)

• Shift produces a ’critical’ eigenvalue after which couplings become

irrelevant, while fixed point and eigenvalues for G̃ , Λ̃ remain unaffected

The number of relevant eigenvalues appears to become finite, and the theory predictive
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Summary
• A fully diffeomorphism-invariant unimodular theory was studied

within the Wilsonian approach of the exact renormalisation group
and asymptotic safety

• The effective action of the unimodular theory was shown to share a
similar structure with that of GR in the UV, and the two theories
shared similar UV completions within Asymptotic Safety

• The UV fixed-point and corresponding eigen-values for Newton’s G
and Λ were found to be similar with those of the Einstein–Hilbert
truncation, and the unimodular theory appeared to be predictive

• Away from the UV-fixed point regime, the non–trivial (Stückelberg)
interactions generated along the RG flow in principle make the
unimodular theory to differ from its GR counterpart
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Thank you!
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