Asymptotic safety in the sine–Gordon model^a

Sándor Nagy

Department of Theoretical Physics, University of Debrecen

Debrecen, February 23, 2015

^a J. Kovács, S.N., K. Sailer, arXiv:1408.2680, to appear in PRD

Outline

- Functional renormalization group method
- sine–Gordon model
 - Local potential approximation
 - Wave-function renormalization
- Massive sine–Gordon model
- Asymptotic safety in the sine–Gordon model
- The sine–Gordon model with an irrelevant coupling
- Duality

Motivations

sine-Gordon model

- bosonized version of the 2d fermionic Thirring model
- effective theory for low energy, low dimensional condensed matter systems
- same universality class as the 2d XY model and the Coulomb gas
- toy model for supersymmetry, string theory

Massive sine–Gordon model

- natural generalization of the sine–Gordon model
- bosonized version of the 2d quantum electrodynamics (massive Schwinger model)

Renormalization

- The functional RG method is a fundamental element of quantum field theory.
- The high energy (UV) action describes the small distance interaction between the elementary excitations. We look for the low energy IR (or large distance) behavior.
- The RG method gives a functional integro-differential equation for the effective action, which is called the *Wetterich equation*

$$\dot{\Gamma}_k = \frac{1}{2} \operatorname{Tr} \frac{\dot{R}_k}{R_k + \Gamma_k^{\prime\prime}} = \frac{1}{2} \qquad ,$$

where $' = \partial/\partial \varphi$, $\dot{=} \partial/\partial t$, and the symbol Tr denotes the momentum integral and the summation over the internal indices.

• The IR regulator has the form $R_k[\phi] = \frac{1}{2}\phi \cdot R_k \cdot \phi$. It is a momentum dependent mass like term, which serves as an IR cutoff. We use

$$R_k = p^2 \left(\frac{k^2}{p^2}\right)^b.$$

• The functional form of the effective action is assumed to be similar to the microscopic action

$$\Gamma_k \sim S_k.$$

Gradient expansion

The gradient expansion of the effective action is

$$\Gamma_{k} = \int d^{d}x \left[V_{k}(\phi) + \frac{1}{2} Z_{k}(\phi) (\partial_{\mu}\phi)^{2} + H_{1}(\phi) (\partial_{\mu}\phi)^{4} + H_{2}(\phi) (\Box\phi_{x})^{2} + \dots \right].$$

The evolution equation for the potential is

$$\dot{V}_k(\phi) = \frac{1}{2} \int_p \frac{\dot{R}_k}{p^2 Z_k(\phi, p^2) + R_k + V_k''(\phi)}$$

The momentum dependent wave-function renormalization evolves as

$$\begin{split} q^{2}\dot{Z}_{k}(\phi,q^{2}) \\ &= \int_{p} \frac{\dot{R}_{k} \left[\frac{1}{2}q^{2}Z_{k}'(\phi,q^{2}) + \frac{1}{2}(P+p)^{2}Z_{k}'(\phi,(P+p)^{2}) + \frac{1}{2}p^{2}Z_{k}'(\phi,p^{2}) + V_{k}'''(\phi)\right]^{2}}{[p^{2}Z_{k}(\phi,p^{2}) + R_{k} + V_{k}''(\phi)]^{2}[(P+p)^{2}Z_{k}(\phi,(P+p)^{2}) + R_{k,P+p} + V_{k}''(\phi)]} \\ &- \int_{p} \frac{k\partial_{k}R_{k}[p^{2}Z_{k}'(\phi,p^{2}) + V_{k}'''(\phi)]^{2}}{p^{2}Z_{k}(\phi,p^{2}) + R_{k} + V_{k}''(\phi)]^{2}} - \int_{p} \frac{k\partial_{k}R_{k}\frac{1}{2}q^{2}Z_{k}''(\phi,q^{2})}{[p^{2}Z_{k}(\phi,p^{2}) + R_{k} + V_{k}''(\phi)]^{2}}. \end{split}$$

The 2d sine–Gordon model

Its effective action contains a sinusoidal potential of the form

$$\Gamma_k = \int \left[\frac{z}{2}(\partial_\mu \phi)^2 + u\cos\phi\right],\,$$

where z is the field independent wave-function renormalization and u is the coupling. The RG evolution equations for the couplings are

$$\dot{u} = \frac{1}{2} \mathcal{P}_{1} \int_{p} \dot{R}G$$

$$\dot{z} = \frac{1}{2} \mathcal{P}_{0} \int_{p} \dot{R} \left[-Z''G^{2} + \left(\frac{2}{d}Z'^{2}p^{2} + 4Z'V'''\right)G^{3} -2\left[V'''^{2}\left(\partial_{p^{2}}P + \frac{2}{d}p^{2}\partial^{2}P\right) + \frac{4}{d}Z'p^{2}V'''\partial_{p^{2}}P\right]G^{4} + \frac{8}{d}p^{2}V'''^{2}\partial_{p^{2}}P^{2}G^{5}\right]$$

with $G = 1/(zp^2 + R + V'')$, $P = zp^2 + R$ projections: $\mathcal{P}_1 = \int_{\phi} \cos(\phi)/\pi$ and $\mathcal{P}_0 = \int_{\phi}/2\pi$

The 2d sine–Gordon model

Symmetries

- Z₂
- periodicity

The conditions imply that the the effective (dimensionful) potential is zero. What does the RG method say?

The linearized flow equation in LPA is (~ denotes dimensionless quantities)

$$\dot{\tilde{u}} = \tilde{u}\left(-2 + \frac{1}{4\pi z}\right) + \mathcal{O}(\tilde{u}^2),$$

with any regulator. The equation can be solved analytically

$$\tilde{u} = \tilde{u}(k_{\Lambda}) \left(\frac{k}{k_{\Lambda}}\right)^{\frac{1}{4\pi z}-2}.$$

The fixed point solution is $\tilde{u}^* = 0$ and z^* arbitrary.

The 2d sine–Gordon model

How one can distinguish the phases in the model?

 \Rightarrow The dimensionful coupling \tilde{u} tends to zero, but the dimensionless one does not. This idea can be generalized when we take into account the upper harmonics:

• symmetric phase:

$$\tilde{V}_{k\to 0}(\phi) = 0$$

broken phase:

$$\tilde{V}_{k\to 0}(\phi) = 2\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\cos(n\phi)}{n^2} = -\frac{1}{2}\phi^2, \quad \phi \in [-\pi, \pi]$$

a concave function, which is repeated periodically in the field variable.

Local potential approximation

The 'exact' evolution equation is

Coleman point: $\tilde{u}^* = 0$ and $z_c^* = \frac{1}{8\pi}$

- in the symmetric phase the irrelevant scaling makes the model perturbatively nonrenormalizable
- in the broken phase we have finite IR values for the coupling \tilde{u}

Wave-function renormalization

The RG trajectories are hyperbolas

$$\tilde{u}^2 = \frac{2}{(8\pi)^{1-2/b}c_b} \left(z - \frac{1}{8\pi}\right)^2 + \tilde{u}^{*2},$$

The correlation length ξ is identified as $k_c \sim 1/\xi$ (singularity points). One obtains

$$\log \xi \approx \frac{\sqrt{\pi}}{8\sqrt{c_b}} \frac{1}{\tilde{u}^*} + \mathcal{O}(\tilde{u}^*), \text{ furthermore } \tilde{u}^{*2} = kt + \mathcal{O}(t^2)$$

where the reduced temperature is $t \sim z(\Lambda) - z_s(\Lambda)$ ($z_s(\Lambda)$ is a point of the separatrix). We get

$$\log \xi \propto t^{-\nu}$$
 with $\nu = \frac{1}{2}$ **KT type phase transition**

Asymptotic safety in the sine–Gordon model^a – p. 10

Wave-function renormalization

There are seemingly no fixed points.

• Taylor expanding in \tilde{u} we get $\tilde{u}^* = 0$, z (line of fixed points).

- $1/z < 8\pi$ UV attractive
- $1/z > 8\pi$ IR attractive

Rescaling equations with $(\omega = \sqrt{1 - \tilde{u}^2}, \chi = 1/z\omega \text{ and } \partial_\tau = \omega^2 k \partial_k)$ $\partial_\tau \omega = 2\omega(1 - \omega^2) - \frac{\omega^2 \chi}{2\pi}(1 - \omega),$ $\partial_\tau \chi = \chi^2 \frac{1 - \omega^2}{24\pi} - 2\chi(1 - \omega^2) + \frac{\omega \chi^2}{2\pi}(1 - \omega).$

We got an IR attractive fixed point at $\tilde{u}^* = 1, 1/z^* = 0$.

Scheme dependence, IR divergences

- we introduce $\bar{k} = \min(zp^2 + R)$
- for the power law IR regulator $R = p^2 (k^2/p^2)^b$, with $b \ge 1$ we can calculate \bar{k} analytically
- the corresponding renormalization scale is

$$\bar{k}^2 = bk^2 \left(\frac{z}{b-1}\right)^{1-1/b}$$

• when b = 1, then $\bar{k} = k$

• we can remove the dimension of the coupling u by k or by \overline{k}

$$\tilde{u} = rac{u}{k^2}$$
 and $\bar{u} = rac{u}{ar{k}^2}$

Scheme dependence, flow of the couplings

- b=2
- the dashed (solid) lines represent the trajectories belonging to the (broken) symmetric phase, respectively, the wide line denotes the separatrix between the phases
- the couplings \tilde{u} and z scales according to $k^{-\alpha}$ in the IR region (IR scaling regime exists)
- symmetric phase
 - the coupling \tilde{u} tends to zero (α is negative and b dependent)
 - z is constant (not plotted) \rightarrow LPA is a good approximation
- broken phase
 - the coupling \tilde{u} diverges (α is positive and b dependent)
 - *z* also diverges

Scheme dependence, IR divergences

The flow of the couplings, singularities

- b=2
- we changed the renormalization scale k to \bar{k}
- the scaling in the symmetric phase does not change
- the couplings \tilde{u} and z blows up in the broken phase
- when $b \to 1$ then $\alpha \to \infty$, so we have a singular behavior

Scheme dependence, phase space

- b=5
- the dimensionless coupling is $\bar{u} = u/\bar{k}^2$
- the inset shows the scaling of ξ w.r.t. the reduced temperature t
- the lower (upper) set of lines corresponds to the IR (KT) fixed point
- the triangle, circle and square correspond to b = 2, 5, 10, respectively
- in the middle a straight line with the slope -1/2 is drawn to guide the eye

Massive sine-Gordon model

The potential has the form

$$V = \frac{1}{2}m^2\phi^2 + u\cos\phi.$$

The MSG model has no periodicity.

Under the mass scale the coupling scales as $\tilde{u} \sim k^{-2}$ independently on the initial conditions. It implies that in LPA the effective potential has the same form.

Then how can we distinguish the phases?

We use the **sensitivity matrix** which is defined as the derivatives of the running coupling constants with respect to the bare one

$$S_{n,m} = \frac{\partial \tilde{g}_n(k)}{\partial \tilde{g}_m(k_\Lambda)}.$$

It develops singularities when the UV and IR cutoffs are removed at the phase boundaries.

- symmetric phase: $S_{1,1} \sim k^{-2} \rightarrow \infty$
- **broken phase**: $S_{1,1} = 0$, since the RG evolution results in a universal effective potential in the IR limit.

The MSG model, evolution equations

The evolution of the mass decouples from \tilde{u} . The RG equations are

$$\begin{split} \dot{\tilde{u}} &= -2\tilde{u} + \frac{1}{2\pi\tilde{u}z} \left[1 + \tilde{m}^2 - \sqrt{(1 + \tilde{m}^2)^2 - \tilde{u}^2} \right], \\ \dot{z} &= -\frac{1}{24\pi} \frac{\tilde{u}^2}{((1 + \tilde{m}^2)^2 - \tilde{u}^2)^{3/2}}, \\ \dot{\tilde{m}}^2 &= -2\tilde{m}^2. \end{split}$$

The last equation gives

$$\tilde{m}^2 \sim k^{-2},$$

so the mass is a relevant coupling, furthermore we have no fixed points in the MSG model.

IR limit the MSG model exhibits a second order phase transition:

$$\xi \sim t^{-\nu}$$

UV limit the mass can be neglected, so the model behaves as the SG model with an infinite order phase transition

$$\log \xi \sim t^{-\nu}$$

Wave-function renormalization

The evolution of z

There is an IR scaling region of the MSG model, which exhibits a second order phase transition

$$\xi \propto t^{-\nu}$$

We numerically obtained that $\nu = \frac{1}{2}$.

Asymptotic safety

New fixed point can found at $z \to 0$ and $\tilde{u} \to 1$. The fixed point is UV attractive. The fixed point of the 2d sine–Gordon model

- $\tilde{u}^* = 0, z$ (line of fixed points)
 - $1/z < 8\pi$ UV attractive **GFP**
 - $1/z > 8\pi$ IR attractive
 - $1/z = 8\pi$ Coleman point
- $\tilde{u}^* = 1, 1/z^* = 0$ IR attractive
- $\tilde{u}^* = 1, z^* = 0$ UV attractive **NGFP**

The model shows asymptotic freedom and asymptotic safety.

Asymptotic safety

- both in the IR and in the UV limits we get $\tilde{u} \rightarrow 1$.
- when $k \to 1$ then $z \to \infty$
- when $k \to \infty$ then $z \to 0$. The kinetic term tends to zero. Similar appears in the confining mechanism.

- The singularities shows up the limitation of the applicability of the models. New degrees of freedom appear.
 - **IR:** low energy limit, condensate (classical physics ?)
 - **UV:** high energy limit, instead of vortices we have single spins
- around the UV NGFP we can also identify $\xi = 1/k_c$ and we get

$$\log \xi \propto t^{-\nu} \quad \nu = \frac{1}{2}.$$

KT type phase transition. It originates from the Coleman point.

Asymptotic safety

- The phase space does not show singularity.
- The sudden increase of \tilde{u} and the sudden decrease of z compensate each other giving regular flows.

• around the UV NGFP we have
$$z = (1 - \tilde{u})^{3/2}$$

Asymptotically safe models

The sine-Gordon model with an irrelevant coupling

The ZSG model is:

$$\begin{split} \dot{\tilde{u}} &= -2\tilde{u} - \frac{1}{\tilde{u}} \int_{y} \left[1 - \frac{\tilde{Z}y + 1}{[(\tilde{Z}y + 1)^{2} - \tilde{u}^{2}]^{1/2}} \right] \\ \dot{z} &= \frac{\tilde{u}^{2}}{4} \int_{y} \left[\frac{-(2\partial_{y}\tilde{Z} + 4\tilde{z}_{1}y)(\tilde{Z}y + 1)}{[(\tilde{Z}y + 1)^{2} - \tilde{u}^{2}]^{5/2}} + \frac{y(\partial_{y}\tilde{Z})^{2}(4(\tilde{Z}y + 1)^{2} + \tilde{u}^{2})}{[(\tilde{Z}y + 1)^{2} - \tilde{u}^{2}]^{7/2}} \right] \\ \dot{\tilde{z}}_{1} &= 2\tilde{z}_{1} + \frac{1}{48} \int_{y} \left[\frac{-24\tilde{z}_{1}(\tilde{Z}y + 1)}{[(\tilde{Z}y + 1)^{2} - \tilde{u}^{2}]^{5/2}} + \frac{(72\tilde{z}_{1}(\partial_{y}\tilde{Z})y + 6(\partial_{y}\tilde{Z})^{2} + 36\tilde{z}_{1}^{2}y^{2})(4(1 + zy + \tilde{z}_{1}y^{2})^{2} + \tilde{u}^{2})}{[(\tilde{Z}y + 1)^{2} - \tilde{u}^{2}]^{7/2}} \\ &+ \frac{(-36(\partial_{y}\tilde{Z})^{3}y - 108z_{1}(\partial_{y}\tilde{Z})^{2}y^{2})(\tilde{Z}y + 1)(4(\tilde{Z}y + 1)^{2} + 3\tilde{u}^{2})}{[(\tilde{Z}y + 1)^{2} - \tilde{u}^{2}]^{9/2}} \\ &+ \frac{(18(\partial_{y}\tilde{Z})^{4}y^{2})(8(\tilde{Z}y + 1)^{4} + 12(\tilde{Z}y + 1)^{2}\tilde{u}^{2} + \tilde{u}^{4})}{[(\tilde{Z}y + 1)^{2} - \tilde{u}^{2}]^{11/2}} \bigg], \end{split}$$

with $\tilde{Z} = zy + \tilde{z}_1 y^2$. We numerically obtained that

$$\tilde{z}_1 \sim k^2,$$

so it scales in an **irrelevant** manner.

• The RG equations become singular if the denominator

$$(\tilde{Z}y + 1)^2 - \tilde{u}^2 = 0.$$

- when $\tilde{u} \to 1$ we have a singularity
- when \tilde{z}_1 grows up faster than \tilde{u} then there is no singularity.

UV limit: it shows a second order (probably Ising type) phase transition

- we have two phases in the UV.
- the correlation length scales as

$$\xi \sim t^{-\nu}$$
, with $\nu = \frac{1}{4}$.

IR limit: there is an infinite order phase transition (from the SG model)

$$\log \xi \sim t^{-\nu}$$
, with $\nu = \frac{1}{2}$

Duality

The UV and the IR limits of the SG model seems self dual if we use the transformations

$$k \quad \leftrightarrow \quad \frac{1}{k}$$
 $z \quad \leftrightarrow \quad \frac{1}{z}.$

The duality can be extended to the ZSG and to the MSG models, if

$$\tilde{z}_1 \leftrightarrow \tilde{m}^2$$
.

The ZSG and the MSG models become a dual pair.

model	UV	IR
SG	KT type, $\nu = 1/2$	KT type, $\nu = 1/2$
MSG	KT type, $\nu = 1/2$	Ising type, $\nu = 1/2$
ZSG	Ising type, $\nu = 1/4$	KT type, $\nu = 1/2$

Summary of the SG-type models and their fixed points.

Acknowledgments

Sándor Nagy acknowledges financial support from the János Bolyai Programme of the Hungarian Academy of Sciences and the Hungarian National Research Fund OTKA (K112233).

Thank You for Your attention