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Outline of the talk

e The idea behind unimodular gravity, its implementation, and a
diffeomorphism invariant formulation of it at the level of the action

e The study of the unimodular theory's UV completion within the
Exact Renormalisation Group and Asymptotic Safety

e The similarity between its UV completion with that of General
Relativity (GR), as well as the main differences of the two theories in
this context



Introducing unimodular gravity

General Relativity: A Diffeomorphism (Diff) invariant, and successful theory of
gravity at solar and cosmological (?) scales

—2A
S= /C/4 16 Torc + Smatter

Motivation: The cosmological constant problem, Hg

The idea of unimodular gravity: Change the status of the coupling A by
decoupling it from the gravitational dynamics !
1)

. /—g =0 Unimodularity condition
()guz/

The classical dynamics of unimodular gravity:
Bianchi identities: R —8wGTH, = const. = 4

Field equations:  Guu + Xoguv = 87GT

Bianchi identities are no longer identically satisfied due to the enforcement of the
unimodularity condition

Classical equations are equivalent with those of GR, but now the cosmological
constant appears as a constant of integration

1The first one to introduce unimodular gravity was Einstein himself, but in a different context, A. Einstein, Annalen der Physik, vol.
354, 7697822 (1916)



Unimodular gravity and diffeomorphism symmetry

e The gauge symmmetry of the metric field in GR is the symmery under
diffeomorphisms

8aB — Bap + 0808 = 8ap + Vals + Via (1)

e Imposing the unimodularity condition, classically or
quantum—mechanically, restricts the allowed variations of the metric field

ﬁ\/i—g =0  ~» Vu&" =0 (restricted symmetry:TDiff)  (2)
e Classically, the unimodularity condition implies a modification of the
Bianchi identities

e Different ways to impose unimodularity: Quantum mechanically, they lead
to different quantisation procedures

e This talk: A quantisation of a fully-diffeomorphism unimodular action for
gravity within the exact renormalisation group and asymptotic safety



A fully diffeomorphism-invariant action for unimodular gravity

e Unimodularity in action: The unimodularity condition can be implemented as an on—shell
condition through a lagrange multiplier A(x) 2

. R
s:/w{ﬁm—x(wfgw) 3)

o Stiickelberg-ing the action: Introduce four Stiickelberg fields ¢ (x), following the pattern
of a general coordinate transformation: x* — ¢*(x), « =0,...33

Jd*'xx (V=g —e«) = [d'xA(V=g—el|)s]) = [d'xv/=gA(1— ) (4)

09 (x)
OxP

15|
V=g’

The Stiickelberg Jacobian: |J“5| = ‘ ‘ with ) = «,=0,...,3

o A generalised and Diff-invariant unimodular formulation of GR *

/dxf[ﬁfv(w)—q(w) (6)

~> |ts easy to see that the equations of motion for the fields A and v ensure the classical
dynamics are the same as those of GR

2\/‘\/. Buchmuller and N. Dragon, Phys.Lett., vol. B223, p. 313 (1989).
3See also K. V. Kuchar PRD43, 333273344 (1991)
4A. Paddila and I. D. Saltas, arXiv:1409.3573 [gr—qc]
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A fully diffeomorphism-invariant action for unimodular gravity

5= [ aE g - M) - a)] 4 S 0)

e The classical equations result from variation with respect to the metric
(guv), Lagrange multipler (\) and Stiickelberg fields (¢*) °

Guw =876 [ Ty + gur (AV(¥) + U(®)) | ®)
F(¥) =0, da (M'(¥)+d'(¥)) =0, 9)
0,1@6‘3
P = Ner V() =of (¢) — (), UW)=vq @) —q)

e Classical dynamics of the theory are the same as in GR with a
cosmological constant

e The new constraint equations ensure the Bianchi identities are satisfied

5A. Paddila and I. D. Saltas, arXiv:1409.3573 [gr—qc]
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Unimodular gravity and asymptotic safety: A brief review of previous work

o A conceptually different approach has been followed before in the literature 6

e The main key of the approach: Define a TDiff-invariant quantisation of the
Einstein—Hilbert truncation (without a cosmological constant)

Z[J] = [ Dgyuv iSleuv]+i [ 1P g 5 +AS, ; (10)
. R
Slguv] = [ d'x “Elenc T STDiff-gauge fixing T STDiff-ghost (11)

e Usual gauge fixing condition F,, acted upon with a transverse projector

Fu — Fi® =P, "Fe,  Pu=2(guV?-VuV)) (12)

e Unimodularity condition imposed up to second order in expansion of the metric:

621)@ =0, 622)@ =0 — r£|'2|%iff (13)

e Theory was found to be asymptotically safe with a UV fixed point G, = 2.65 and
eigenvalue = —2.341

6A. Eichhorn Class.Quant.Grav., vol. 30, p. 115016 (2013)



Setting up the calculation: Generating functional and gauge fixing

e The starting point is the generating functional, where all fields of the theory are coupled to
external sources

Z[J] = f Dg,,“/Dd)aD)\ efs[oA] i [ Jpa®p+AS, , by = {gl“, b a} (14)
5[®al = /d XV [ + AC)F() + q(y )] + Sgauge fixing + S ghost s P = — ‘ a“”
(15)
1
AS, = 5/d“x\/—ig o4 RPP(—0) g, (16)

e The theory is Diff invariant, and the gauge fixing sector defines the de Donder gauge

Sgauge fixing = ZG/dAX\/ééHVhaﬁFSBFZSh-yéy ]:SH = 5:5(‘"' 67 - %EOH@,A

1n
e There are two ghost contributions: One from the gauge fixing and another from the
Stiickelberg sector
_ 1
SGF ghost _ / d4X\/§ Cu <—55D _ Z(SL‘R) cv ZGF ghost _ 1 (18)
gStiick. ghost _ 7% /d4x\/§ (=0 ZStick. ghost _ { (19)

e Why introduce the cosmological constant term in the action?
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Setting up the calculation: Field expansion and background choice
e Our tool: The Exact Renormalisation Group Equation (ERGE) ’

1 -1
atFk = ETI’ |:<|-E(2) + Rk) k@kRk] 5

My =— / d4X\/§ [ZG(R —2A) = X f(¥) — q(v) } + Sghosts + Sgauge fixing

(20)
e The metric, Lagrange multiplier and Stiickelberg fields fluctuate as
guv = E/LV —+ Gg/2i\l'uy + %Gg/2guyh
X=X+ Gy %A
¢* = 6% + GL/?50™ + G5 (21)
e Background choice:
= 1 - T @ nfy — ‘J“e" — et
R(yﬁ’y(s - *2R (g” g/%o - gﬂ”,g(y(s) ) ¢ =ex, Y= \/T; - ﬁ
R = const., X = const. (22)

7C. Wetterich Phys. Lett. B 301, 90 (1993) |T. R. Morris, Int. J. Mod. Phys. A 9 (1994)2411.

9/18



Evaluating the exact RG equation

R —2A
rk[g;u/, >\v 1/1] = - / d4X\/§|: 167'(Gkk - )‘fk(w) - qk(w)} + Sghosts + Sgauge fixing
(23)
e A cosmological-constant type modification to the " Einstein—Hilbert”
Hessians
2 pv 2 _ 1
[FEE%)LJ N [—D — 20+ SR -Z5 (V) + U(Y)) } (6;:;; _ Zglujgpg) ,
(24)
Moy = Zon| =0 =20 =Zg" (AWV(©) + UW)) - 22542 (A" () + 4"(4)) |
(25)
Zy =52 Zm= e V() = () - vf (¥)
(26)
e New, non—trivial interactions in the scalar sector
2 2 2
ro-o, rR-o) rd-o 27)

e Stiickelberg sector: Only longitudinal mode (¢) propagates, transverse one
(¢%) is integrated out (R35=0)
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Solving the flow equation
g A 9] = = [ 'V [Z6(R =20 = A 7(6) = (1) ] + Sy + Saue v

e We choose a Type 1 cut—off, with —[0 — —[J + Ry (—0J), together with the optimised
regulator Ry 8

e The trace over momenta in the ERGE is evaluated asymptotically on S, using a heat kernel
expansion. The flow equation takes schematically the form

7 ! — 0,1) A(0,1). /(0,1 0,1
(VO/) 0T = 0Tkl 4 O:Tklscatar+ 9Tk Ghosts = OeT [G( : A< ) i [0 f//( Vi o ql,
(28)

e We solve the flow equation approximately through a polynomial ansatz in the Stiickelberg
sector

F() = S Lo a(¥) = 0 Lo (29)

e The beta functions are derived by expanding w.r.t I:?, P, i and projecting out similar
operators on both sides

Einstein—Hilbert sector: kdkA = (=2 +n3)A, k&G = (2 + 7]5)&
[¢ = c/k?, me = “5)

Stiickelberg sector: kdxpi = (=2 +np;)pi,  kOkGi = (—4 + ns,;)5i

e The beta functions for 5, A receive contirbutions from p, 6 and vice versa:
ni = 0i(G, Ni pj, 5})

8D. F. Litim, Phys.Lett., B486, 92-99 (2000)
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Fixed points and critical exponents: The minimal unimodular case
Fixed points: Bgi(é, A; pj,6m) =0

Eigenvalues: 0:&; = Zj 5| .

e The GR truncation: f(¢)) =0, gq(¢¥) =0, L=.,/8Zc(R—-2A)
Fixed points: (A, G) = (0.193,0.707)

Eigenvalues: (va,7v¢) =~ (—1.99 £ 3.829/)
G xA~0.136 (30)

e The minimal unimodular case:
f(0) =potpy, q(¥) =0, L= EgZg(R-2N\) - g —1/"s])
Fixed points: (A, G, o, p1) = (0.206,0.661, 0, 0)
Eigenvalues: (7z &,7py,7p,) = (—1.611 £ 3.2446/, —6.066, —2)
G x A~0.136 (31)
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Higher order Stiickelberg interactions

£=VE|Ze(R—2N) = A (V) = q(v) |

Beyond the minimal unimodular ansatz
s 4 i 4 i
) =Yio o', a(w) =iy o' (32)

Fixed point and attractive, complex eigen-values of (/~\, @) persist and
show good quantitative stability as we increase the interations in the
Stiickelberg sector

The Stiickelberg couplings f§;,5; remain trivial in the UV, while the
associated eigenvalues remain negative as we increase the truncation order

The effective actions for GR and the unimodular theory look similar in the
uv

[—Unim.‘ ~ I—GR' (33)
k/ko>>1 k/ko>>1

Gl g~ G|, ~013 (34)
The Diff-invariant unimodular theory and GR share similar UV
completions

‘Unimo
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The full results: Fixed points and eigenvalues for up to fourth order Stiickelberg sector

A G. Pox P1e | P2+ P3e Pax 014|024 T3 G4
0.193 0.707 — - = - — [ - _

0.206 0.661 0 0 — - - [ - _

0.206 0.661 0 0 0 - - [ - —

0.206 0.661 0 0 0 0 - - - - —
0.206 0.661 0 0 0 0 0 - - -

0.201 0.674 — - - - - —10 - —
0.202 0.670 — - - - — —10 0

0.203 0.666 — - - - — —10 0 0
0.206 0.661 0 0 — - — |0 — _

0.206 0.661 0 0 — - — |0 0 —

YA jple} Yéo Yo |Vpa Yés Vpa Yo, Ve /53 Vaa

—1.475 + 3.043¢|—1.475 — 3.0437| — - = - - - = -
—1.611 + 3.244¢| —1.611 — 3.2444| —6.066 | -2 |— — — - - —
—1.611 + 3.244¢|—1.611 — 3.2444| —6.066 | -2 |—0.780|— - - - -
—1.611 + 3.244¢|—1.611 — 3.2444|—6.066 | —2 |—0.780|—1.458| —
—1.611 +3.2444|—1.611 — 3.2441|—6.066|—2 |—0.660|—1.458| —1.898| —| — —

—1.644 +3.119¢|—1.644 — 3.119¢| — - - — — —|=2.797] -

—1.624 +3.139i|—-1.624 — 3.1391| — - - — — —|—3.131|-3.131) —
—1.630 4+ 3.159¢|—=1.630 — 3.159i| — - - - - —|—3.465|—3.465| —3.465
—1.611 + 3.2444|—1.611 — 3.244i|—6.066| -2 — — - |4 —

—1.611 + 3.244¢|—1.611 — 3.244i|—6.066 |—2 — — - |—4 |=2.780] -— —




RG dynamics away from the UV fixed point

e Away from the fixed point regime, the RG flow will drive the
Stiickelberg sector of the Diff-invariant unimodular theory

away from triviality: 7. () # 0, q«(?) #0

e The non—trivial Stiickelberg interactions generated by the RG
flow at lower energies imply that in principle

rUnim- £ TSR away from the fixed point regime (35)

— The two theories are in principle not equivalent to each
other quantum—mechanically (Reminder. The Lagrange
multiplier and Stiickelberg fields were coupled to external
sources in the path integrall)
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Predictivity of the theory in the UV

e An apparent problem: The number of relevant couplings in the
Stiickelberg sector increases with the order of truncation in 1), as the
anomalous dimension remains much smaller than the canonical one for

p(=-2)and 5 (= —4
oo’
e Root of the problem: The dimensionless nature of the field ¥ =
V=g
(In contrast with usual scalar field theories)
e Canonically normalising the field 1,
1 2
v v/Z)% (24 =2 (36)
shifts all Stiickelberg eigenvalues as
Von = Vot 1 (37)

e Shift produces a 'critical’ eigenvalue after which _couplings become
irrelevant, while fixed point and eigenvalues for G A remain unaffected

The number of relevant eigenvalues appears to become finite, and the theory predictive
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Summary

e A fully diffeomorphism-invariant unimodular theory was studied
within the Wilsonian approach of the exact renormalisation group
and asymptotic safety

e The effective action of the unimodular theory was shown to share a
similar structure with that of GR in the UV, and the two theories
shared similar UV completions within Asymptotic Safety

e The UV fixed-point and corresponding eigen-values for Newton's G

and A were found to be similar with those of the Einstein—Hilbert
truncation, and the unimodular theory appeared to be predictive

e Away from the UV-fixed point regime, the non—trivial (Stiickelberg)
interactions generated along the RG flow in principle make the
unimodular theory to differ from its GR counterpart
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Thank you!



