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We consider here a scalar field interacting with gravity. 
This general theory is interesting at pure theoretical level, but also for the implications in cosmology 

In a QFT formulation with metric description, 
one expects a general non local effective action: 

Fundamental problems to be solved: UV completion and UV-IR flows. 
Asymptotic safety paradigm and FRG techniques.                                                          (Reuter)   

In this framework we cannot avoid the use of a background field formalism. 
In a metric formulation (euclidean).:  

- Issue of the double metric description / modified splitting Ward Identities. 
- Issue of choosing truncations as well as coarse-graining schemes. Simple enough,                                                   

but able to keep some features of the full theory. 

Many degrees of approximations in the covariant description: 
Single metric (field) descriptions can be non local and complicated:  

On maximally symmetric background (e.g. a sphere), for a local “LPA” truncation, still not so trivial! 

Motivations
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Its first gravitational variation is
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The second variations are of three kind: a pure gravitational variation, a pure scalar field

variation and a mixed one. In computing the other second variation contributions, according

to the LPA approximation, we shall consider constant scalar field background �̄ such that � =

�̄+ ��. The first one is given, for a linear parameterization of the metric, by
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To get to the exponential parametrization just replace
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and keep terms of second order in h. The parameter ⇣ allows continuous interpolation between

the two parametrizations.

Putting ⇣ = 1 we find that the Hessian in exponential parametrizationis equal to the one in

linear parametrization plus the terms:
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The second variation with respect to the scalar field around the background �̄ reads
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Simplest approximation: expand                 around R=0 and keep only terms up to single power 
LPA truncation: 

… motivations

I. INTRODUCTION

In the quest of an UV-complete quantum field theory of gravity, the search for a fixed point

using functional renormalization group methods has reached the point where one may hope to

go beyond finitely many couplings and study entire functional classes of truncations. The best

studied case is that of f(R) actions, where a fixed point is known to exist, and to exhibit nice

stability properties, when f is a polynomial [1–3]. The most advanced calculations have now

reached order R34 [4, 5]. However, the radius of convergence of the Taylor series of f around

the origin is finite and there is not much to be gained by pushing the expansion much further.

Rather, one would like to find a scaling solution for the whole function f . Several studies

have shed light on various aspects of this issue but have so far failed to reach a convincing

conclusion, at least in four dimensions [6–11]. An important fact that has been pointed out

in [8] is that the equation of [2, 3] does not admit complete solutions. The simpler equation

proposed in [6] admits solutions at least for positive R but then it was shown in [10] that all

perturbations around them are redundant, i.e. can be absorbed by field redefinitions. One thus

has to find a “better” equation, i.e. one admitting a discrete set of solutions with non-redundant

perturbations, or else show that no such equation exists. In order to gain some understanding

of what may be wrong with the equations of [2, 3, 6], it has been shown in [12] that the use of

background-dependent regulators in the flow equation for a scalar field can artificially lead to

similar pathologies. It is therefore important to understand whether di↵erent ways of applying

the background field method could solve this issue.

In this paper we will discuss similar problems but in a di↵erent context, namely a scalar field

non-minimally coupled to gravity. We will consider E↵ective Average Actions (coarse-grained

e↵ective actions depending on a cuto↵ k, usually abridged EAA) of the functional form:
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where S
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and S
gh

are gauge-fixing and ghost terms. The usual Einstein-Hilbert action is

contained in this truncation as the constant (�-independent) part of the action, while switching

o↵ gravity (i.e. setting g
µ⌫

= �
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) reduces the system to the well-studied Local Potential

Approximation (LPA) of the scalar field. The EAA �
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This theory contains the E-H action with a cosmological constant if we remove the scalar.
Previously studied (Narain, Percacci) (single metric) but difficult to find fixed point solutions:  
singular structure induced by the power expansion in the background scalar curvature R  
around the origin. Too far off-shell!!!

Scalar tensor (ST)                                         E-H

 Pole in the denominator —> IR singularity (d>2), for  ST problem also in fixed point equation.

II. OLD EQUATIONS AND THEIR AILMENTS.

Flow equations for the functions F and V have been derived in [24], see also [15]. They were

then further simplified by Taylor expanding F and V around � = 0 to some finite order, and fixed

points have been searched within the resulting finite dimensional theory space. In d = 4 the only

nontrivial solution had constant f and v. It represents a non-interacting scalar field minimally

coupled to the well-known fixed point of pure gravity in the Einstein-Hilbert truncation. The

absence of other solutions was perhaps not too surprising, given that such solutions do not

exist for the pure scalar theory. In d = 3, however, pure scalar theory admits a nontrivial

scaling solution, the well-known Wilson-Fisher fixed point. In the simplest approximation,

known as the Local Potential Approximation (LPA), (I.2) reduces to the following equation for

the dimensionless potential v('):

v̇ = �3 v +
1

2
' v0 +

1

6⇡2(1 + v00)
(II.1)

The solution to this equation can be obtained by a variety of semi-analytic and numerical

methods. In view of this, there is perhaps greater reason to expect that a nontrivial scaling

solution may exist also for the system of the scalar field coupled to gravity. However, in [24]

no such solution was found. A Taylor expansion around � = 0 yielded fixed points all of whose

Taylor coe�cients are negative. Even if this corresponded to a genuine fixed point, it would

not be physically acceptable. If a fixed point existed and was analytic at � = 0 it would show

up as a fixed point for the Taylor coe�cients, so the failure to find a fixed point for the latter

implies that the functional equations do not have a global solution either. The question then

arises whether this reflects a genuine physical property of the system, or some problem with the

equations.

In order to discuss this we will not need to consider the whole equations, it will su�ce to

look at one term that comes from the contribution of the spin two excitations, namely

v̇ =
1

3⇡2


f

f � v
+ . . .

�
(II.2)

In a polynomial expansion of the solution around ' = 0, it turns out that v(0) < f(0) [24].

On the other hand, for large ' one expects the solutions to behave like v = A'6 + . . . and

f = B'2 + . . ., where the dots stand for inverse powers of '2. A solution with these boundary

conditions would have to cross the singularity at v = f . Although this cannot be ruled out, it
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�̇ ⇠ 1

1� 2� v ⇠ 'd f ⇠ '2

is likely that the failure to find physically acceptable polynomial fixed points is related to the

existence of this singularity.

This conclusion is reinforced by the following two observations. First, that this issue concerns

the behavior of the dimensionless potential when the dimensionless field ' = � k�(d�2)/2 becomes

large. For d > 2 this is therefore an infrared issue. Second, when F and V are constant, one

can identify

V =
2⇤

16⇡G
; F =

1

16⇡G
(II.3)

and the fraction f/(f�v) reduces to 1/(1�2⇤/k2). The singularity we are discussing is there-

fore a generalization of the well-known infrared singularity at ⇤ = k2/2 that appears in most

treatments of the gravitational flow equation.

This singularity is an artifact of the way the beta functions for v and f are constructed. The

inverse propagator for the transverse, traceless spin-2 components hT
µ⌫

is given by:

F

✓
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d(d� 1)
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◆
� V . (II.4)

The last term comes from the expansion of the
p
g in the potential term, which in the standard

linear background field expansion contains terms of the form h
µ⌫

hµ⌫ . The origin of the trouble-

some term in the flow equation for the potential is this propagator, with R set equal to zero.

But if V 6= 0, putting R to zero means that we evaluate the flow equation on a configuration

that is far o↵ shell. Let us see what would happen if we evaluated the equation on shell. For

constant � the trace of the equation of motion of the metric implies

FR =
d

d� 2
V . (II.5)

If we use this relation to eliminate the R term, the spin-2 inverse propagator becomes

F (�r̄2) +
2V

(d� 1)(d� 2)
. (II.6)

This would contribute to the flow equation of v a term

v̇ =
1

3⇡2

"
f

f + 2
(d�1)(d�2)v

+ . . .

#
(II.7)

where the troublesome singularity at v = f is no longer present. This is strong evidence that

the singularity at v = f is unphysical.

From the discussion above it is tempting to try and expand the flow equation around a

solution that is (nearly) on shell. The virtues of such an approach have been discussed previously
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Why? Spin 2 fluctuations, for                           , couple to the scalar potential via the metric determinant
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Gravity sector: the metric
A way to avoid this problem: use an exponential parameterization of the metric: 

by Benedetti [25] and Falls [26]. In the following we will not pursue this idea, but rather we

will employ a di↵erent parametrization of the field and choice of gauge fixing that automatically

avoid the issue.

III. THE NEW FLOW EQUATIONS

A. Exponential parametrization

Instead of the traditional linear quantum-background split g
µ⌫

= ḡ
µ⌫

+ h
µ⌫

we shall use in

this paper an exponential parametrization

g
µ⌫

= ḡ
µ⇢

(eh)⇢
⌫

(III.1)

where ḡ is a fixed but arbitrary background. This expansion has been used previously in [27]. See

also [28] for a recent discussion in a context that is closer to the present one. Some geometrical

motivation for the use of this formula is given in Appendix A. We assume in this paper that the

path integral measure is simple when expressed in terms of the field h thus defined. We discuss

in appendix B the Jacobian relating this measure to the one of the linear parametrization.

We will use the background metric ḡ to raise and lower indices. Then due to the symmetry

of g
µ⌫

and ḡ
µ⌫

also the tensor h
µ⌫

= ḡ
µ⇢

h⇢
⌫

is symmetric. We have

g
µ⌫

= ḡ
µ⌫

+ h
µ⌫

+
1

2
h
µ�

h�
⌫

+ . . . (III.2)

gµ⌫ = ḡµ⌫ � hµ⌫ +
1

2
hµ�h

�

⌫ + . . . (III.3)

In contrast to the usual linear split, here also the covariant metric is nonpolynomial in the

quantum field hµ
⌫

. Another significant di↵erence is that, due to the formula det eh = etrh, only

the trace part of h enters in the definition of the determinant, at all orders. As a result
p
g

does not contribute to the action of traceless fluctuations, which are therefore independent of

the potential. We can split

hµ
⌫

= hT
µ

⌫

+ 2!�µ
⌫

(III.4)

where trh = 2d! and hT is tracefree. Then

p
g = ed!

p
ḡ =

p
ḡ

✓
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2
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◆
. (III.5)
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Indeed                       so that  p
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p
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Remark:  at quantum level in general the off shell effective action which can be constructed with the  
exponential parametrization is not equivalent to the one with the linear parameterization if

• a Jacobian is not taken into account (but in our single metric truncation does not contribute) 
• the geometric formulation a la Vilkowisky-De Witt in not considered (known at one loop),                                  

e.g. the sources couple to different objects, expectations values are not trivially related, …

We take the attitude that the metric could be seen as a non linear object naturally preferring the 
exponential parametrization.

In this way the potential V couples only to the trace of the metric fluctuations. 

5

trh = h = 2d!

Think about the non linear parametrization based on frames and vielbeins…

Not also that this change of variables is never singular and the Jacobian is well defined.



Gravity sector: gauge transformations

The quantum gauge transformation for the fluctuations 
defined in the exponential parametrization:  

6

Gravity is a gauge theory: physics does not  
change under diffeomorphisms.

Note the absence of ⇠0 from the expansion. Also note that the kinetic operator of the ! field is

not the conformal scalar operator (which has a factor 4 instead of 2 in the denominator).

B. Gauge choice

At this point we have to choose a gauge. In order to simplify the equations as much as possible

we will choose a “physical” gauge, which amounts to putting the gauge-variant components of

h
µ⌫

to zero. Such gauges have been discussed earlier in a similar context in [21], see also [29–31].

The transformation of the metric under an infinitesimal di↵eomorphism ✏ is given by the Lie

derivative

�
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g
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⌘ ✏⇢@
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@
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µ
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As usual, we have to define transformations of ḡ and h that, used in (III.1), yield (III.12). The

simplest one is the background transformation. If we treat ḡ and h as tensors under �
✏
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and (III.12) follows. By definition, the “quantum” gauge transformation of h is such as to

reproduce (III.12) when ḡ is held fixed:
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From the properties of the Lie derivative we have
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Then we find
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Expanding for small h we find:
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✏

ḡ, h]µ
⌫
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We note that the first two terms coincide with the quantum transformation when one uses the

linear background decomposition. In the following we shall only be interested in the functional

8

Note the absence of ⇠0 from the expansion. Also note that the kinetic operator of the ! field is

not the conformal scalar operator (which has a factor 4 instead of 2 in the denominator).

B. Gauge choice

At this point we have to choose a gauge. In order to simplify the equations as much as possible

we will choose a “physical” gauge, which amounts to putting the gauge-variant components of

h
µ⌫

to zero. Such gauges have been discussed earlier in a similar context in [21], see also [29–31].

The transformation of the metric under an infinitesimal di↵eomorphism ✏ is given by the Lie

derivative

�
✏

g
µ⌫

= L
✏

g
µ⌫

⌘ ✏⇢@
⇢

g
µ⌫

+ g
µ⇢

@
⌫

✏⇢ + g
⌫⇢

@
µ

✏⇢ . (III.12)

As usual, we have to define transformations of ḡ and h that, used in (III.1), yield (III.12). The

simplest one is the background transformation. If we treat ḡ and h as tensors under �
✏

, i.e.

�(B)
✏

ḡ
µ⌫

= L
✏

ḡ
µ⌫

; �(B)
✏

hµ
⌫

= L
✏

hµ
⌫

. (III.13)

then also

�(B)
✏

(eh)µ
⌫

= L
✏

(eh)µ
⌫

(III.14)

and (III.12) follows. By definition, the “quantum” gauge transformation of h is such as to

reproduce (III.12) when ḡ is held fixed:

�(Q)
✏

ḡ
µ⌫

= 0 ; ḡ
µ⇢

�(Q)
✏

(eh)⇢
⌫

= L
✏

g
µ⌫

. (III.15)

From the properties of the Lie derivative we have

L
✏

g
µ⌫

= L
✏

ḡ
µ⇢

(eh)⇢
⌫

+ ḡ
µ⇢

L
✏

(eh)⇢
⌫

= (r̄
⇢

✏
µ

+ r̄
µ

✏
⇢

)(eh)⇢
⌫

+ g
µ�

(e�h)�
⇢

L
✏

(eh)⇢
⌫

(III.16)

Then we find

(e�h�(Q)
✏

eh)µ
⌫

= (e�hL
✏

eh)µ
⌫

+ (e�h)µ
⇢

(r̄⇢✏
�

+ r̄
�

✏⇢)(eh)�
⌫

(III.17)

Expanding for small h we find:

�(Q)
✏

hµ
⌫

= (L
✏

ḡ)µ
⌫

+ L
✏

hµ
⌫

+ [L
✏

ḡ, h]µ
⌫

+O(✏h2) . (III.18)

We note that the first two terms coincide with the quantum transformation when one uses the

linear background decomposition. In the following we shall only be interested in the functional
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For a single metric truncation, to define the gauge fixing  
and ghost terms, it is enough to keep:

�
k

(h; ḡ) for h = 0. It is therefore su�cient to consider only the first term in (III.18). Since

�
(Q)
✏

ḡ = 0 we can write

�(Q)
✏

h
µ⌫

= r̄
µ

✏
⌫

+ r̄
⌫

✏
µ

+O(h) (III.19)

Using the background ḡ we can decompose the transformation parameter ✏µ in its longitudinal

and transverse parts:

✏µ = ✏Tµ +
1p
�r̄2

r̄
µ

 ; r̄
µ

✏Tµ = 0 . (III.20)

The inverse square root of the background Laplacian has been inserted conventionally in the

definition of  so that it has the same dimension as ✏µ. We can then calculate the separate

transformation properties of the York-decomposed metric under longitudinal and transverse

infinitesimal di↵eomorphisms. We have

�
✏

T ⇠µ = ✏Tµ ; �
 

! = �1

d

p
�r̄2 ; �

 

� =
2p
�r̄2

 , (III.21)

all other transformations being zero. Note that � and ! are gauge-variant but the combination

2! � 1
d

r̄2� is invariant. In terms of the redefined variables (III.10) we have

�
✏

T ⇠0
µ

=

r
�r̄2 � R̄

d
✏T
µ

; �
 

�0 = 2

s

�r̄2 � R̄

d� 1
 . (III.22)

First we pick the “unimodular gauge” det g = det ḡ. 2 In unimodular gravity this is imposed

as an a priori condition on the metric: by definition the path integral is then over metrics

with fixed determinant. Here we start from the usual path integral over all metrics and take

det g = det ḡ as a partial gauge condition. This means that we have to take into account a ghost

term. To find the ghost operator we first observe that in the exponential parametrization the

unimodular gauge condition is

! = 0 . (III.23)

From (III.21) one then finds that the path integral must contain a ghost determinant

det(
p
�r̄2) =

p
det(�r̄2). As usual, this can be rewritten as a path integral over a real

anticommuting scalar ghost

S
g!

=

Z
ddx

p
ḡ c(�r̄2)c (III.24)

2 One often just sets det g = 1. This is incompatible with the choice of a dimensionful metric, that we prefer. Also
note that on a compact manifold the gauge group does not allow one to make constant rescalings of the metric,
so that the overall scale of the metric remains a physical degree of freedom. We ignore it in the following, since
it does not a↵ect the running of the terms in our truncation.
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York decomposition of the metric:

Hilbert action

Z

ddx
p
ḡ
h 1

4
hµ⌫r̄2hµ⌫ � 1

2
hµ⌫r̄µr̄⇢h⇢

⌫ +
1

2
(trh)r̄µr̄⌫h

µ⌫ � 1

4
(trh)r̄2(trh)

+
1

2
R̄µ⇢⌫�h

µ⌫h⇢� � 1

2
R̄µ⌫h

µ⌫(trh) +
1

8
R̄(trh)2

i

(A.13)

We now proceed with the York decomposition for h:

hµ⌫ = hTT
µ⌫ + r̄µ⇠⌫ + r̄⌫⇠µ + r̄µr̄⌫� � 1

d
ḡµ⌫r̄2� +

h

d
ḡµ⌫ , (A.14)

Then we use the following relations, which hold on the sphere Sd:

Z

dx
p
ḡ hµ⌫r̄2hµ⌫ =

Z

dx
p
ḡ
h

hTT
µ⌫r̄2hTT µ⌫ � 2⇠µ

✓

r̄2 +
R̄

d

◆✓

r̄2 +
d+ 1

d(d� 1)
R̄

◆

⇠µ

+
d� 1

d
�r̄2

✓

r̄2 +
2R̄

d� 1

◆✓

r̄2 +
R̄

d� 1

◆

� +
1

d
(trh)r̄2(trh)

i

,

Z

dx
p
ḡ hµ⌫rµr⇢h

⇢⌫ =

Z

dx
p
ḡ
h

� ⇠µ

✓

r̄2 +
R̄

d

◆2

⇠µ +
(d� 1)2

d2
�r̄2

✓

r̄2 +
R̄

d� 1

◆2

�

+
2(d� 1)

d2
(trh)r̄2

✓

r̄2 +
R̄

d� 1

◆

� +
1

d2
(trh)r̄2(trh)

i

,

Z

dx
p
ḡ hµ⌫h

µ⌫ =

Z

dx
p
ḡ
h

hTT
µ⌫h

TT µ⌫
+ 2⇠µ

✓

�r̄2 � R̄

d

◆

⇠µ

+
d� 1

d
�r̄2

✓

r̄2 +
R̄

d� 1

◆

� +
1

d
(trh)2

i

. (A.15)

Appendix B: Transformation properties

The transformation of the metric under an infinitesimal di↵eomorphism ✏ is given by the Lie

derivative

�✏gµ⌫ = L✏gµ⌫ ⌘ ✏⇢@⇢gµ⌫ + gµ⇢@⌫✏
⇢ + g⌫⇢@µ✏

⇢ . (B.1)

As usual, we have to define transformations of ḡ and h which used in (A.1) yield (B.1). The

simplest one is the background transformation. If we treat ḡ and h as tensors under �✏, i.e.

�(B)
✏ ḡµ⌫ = L✏ḡµ⌫ ; �(B)

✏ hµ⌫ = L✏h
µ
⌫ . (B.2)

then also

�(B)
✏ (eh)µ⌫ = L✏(e

h)µ⌫ (B.3)

and (B.1) follows.

4

�
k

(h; ḡ) for h = 0. It is therefore su�cient to consider only the first term in (III.18). Since

�
(Q)
✏

ḡ = 0 we can write

�(Q)
✏

h
µ⌫

= r̄
µ

✏
⌫

+ r̄
⌫

✏
µ

+O(h) (III.19)

Using the background ḡ we can decompose the transformation parameter ✏µ in its longitudinal

and transverse parts:

✏µ = ✏Tµ + r̄µ

1p
�r̄2

 ; r̄
µ

✏Tµ = 0 . (III.20)

The inverse square root of the background Laplacian has been inserted conventionally in the

definition of  so that it has the same dimension as ✏µ. We can then calculate the separate

transformation properties of the York-decomposed metric under longitudinal and transverse

infinitesimal di↵eomorphisms. We have

�
✏

T ⇠µ = ✏Tµ ; �
 

! = �1

d

p
�r̄2 ; �

 

� =
2p
�r̄2

 , (III.21)

all other transformations being zero. Note that � and ! are gauge-variant but the combination

2! � 1
d

r̄2� is invariant. In terms of the redefined variables (III.10) we have

�
✏

T ⇠0
µ

=

r
�r̄2 � R̄

d
✏T
µ

; �
 

�0 = 2

s

�r̄2 � R̄

d� 1
 . (III.22)

First we pick the “unimodular gauge” det g = det ḡ. 2 In unimodular gravity this is imposed

as an a priori condition on the metric: by definition the path integral is then over metrics

with fixed determinant. Here we start from the usual path integral over all metrics and take

det g = det ḡ as a partial gauge condition. This means that we have to take into account a ghost

term. To find the ghost operator we first observe that in the exponential parametrization the

unimodular gauge condition is

! = 0 . (III.23)

From (III.21) one then finds that the path integral must contain a ghost determinant

det(
p
�r̄2) =

p
det(�r̄2). As usual, this can be rewritten as a path integral over a real

anticommuting scalar ghost

S
g!

=

Z
ddx

p
ḡ c(�r̄2)c (III.24)

2 One often just sets det g = 1. This is incompatible with the choice of a dimensionful metric, that we prefer. Also
note that on a compact manifold the gauge group does not allow one to make constant rescalings of the metric,
so that the overall scale of the metric remains a physical degree of freedom. We ignore it in the following, since
it does not a↵ect the running of the terms in our truncation.
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and similarly for the diffeomorphism generator

�
k

(h; ḡ) for h = 0. It is therefore su�cient to consider only the first term in (III.18). Since

�
(Q)
✏

ḡ = 0 we can write

�(Q)
✏

h
µ⌫

= r̄
µ

✏
⌫

+ r̄
⌫

✏
µ

+O(h) (III.19)

Using the background ḡ we can decompose the transformation parameter ✏µ in its longitudinal

and transverse parts:

✏µ = ✏Tµ + r̄µ

1p
�r̄2

 ; r̄
µ

✏Tµ = 0 . (III.20)

The inverse square root of the background Laplacian has been inserted conventionally in the

definition of  so that it has the same dimension as ✏µ. We can then calculate the separate

transformation properties of the York-decomposed metric under longitudinal and transverse

infinitesimal di↵eomorphisms. We have

�
✏

T ⇠µ = ✏Tµ ; �
 

! = �1

d

p
�r̄2 ; �

 

� =
2p
�r̄2

 , (III.21)

all other transformations being zero. Note that � and ! are gauge-variant but the combination

2! � 1
d

r̄2� is invariant. In terms of the redefined variables (III.10) we have

�
✏

T ⇠0
µ

=

r
�r̄2 � R̄

d
✏T
µ

; �
 

�0 = 2

s

�r̄2 � R̄

d� 1
 . (III.22)

First we pick the “unimodular gauge” det g = det ḡ. 2 In unimodular gravity this is imposed

as an a priori condition on the metric: by definition the path integral is then over metrics

with fixed determinant. Here we start from the usual path integral over all metrics and take

det g = det ḡ as a partial gauge condition. This means that we have to take into account a ghost

term. To find the ghost operator we first observe that in the exponential parametrization the

unimodular gauge condition is

! = 0 . (III.23)

From (III.21) one then finds that the path integral must contain a ghost determinant

det(
p
�r̄2) =

p
det(�r̄2). As usual, this can be rewritten as a path integral over a real

anticommuting scalar ghost

S
g!

=

Z
ddx

p
ḡ c(�r̄2)c (III.24)

2 One often just sets det g = 1. This is incompatible with the choice of a dimensionful metric, that we prefer. Also
note that on a compact manifold the gauge group does not allow one to make constant rescalings of the metric,
so that the overall scale of the metric remains a physical degree of freedom. We ignore it in the following, since
it does not a↵ect the running of the terms in our truncation.
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�
k

(h; ḡ) for h = 0. It is therefore su�cient to consider only the first term in (III.18). Since

�
(Q)
✏

ḡ = 0 we can write

�(Q)
✏

h
µ⌫

= r̄
µ

✏
⌫

+ r̄
⌫

✏
µ

+O(h) (III.19)

Using the background ḡ we can decompose the transformation parameter ✏µ in its longitudinal

and transverse parts:

✏µ = ✏Tµ + r̄µ

1p
�r̄2

 ; r̄
µ

✏Tµ = 0 . (III.20)

The inverse square root of the background Laplacian has been inserted conventionally in the

definition of  so that it has the same dimension as ✏µ. We can then calculate the separate

transformation properties of the York-decomposed metric under longitudinal and transverse

infinitesimal di↵eomorphisms. We have

�
✏

T ⇠µ = ✏Tµ ; �
 

! = �1

d

p
�r̄2 ; �

 

� =
2p
�r̄2

 , (III.21)

all other transformations being zero. Note that � and ! are gauge-variant but the combination

2! � 1
d

r̄2� is invariant. In terms of the redefined variables (III.10) we have

�
✏

T ⇠0
µ

=

r
�r̄2 � R̄

d
✏T
µ

; �
 

�0 = 2

s

�r̄2 � R̄

d� 1
 . (III.22)

First we pick the “unimodular gauge” det g = det ḡ. 2 In unimodular gravity this is imposed

as an a priori condition on the metric: by definition the path integral is then over metrics

with fixed determinant. Here we start from the usual path integral over all metrics and take

det g = det ḡ as a partial gauge condition. This means that we have to take into account a ghost

term. To find the ghost operator we first observe that in the exponential parametrization the

unimodular gauge condition is

! = 0 . (III.23)

From (III.21) one then finds that the path integral must contain a ghost determinant

det(
p
�r̄2) =

p
det(�r̄2). As usual, this can be rewritten as a path integral over a real

anticommuting scalar ghost

S
g!

=

Z
ddx

p
ḡ c(�r̄2)c (III.24)

2 One often just sets det g = 1. This is incompatible with the choice of a dimensionful metric, that we prefer. Also
note that on a compact manifold the gauge group does not allow one to make constant rescalings of the metric,
so that the overall scale of the metric remains a physical degree of freedom. We ignore it in the following, since
it does not a↵ect the running of the terms in our truncation.
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� h = �2
p
�r̄2 

Gauge invariant quantities 

s = h� r̄2� hTT
µ⌫

To adsorbe some Jacobians one can redefine: 

For the scalar field we also expand around a background �̄:

� = �̄+ �� . (III.6)

We then expand the action (I.1) to second order in h and ��. Collecting all the terms we find

Z
ddx

p
ḡ

"
F (�̄)

⇣1
4
h
µ⌫

(�r̄2)hµ⌫ +
1

2
h
µ⌫

r̄µr̄⇢h
⇢

⌫ � 1

2
(trh)r̄

µ

r̄
⌫

hµ⌫ +
1

4
(trh)r̄2(trh)

�1

2
R̄

µ⇢⌫�

hµ⌫h⇢� +
1

2
R̄

µ⌫

hµ⌫(trh)� 1

8
R̄ (trh)2

⌘

�F 0(�̄)

✓
r̄

µ

r̄
⌫

hµ⌫ � r̄2(trh)� R̄
µ⌫

hµ⌫ +
1

2
R̄ (trh)

◆
��

+
1

2
��(�r̄2 + V 00(�̄)� F 00(�̄)R̄)��+

1

2
V 0(�̄)(trh)��+

1

8
V (�̄)(trh)2

#
(III.7)

This is identical to equation (6) in [24], which was derived using a linear split, except for two

terms that are missing here:

�1

2
F (�̄)R̄µ⌫h

µ⇢

h⇢
⌫

� 1

4
(V (�̄)� F (�̄)R̄)h

µ⌫

hµ⌫ . (III.8)

The latter came from the expansion to second order of the square root of the determinant of g.

It is absent here because in the exponential parametrization the determinant depends only on

the trace part of h.

We then proceed with the York decomposition for the tracefree part of h:

hT
µ⌫

= hTT

µ⌫

+ r̄
µ

⇠
⌫

+ r̄
⌫

⇠
µ

+ r̄
µ

r̄
⌫

� � 1

d
ḡ
µ⌫

r̄2� , (III.9)

where r̄µhTT

µ⌫

= 0 and r̄µ⇠
µ

= 0. As usual it is convenient to further redefine

⇠0
µ

=

r
�r̄2 � R̄

d
⇠
µ

; �0 =
p

�r̄2

s

�r̄2 � R̄

d� 1
� . (III.10)

Collecting all terms we can rewrite the quadratic action in terms of the independent fields

hTT , ⇠0, �0, ! and ��:

Z
dx

p
ḡ

"
F (�̄)

 
1

4
hTT

µ⌫

✓
�r̄2 +

2R̄

d(d� 1)

◆
hTT

µ⌫ � (d� 1)(d� 2)

4d2
�0 ��r̄2

�
�0

�(d� 1)(d� 2)

d
!

s

(�r̄2)

✓
�r̄2 � R̄

d� 1

◆
�0 � (d� 1)(d� 2)!

✓
�r̄2 +

(d� 2)R̄

2(d� 1)

◆
!

!

�F 0(�̄)
d� 1

d
��

 s

(�r̄2)

✓
�r̄2 � R̄

d� 1

◆
�0 + 2d

✓
�r̄2 +

(d� 2)R̄

2(d� 1)

◆
!

!

+
1

2
��(�r̄2 + V 00(�̄)� F 00(�̄)R̄)��+ V 0(�̄)d!��+

1

2
V (�̄)d2!2

#
(III.11)
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Transformations: 



Gravity sector: gauge fixing and ghosts

7

We shall use the so called physical gauge fixing: set to zero the gauge dependent fluctuations. 
Therefore in the path integral there remain two kind of gauge invariant fluctuations:  s  and  hTT

µ⌫

We face two possible GF choices:

Remark: for compact spaces (e.g. a sphere) no diffeomorphism can change the constant mode of h. 
This mode contributes to order      in the effective action so for our linear truncation we can set it  
to zero as well.

R2

Faddeev Popov determinants: varying the GF conditions.

I:     II:     ⇠0µ = 0 , �0 = 0

�(⇠0µ)

(This gauge condition has been discussed previously in [32]. There, the ghost was a complex

scalar. This di↵erence is due to the di↵erent definition of  in (III.20).)

The unimodular gauge condition completely breaks the invariance under longitudinal in-

finitesimal di↵eomorphisms, but leaves a residual gauge freedom that consists of the volume-

preserving di↵eomorphisms, which are generated by the transverse vector ✏T . From (III.22) we

see that this residual freedom can be fixed by further choosing

⇠0
µ

= 0 , (III.25)

which gives rise to a ghost determinant det

✓q
�r̄2 � R̄

d

◆
=

r
det

⇣
�r̄2 � R̄

d

⌘
. Again, this

can be written as a path integral over an anticommuting real transverse vector

S
g⇠

=

Z
ddx

p
ḡ c

µ

ḡµ⌫
✓
�r̄2 � R̄

d

◆
c
⌫

(III.26)

Equations (III.23,III.25) define the “unimodular physical gauge”, which is the gauge condition

that, unless otherwise stated, will be used in the rest of the paper.

Before proceeding it is instructive, however, to think for a moment of an alternative choice.

Since the combination 2! � 1
d

r2� is gauge invariant, one may alternatively also pick the gauge

�0 = 0 . (III.27)

From (III.22) one then finds that the path integral must contain a ghost determinant

det

✓q
�r̄2 � R̄

d�1

◆
=

r
det

⇣
�r̄2 � R̄

d�1

⌘
. As usual, this can be rewritten as a path inte-

gral over a real anticommuting scalar ghost

S
g�

0 =

Z
ddx

p
ḡ c

✓
�r̄2 � R̄

d� 1

◆
c (III.28)

This choice may seem more natural but for our purposes it is less useful. The reason is that if

we set �0 = 0, in the Hessian (III.11) there remains a kinetic term for ! which depends explicitly

on V , whereas if we set ! = 0 all kinetic operators are independent of V . Since our purpose is

precisely to avoid singularities due to the appearance of V in the kinetic operators, it is clear

that for us here the second choice is preferable.

C. Digression on Einstein-Hilbert gravity

Since physical gauges are not very familiar, in this section we make a little digression to test

our procedure in a setting that is better understood. We consider the special case when F and
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�(�0)

�
k

(h; ḡ) for h = 0. It is therefore su�cient to consider only the first term in (III.18). Since

�
(Q)
✏

ḡ = 0 we can write

�(Q)
✏

h
µ⌫

= r̄
µ

✏
⌫

+ r̄
⌫

✏
µ

+O(h) (III.19)

Using the background ḡ we can decompose the transformation parameter ✏µ in its longitudinal

and transverse parts:

✏µ = ✏Tµ + r̄µ

1p
�r̄2

 ; r̄
µ

✏Tµ = 0 . (III.20)

The inverse square root of the background Laplacian has been inserted conventionally in the

definition of  so that it has the same dimension as ✏µ. We can then calculate the separate

transformation properties of the York-decomposed metric under longitudinal and transverse

infinitesimal di↵eomorphisms. We have

�
✏

T ⇠µ = ✏Tµ ; �
 

! = �1

d

p
�r̄2 ; �

 

� =
2p
�r̄2

 , (III.21)

all other transformations being zero. Note that � and ! are gauge-variant but the combination

2! � 1
d

r̄2� is invariant. In terms of the redefined variables (III.10) we have

�
✏

T ⇠0
µ

=

r
�r̄2 � R̄

d
✏T
µ

; �
 

�0 = 2

s

�r̄2 � R̄

d� 1
 . (III.22)

First we pick the “unimodular gauge” det g = det ḡ. 2 In unimodular gravity this is imposed

as an a priori condition on the metric: by definition the path integral is then over metrics

with fixed determinant. Here we start from the usual path integral over all metrics and take

det g = det ḡ as a partial gauge condition. This means that we have to take into account a ghost

term. To find the ghost operator we first observe that in the exponential parametrization the

unimodular gauge condition is

! = 0 . (III.23)

From (III.21) one then finds that the path integral must contain a ghost determinant

det(
p
�r̄2) =

p
det(�r̄2). As usual, this can be rewritten as a path integral over a real

anticommuting scalar ghost

S
g!

=

Z
ddx

p
ḡ c(�r̄2)c (III.24)

2 One often just sets det g = 1. This is incompatible with the choice of a dimensionful metric, that we prefer. Also
note that on a compact manifold the gauge group does not allow one to make constant rescalings of the metric,
so that the overall scale of the metric remains a physical degree of freedom. We ignore it in the following, since
it does not a↵ect the running of the terms in our truncation.
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(This gauge condition has been discussed previously in [32]. There, the ghost was a complex

scalar. This di↵erence is due to the di↵erent definition of  in (III.20).)

The unimodular gauge condition completely breaks the invariance under longitudinal in-

finitesimal di↵eomorphisms, but leaves a residual gauge freedom that consists of the volume-

preserving di↵eomorphisms, which are generated by the transverse vector ✏T . From (III.22) we

see that this residual freedom can be fixed by further choosing

⇠0
µ

= 0 , (III.25)

which gives rise to a ghost determinant det

✓q
�r̄2 � R̄

d

◆
=

r
det

⇣
�r̄2 � R̄

d

⌘
. Again, this

can be written as a path integral over an anticommuting real transverse vector

S
g⇠

=

Z
ddx

p
ḡ c

µ

ḡµ⌫
✓
�r̄2 � R̄

d

◆
c
⌫

(III.26)

Equations (III.23,III.25) define the “unimodular physical gauge”, which is the gauge condition

that, unless otherwise stated, will be used in the rest of the paper.

Before proceeding it is instructive, however, to think for a moment of an alternative choice.

Since the combination 2! � 1
d

r2� is gauge invariant, one may alternatively also pick the gauge

�0 = 0 . (III.27)

From (III.22) one then finds that the path integral must contain a ghost determinant

det

✓q
�r̄2 � R̄

d�1

◆
=

r
det

⇣
�r̄2 � R̄

d�1

⌘
. As usual, this can be rewritten as a path inte-

gral over a real anticommuting scalar ghost

S
g�

0 =

Z
ddx

p
ḡ c

✓
�r̄2 � R̄

d� 1

◆
c (III.28)

This choice may seem more natural but for our purposes it is less useful. The reason is that if

we set �0 = 0, in the Hessian (III.11) there remains a kinetic term for ! which depends explicitly

on V , whereas if we set ! = 0 all kinetic operators are independent of V . Since our purpose is

precisely to avoid singularities due to the appearance of V in the kinetic operators, it is clear

that for us here the second choice is preferable.

C. Digression on Einstein-Hilbert gravity

Since physical gauges are not very familiar, in this section we make a little digression to test

our procedure in a setting that is better understood. We consider the special case when F and

10

⇠0µ = 0 , h = const.
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The pure E-H action has a very simple Hessian using gauge invariant variables. For example:

E-H truncation with type I cutoff and gauge fixing I (h=0).
Flow equations for the dimensionless couplings:

V are constant, in which case (II.3) can be used. In this section we also drop the scalar field

entirely. The beta functions of the dimensionless couplings ⇤̃ = ⇤/k2 and G̃ = Gkd�2, have the

general form

@
t

G̃ = (d� 2)G̃+BG̃2 , (III.29)

@
t

⇤̃ = �2⇤̃+
1

2
AG+BG̃⇤̃ , (III.30)

The coe�cients A and B can be written as A = A1 � ⌘A2, B = B1 � ⌘B2, where ⌘ is the

anomalous dimension of h
µ⌫

.

We begin by considering only the case ⇤̃ = 0 and we focus on the coe�cient B1. We work

in arbitrary dimension but we are especially interested in the case d = 2 + ✏. Let us first recall

the situation with a standard gauge fixing term

S
GF

=
1

2↵

Z
ddx

p
ḡ ḡµ⌫�

µ

�
⌫

; �
µ

= r̄
⇢

h⇢
µ

� 1 + �

d
r̄

µ

h , (III.31)

depending on two parameters ↵ and �. (The case ↵ = 1, � = d/2�1 has been discussed recently

in [28].) In the linear parametrization one finds, in the limit d ! 2, independently of ↵,

B1 =
2
�
19� 38� + 13�2

�

3(1� �)2
(III.32)

which for � ! 0 gives B = 38/3, a number that has been found many times in the literature

[33–38]. The same calculation with the exponential parametrization leads, again independently

of ↵, to

B1 =
2
�
25� 38� + 19�2

�

3(1� �)2
(III.33)

which for � ! 0 reproduces the well-known result of 2-dimensional quantum gravity B1 = 50/3

[27, 39, 40].

What is one to make of this discrepancy? We have computed the beta function of G in

generic dimension d, where it is not universal, and then have taken the limit d ! 2. In this

limit G becomes dimensionless and it is generally the case that the one-loop beta functions

of dimensionless couplings are universal. In fact the limits d ! 2 do exhibit some degree of

universality, insofar as they can be shown to be independent of the choice of the cuto↵ function.

The choice of parameterization does a↵ect the limit, however. The fact that the limit of the beta

function does not generally agree with the 2-dimensional result is probably not too surprising,

since our calculation takes into account all the degrees of fredom of the metric, including the
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What is one to make of this discrepancy? We have computed the beta function of G in

generic dimension d, where it is not universal, and then have taken the limit d ! 2. In this

limit G becomes dimensionless and it is generally the case that the one-loop beta functions

of dimensionless couplings are universal. In fact the limits d ! 2 do exhibit some degree of

universality, insofar as they can be shown to be independent of the choice of the cuto↵ function.
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function does not generally agree with the 2-dimensional result is probably not too surprising,

since our calculation takes into account all the degrees of fredom of the metric, including the
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transverse traceless fluctuations, whereas in two dimensions those degrees of freedom do not

exist, even at a kinematical level. From this point of view it is perhaps surprising that one

can reproduce the 2-dimensional result at all. We observe that within the approach described

here (one loop background-field calculation in so called-single metric approximation) the way to

do so is to use the exponential parametrization and the gauge � = 0, whose special feature is

that it does not involve the conformal degree of freedom. (For the limit it makes no di↵erence

whether one chooses � = 0 for all d, so that the conformal degree of freedom is not involved in

any dimension, or the de-Donder condition � = d/2� 1, where this is only true in d = 2.)

Now let us see what happens in the physical gauges. If we use a linear parametrization of

the metric then the gauge choice ⇠0 = 0, �0 = 0 gives B1 = 38/3. In fact it can be seen that

it gives the same result for B1 as the standard gauge � = 0, ↵ = 0, in any dimension and for

any value of ⇤. This is because ↵ = 0, � = 0 means that we strongly set to zero the quantity

r̄µhT
µ⌫

. On the other hand the gauge choice ⇠0 = 0, ! = 0 gives B1 = 26/3. We note that this

coincides with the limit of (III.32) for � ! 1.

If we use the exponential parametrization of the metric, the gauge ⇠0 = 0, ! = 0 gives

B1 = 38/3 while the gauge ⇠0 = 0, �0 = 0 gives B1 = 50/3. 3 This calculation confirms the

previous conclusion that in order to reproduce the 2-dimensional result one has to use a gauge

condition that does not involve the conformal factor. Since all these results depend critically on

the form of the ghost terms, we take their consistency as a confirmation of the correctness of

the procedure.

We close this section by giving the complete beta functions of ⇤ and G in the exponential

parametrization and in the physical gauges, calculated with the optimized cuto↵. In the gauge

⇠0
µ

= 0, ! = 0 the coe�cients of the beta functions are (see [2] for other cuto↵ types)

A1 =
16⇡(d� 3)

(4⇡)d/2�[d/2]
(III.34)

A2 = � 16⇡(d� 1)

(4⇡)d/2(d+ 2)�[d/2]
(III.35)

B1 =
16⇡(d5 � 4d4 � 9d3 � 48d2 + 60d+ 24

(4⇡)d/212d2(d� 1)�[d/2]
(III.36)

B2 = � 16⇡(d5 � 15d3 � 58d2 + 48

(4⇡)d/212d2(d� 1)(d+ 2)�[d/2]
(III.37)

We will not attempt to calculate the anomalous dimension here. If we restrict ourselves to the

3 One has to be careful with the order of the limits. Here we are always taking first ⇤̃ ! 0 and then d ! 2.
Taking the limits in the opposite order would give, in this case, B1 = 52/3.
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At fixed point G̃⇤ > 0

1 < d  6

0  d  7

for

For type II cutoff (same results as  K. Falls 2015)
G̃⇤ > 0 for

A global flow from UV to IR exists. There is no singularity at ⇤̃ = 1/2

Let us consider for example the terms proportional to f(R̄) which comes from the expansion of
p
g. One has

Z
ddx

p
ḡf(R̄)

✓
d� 2

8d
h2 � d� 1

4d
�02

◆
(E.4)

One can write this expression in terms of s and �0 or in terms of s and h and easily observe that

the part quadratic in s is di↵erent in the two cases, so that gauge fixing with �0 = 0 or with

h = 0 leads obviously to di↵erent hessian in the part quadratic in the gauge invariant variable

s.

————————–

1

2

Z
dx

p
ḡ


1

2
hTT

µ⌫

✓
�r̄2 +

2R̄

d(d� 1)

◆
hTT µ⌫ � (d� 1)(d� 2)

2d2
s

✓
�r̄2 � R̄

d� 1

◆
s� d� 2

4d
Rh2

�
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function does not generally agree with the 2-dimensional result is probably not too surprising,
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◆
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✓
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◆
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I. INTRODUCTION

In the quest of an UV-complete quantum field theory of gravity, the search for a fixed point

using functional renormalization group methods has reached the point where one may hope to

go beyond finitely many couplings and study entire functional classes of truncations. The best

studied case is that of f(R) actions, where a fixed point is known to exist, and to exhibit nice

stability properties, when f is a polynomial [1–3]. The most advanced calculations have now

reached order R34 [4, 5]. However, the radius of convergence of the Taylor series of f around

the origin is finite and there is not much to be gained by pushing the expansion much further.

Rather, one would like to find a scaling solution for the whole function f . Several studies

have shed light on various aspects of this issue but have so far failed to reach a convincing

conclusion, at least in four dimensions [6–11]. An important fact that has been pointed out

in [8] is that the equation of [2, 3] does not admit complete solutions. The simpler equation

proposed in [6] admits solutions at least for positive R but then it was shown in [10] that all

perturbations around them are redundant, i.e. can be absorbed by field redefinitions. One thus

has to find a “better” equation, i.e. one admitting a discrete set of solutions with non-redundant

perturbations, or else show that no such equation exists. In order to gain some understanding

of what may be wrong with the equations of [2, 3, 6], it has been shown in [12] that the use of

background-dependent regulators in the flow equation for a scalar field can artificially lead to

similar pathologies. It is therefore important to understand whether di↵erent ways of applying

the background field method could solve this issue.

In this paper we will discuss similar problems but in a di↵erent context, namely a scalar field

non-minimally coupled to gravity. We will consider E↵ective Average Actions (coarse-grained

e↵ective actions depending on a cuto↵ k, usually abridged EAA) of the functional form:

�
k

[�, g] =

Z
ddx

p
g

✓
V (�)� F (�)R+

1

2
gµ⌫@

µ

�@
⌫

�

◆
+ S

GF

+ S
gh

, (I.1)

where S
GF

and S
gh

are gauge-fixing and ghost terms. The usual Einstein-Hilbert action is

contained in this truncation as the constant (�-independent) part of the action, while switching

o↵ gravity (i.e. setting g
µ⌫

= �
µ⌫

) reduces the system to the well-studied Local Potential

Approximation (LPA) of the scalar field. The EAA �
k

[�] satisfies the renormalization group

flow equation [13, 14],

�̇
k

[�] =
1

2
STr

⇣
�(2)[�] +R

k

⌘�1
Ṙ

k

�
(I.2)

2

Expanding also around a constant background  

For the scalar field we also expand around a background �̄:

� = �̄+ �� . (III.6)

We then expand the action (I.1) to second order in h and ��. Collecting all the terms we find

Z
ddx

p
ḡ

"
F (�̄)

⇣1
4
h
µ⌫

(�r̄2)hµ⌫ +
1

2
h
µ⌫

r̄µr̄⇢h
⇢

⌫ � 1

2
(trh)r̄

µ

r̄
⌫

hµ⌫ +
1

4
(trh)r̄2(trh)

�1

2
R̄

µ⇢⌫�

hµ⌫h⇢� +
1

2
R̄

µ⌫

hµ⌫(trh)� 1

8
R̄ (trh)2

⌘

�F 0(�̄)

✓
r̄

µ

r̄
⌫

hµ⌫ � r̄2(trh)� R̄
µ⌫

hµ⌫ +
1

2
R̄ (trh)

◆
��

+
1

2
��(�r̄2 + V 00(�̄)� F 00(�̄)R̄)��+

1

2
V 0(�̄)(trh)��+

1

8
V (�̄)(trh)2

#
(III.7)

This is identical to equation (6) in [24], which was derived using a linear split, except for two

terms that are missing here:

�1

2
F (�̄)R̄µ⌫h

µ⇢

h⇢
⌫

� 1

4
(V (�̄)� F (�̄)R̄)h

µ⌫

hµ⌫ . (III.8)

The latter came from the expansion to second order of the square root of the determinant of g.

It is absent here because in the exponential parametrization the determinant depends only on

the trace part of h.

We then proceed with the York decomposition for the tracefree part of h:

hT
µ⌫

= hTT

µ⌫

+ r̄
µ

⇠
⌫

+ r̄
⌫

⇠
µ

+ r̄
µ

r̄
⌫

� � 1

d
ḡ
µ⌫

r̄2� , (III.9)

where r̄µhTT

µ⌫

= 0 and r̄µ⇠
µ

= 0. As usual it is convenient to further redefine

⇠0
µ

=

r
�r̄2 � R̄

d
⇠
µ

; �0 =
p
�r̄2

s

�r̄2 � R̄

d� 1
� . (III.10)

Collecting all terms we can rewrite the quadratic action in terms of the independent fields

hTT , ⇠0, �0, ! and ��:

Z
dx

p
ḡ

"
F (�̄)

 
1

4
hTT

µ⌫

✓
�r̄2 +

2R̄

d(d� 1)

◆
hTT

µ⌫ � (d� 1)(d� 2)

4d2
�0 ��r̄2

�
�0

�(d� 1)(d� 2)

d
!

s

(�r̄2)

✓
�r̄2 � R̄

d� 1

◆
�0 � (d� 1)(d� 2)!

✓
�r̄2 +

(d� 2)R̄

2(d� 1)

◆
!

!

�F 0(�̄)
d� 1

d
��

 s

(�r̄2)

✓
�r̄2 � R̄

d� 1

◆
�0 + 2d

✓
�r̄2 +

(d� 2)R̄

2(d� 1)

◆
!

!

+
1

2
��(�r̄2 + V 00(�̄)� F 00(�̄)R̄)��+ V 0(�̄)d!��+

1

2
V (�̄)d2!2

#
(III.11)
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Simple mixed gravity-scalar term:

The hessian, gauge fixed (                             ) and for a shifted ⇠0µ = 0 , h = 0 �00 = �0 + · · ·
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To plug this into the Wetterich equation we need to choose some appropriate coarse-graining 
cutoff operator: type I, type II, or (scalar-) pure cutoff.

is diagonal:

Going to dimensionless quantities 
we can obtain the flow equations.
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The field �0 is invariant under volume-preserving di↵eomorphisms, so all three fields are physical.

As a final simplification we note that defining
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the gauge fixed hessian becomes diagonal:
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From here on we proceed as in [24] and for notational simplicity we shall remove the bars from

the background fields. We choose the cuto↵ in such a way that the modified inverse propagator

is identical to (III.44) except for the replacement of �r̄2 by P
k

(�r̄2) = �r̄2 + R
k

(�r̄2). We

note that applying this procedure directly to Eq. III.44, as in [24], would amount to a slightly

di↵erent definition of the cuto↵. Both procedures seem legitimate, and our choice is dictated

purely by later convenience. 6

With standard procedure, neglecting in our LPA truncation the anomalous dimension of the

scalar field, one arrives at the flow equations for the dimensionless functions of the dimensionless

field ' = k
2�d
2 �: f(') = k2�dF (�) and v(') = k�dV (�). We shall consider two approximation

schemes. As a first case we neglect derivatives of F
k

with respect to k in the r.h.s. of the flow

equation. The analysis of the scaling solutions of the resulting equations, and their eigenpertur-

bations, for d = 3 and d = 4 is given in Sections IV and V. With the insight obtained in this

way, in section VI we shall consider the full equation where the terms proportional to Ḟ are not

neglected. This means that we replace @
t

f ! 0 in the r.h.s. of the fixed point equation (but not

of the flow equation, hence also not in the analysis of eigenperturbations). The discussion here

will be short. In the rest of the paper we consider only the cases d = 3 and d = 4. In appendix

C we shall give the form of the flow equations for general dimension.

If we neglect Ḟ , in the r.h.s. the flow equations in d = 3 read

v̇ = �3 v +
1

2
' v0 +

f + 4f 02

6⇡2 (f(1 + v00) + 4f 02)
(III.45)

6 Neglecting Ḟ on the r.h.s. of the flow equation, the fixed point equations derived from the two procedures turn
out to be the same.
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neglected. This means that we replace @
t

f ! 0 in the r.h.s. of the fixed point equation (but not

of the flow equation, hence also not in the analysis of eigenperturbations). The discussion here

will be short. In the rest of the paper we consider only the cases d = 3 and d = 4. In appendix

C we shall give the form of the flow equations for general dimension.
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We first consider a type I cutoff:

This cutoff depends explicitely on             Fk(�̄)
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Analysis of type I flow equations

11

To investigate fixed point solutions in this infinite dimensional space of “couplings” 
we consider in d dimensions the following cases:
A. The full equations 

B. The ones in the “one loop” approximation, neglecting            on the r.h.s of  the flow equations. Ḟk(�̄)

These equations have some analytic fixed point solutions of the kind :

A B
FP1
FP2                          -

FP3

It can help to understand the  cutoff dependence on Fk(�̄)
v(') = v0

f(') = f0 +
⇠

2
'2

(v0A, f0A, ⇠ = 0) (v0B , f0B , ⇠ = 0)

(v03, f03 = 0, ⇠ < 0)

We have analyzed the eigenperturbations of these solutions for d=3 and d=4 cases 
analytically or numerically.

For example for FP1 in d=4 of case A 
4 relevant and 1 marginal directions:

The eigenperturbations around FP3 are di↵erent. We have analyzed them numerically but we

do not find it very useful to show them here.

B. d = 4

In four dimensions the fixed point equations are

0 = �4 v + ' v0 +
5

32⇡2
� 5'f 0

192⇡2f
� �f 0 (6f 00 + v00 + 1) + 6fv00

192⇡2 (3f 02 + f (1 + v00))
(VI.7)

0 = �2f + ' f 0 +
157

1152⇡2
� 5'f 0

288⇡2f
+

'f 0 (6f 00 + v00 + 1) + 4fv00

384⇡2 (3f 02 + f(1 + v00))

�
�
ff 00 + f 02� �2f2 + 'f 03 + 6ff 02 � 2'ff 0f 00�

64⇡2f (3f 02 + f(1 + v00))2
(VI.8)

The analytic solution FP1 is given by

v⇤ =
5

128⇡2
⇡ 0.003958 ; f⇤ =

157

2304⇡2
⇡ 0.006904 . (VI.9)

Linearizing the flow equation given in Eqs. (C.8,C.9) for d = 4 around FP1 we find:

0 = �(�+ 4)�v + '�v0 +
72

157

�
��f � '�f 0�� �v00

32⇡2

0 = �
✓
123

157
�+ 2

◆
�f +

123

157
'�f 0 � �f 00

32⇡2
+

�v00

96⇡2
(VI.10)

Studying numerically these equations we find that FP1 has three relevant and one marginal

direction (actually two marginal directions with an extremely small polynomial v component

with opposite sign, which may be originated from a single one by numerical errors):

✓1 = 4, wt

1 = (�v, �f)1 = (1, 0)

✓2 = 2.553, wt

2 = (�v, �f)2 = (�1, 1.236)

✓3 = 2, wt

3 = (�v, �f)3 = (c3v + '2, c3f )

✓4 = 0.553, wt

4 = (�v, �f)4 = (c4v0 � '2, c4f + 1.236'2)

✓5 = 0, wt

5 = (�v, �f)5 = (c5v0 + c5v0'
2 + '4, c5f0 + c5f2'

2) (VI.11)

with c3v ' �0.005401, c3f ' 0.0487, c4v ' �0.002304, c4f0 ' �0.006343, c4f0 ' �1.2361,

c5v0 ' �0.0000513, c5v2 ' �0.00324, c5f0 ' �0.00001268, c5f2 ' �0.02924.

The fixed point FP2 is absent but FP3 is again present in the same position: v⇤ = 3
128⇡2 ,

f⇤(') = � 41
420'

2. It has four relevant directions, with critical exponents 4, 2.104, 1.574, 0.2475.

The eigenvector corresponding to eigenvalue 4 has components (�v, �f) = (1, 0), the others have

30

(v0B , f02B , ⇠ > 0)

f0 = 0.0069v0 = 0.00396

Phenomenologically interesting



Further analysis of case B

12

In d=3 we expect to exists a deformation of the WF fixed point which in flat space 
belongs to the Ising universality class.

Shooting method from the origin gives this picture:

We have employed shooting methods (Morris), from the origin and the asyptotic region and 
various types of polynomial expansions as well. 

FIG. 2: Plot of the maximum value of ' reached by the numerical integrator in the most interesting

region of the initial conditions 0.0055 < v(0) < 0.0070 and 0.050 < f(0) < 0.065. The jagged appearance

of the top ridge is a numerical artifact.

One tries to solve numerically the fixed point equations v̇ = 0, ḟ = 0 with the initial conditions

v0(0) = 0 and f 0(0) = 0. One can then plot how far the numerical routines can go, as a function

of the initial conditions v(0) and f(0). Fixed points then typically appear as spikes in this

graph. We have charted an area around the origin in the v(0)-f(0) plane. There is a large

region for v(0) < 0 and f(0) > 0 where the solution easily extends up to arbitrarily large '.

These solutions all have potentials that are unbounded from below (they behave asymptotically

as in equation (IV.20) below). For f(0) < 0 there are areas where the behavior look quite

chaotic. We cannot say much about the system for such initial conditions. The most interesting

area is a mountainous triangle in the quadrant v(0) > 0 and f(0) > 0, enlarged in Fig. 2. It

is relatively smooth but the ridges become quite sharp near its vertices and there are distinct

peaks at the end of each ridge. Two of these can be seen clearly if we cut the graph along the

line v(0) = 1/(18⇡2), which is common to the two fixed points (IV.1,V.10). Then the two fixed

points appear as very clear spikes at initial conditions that agree numerically with the values of

�0 and ⇠0 of the polynomial solutions, as well as the “exact” values. 8 The nontrivial fixed point

can be seen by cutting along the line v(0) = 0.0068, as seen in Fig. 3. One should be careful

in interpreting such plots. They probably reveal as much about the workings of the numerical

8 We note in passing that the fixed point FP3, which also lies on the same line, cannot be seen by this technique
because it corresponds to the initial condition f(0) = 0 where the equations in normal form have a singularity.
For the same reason this solution also does not show up among the solutions of the polynomial expansion
around ' = 0.
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Three spikes corresponds to FP1, FP2, and possibly 
a non trivial WF solution. 
This solution, which we have investigated also 
with polynomial expansions, has the property to  
cross f=0 starting from f(0)>0, so that is defined as 
an analytic continuation.

For d=4 from the shoting methos we have no indications 
that a WF type of fixed point do exist, similarly to the 
flat space case. In the region shown we see FP1 and FP2.

FIG. 6: Plot of the maximum value of ' reached by the numerical integrator depending of the initial

conditions 0.0023 < v(0) < 0.00242 and 0.004 < f(0) < 0.006 .

We have also tried to investigate solutions for which there exist a value '0 where f('0) = 0

by analyzing them in terms of a polynomial expansion, similarly to the d = 3 case. The two

parameters which parametrize the solutions are again '0 and v('0). Trying to fix them by

numerically evolving towards the origin we find that the solution such that v0(0) = f 0(0) = 0

can be reached only for '0 ! 1, in which case one reproduces FP1 for small ' values. No

nontrivial solution with f changing sign seems to exist. Thus all methods point to the same

conclusion, namely that there are no global scaling solutions in d+ 4 beyond the ones we have

found in closed form.

VI. SOME RESULTS KEEPING THE Ḟ DEPENDENCE ON THE R.H.S.

We discuss here the flow equations keeping the terms proportional to Ḟ in the r.h.s.. We

proceed in a way similar to the previous analysis of the last two sections, considering the two

cases in d = 3 and d = 4 dimensions. We find two analytic scaling solutions, which correspond

clearly to the solutions FP1 and FP3 of the previous sections, but the solution FP2 is not present.

In appendix C we give the general results for d dimensions for the fixed point equations, their
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More on case A

13

The search of a WF fixed point for these full equations was recently addressed (Borchardt-Knorr) using 
pseudospectral methods (based on Chebitchev polynomials).

For d=3 they show that there exist a WF-like solution, which is constructed with great precision. 
It has 4 relevant directions. f is always positive.

Indeed this solution can be found by shooting methods 
and standard polynomial expansion analysis  

The full equations admit this solution, contrary to the “one loop” approximation. 
These are schemes based on a spectrally adjusted cutoff so that both split symmetries are broken

that we have found here, compared e.g. to those of [24] or to the flow equation in the physical

gauge ⇠0
µ

= �0 = 0 (as discussed in the end of section III.B). The situation is similar to that of

f(R) gravity, where di↵erent equations turned out to have rather di↵erent solution spaces [8].

The answer seems to be that some approximations are too drastic: all equations are good enough

to find the fixed point within finite dimensional truncations, but the study of its properties in

an infinite dimensional function space is more delicate and requires better approximations. It

has been shown in [12] that pathological features resembling those encountered in f(R) gravity

can be artificially induced even in pure scalar theory by an improper use of the background

field method. In particular, one should pay close attention to the violation of split symmetry

(A.3), which, at linear level, amounts to �� ! �� + � , �̄ ! �̄ � � in the scalar sector and

h
µ⌫

! h
µ⌫

+ �h
µ⌫

, ! ! !+ �!, ḡ
µ⌫

! ḡ
µ⌫

� �h
µ⌫

�2ḡ
µ⌫

�! in the gravitational sector. While an

investigation of this point will be necessary, it seems that the equations derived here are already

powerful enough to discover at least some of the scaling solutions in the theory. This may be

a hint that, within the single-field approximation, the use of the exponential parameterization

and of the unimodular physical gauge is to be preferred.

Let us note that unimodular gravity corresponds to the case where the conformal fluctuations

h are completely absent. For such a theory, in the single field approximation for the average

e↵ective action, the flow equation is obtained from the one of full gravity in the unimodular

gauge by removing the corresponding ghost contribution, which is a constant term in both

equations for v and f . Since the running of f does not depend on v but only on its derivatives,

this is consistent with the fact that in unimodular gravity the constant term in the potential is

an integration constant. In this framework any constant value of v at the fixed point would not

contain any physical information.

There are several obvious extensions of the truncation that we plan to return to in the

future. Also, we have focused here mainly on the mathematical properties of the system of flow

equations, but ultimately one is interested in physical applications. In this regard we observe

that the fixed point FP2 in d = 4 has the properties that were discussed in [15] as prerequisites

for the construction of interesting cosmological models. With the linearized perturbations given

here and with numerical integration of the flow equation it will be possible to analyze in detail

several scenarios.
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Background-scalar independent cutoff

14

A linear cutoff

It is possible to explore the flow equations obtained in other cutoff schemes, in particular 
not spectrally adjusted. These so called pure cutoffs respect the scalar split symmetry.  
One cannot avoid instead the gravitational background dependence in the quadratic cutoff operator.

leads to more complicated equations.

Preliminary analysis: we can find easily the constant analytic solution (FP1) for any d.

E.g. in d=4 and            we have

Rk(z) = �ka(k2 � z)✓(k2 � z)

The parameter      could be used for optimizations in the minimal sensitivity sense.�

� = 1 v0 = 0.0299 f0 = 0.01368
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The pattern for the critical exponents 
and the eigenperturbations is very similar 
to the FP1 of case A, with a slight change 
in some numbers.

We have to complete the search for other less trivial global solutions, also in d=3.

Other interesting cutoff we want to investigate: power like type   (Morris)



O(N) scalars coupled to gravity

15

Expansion up to a linear term. 
Direct extension of the single scalar field case                   (P. Labus, R. Percacci, G.P.V to appear soon)

Flow equations are similar for the same cutoff scheme choice.  
There are now two external physical parameters: d and N

⇢ = 'a'a/2

uk(⇢) fk(⇢) describe again our linear truncation of the EAA.

Again for a local truncation il “LPA” one might consider the Lagrangian                 as a generic 
function of  R and                        , for a maximally symmtric background.  
This is currently under investigation (R. Percacci, G.P.V)

It presents a grade of complexity very similar to the case of f(R) gravity which is included as a subset.  
Simpler models are obtained by expanding in power of R, at cosmological level being interesting  
essentially powers up to 2. On expanding one faces againg possible problems of far off-shellness.

Fk(⇢, R)



Scalar O(N) coupled to gravity

16

We have written the equations for typeI-II cutoffs and for a pure cutoff similarly to the previous case.

Here I show some preliminary results for the type I cutoff for the full equations.

Analytic solutions for any (d,N): e.g. for d=4 we find

FP1:

FP3:

f =
169� 12N

2304⇡2

1 < N <
45

2

N <
169

12

Physical for

u =
1

64⇡2
+

N

128⇡2

u =
1

32⇡2
+

N

128⇡2

f =
41� 6N +

p
4(N � 25)N + 1321

24(N � 1)
⇢FP4: u =

1

64⇡2
+

N

128⇡2

f =
41� 6N �

p
4(N � 25)N + 1321

24(N � 1)
⇢ Never

FP1 is the usual fully constant solution with interesting physical implications. 
FP3 is the branch with a finite limit at N=1. 
FP4 is a new interesting possibly physical scaling solution with a non minimally coupling.  
In the “one loop approximation there is also a FP2 solution similar to the single field case.

Example d=4, N=4:  
FP1 has critical exponents: (4, 2.782, 2, 0.782, 0). Eigenperturbations similar to N=1 case. 
FP4: not yet studied,  this analysis is important for this fixed point to be considered physical 
        or an artifact of the type I cutoff choice / or of the truncation.



Scalar O(N) coupled to gravity
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For d=3 (again type I cutoff)  we can find the existence of a  
non trivial WF fixed point, at least for N up to 2. 
We have traced this with shooting methods and polynomial expansion.

We are considering also the large N limit analysis 
for different cutoffs, since it should be possible to 
proceed analytically.

Flow equations for the type II cutoff looks very similar, not yet investigated. 

For a pure cutoff case we confirm the existence of FP1, with similar properties, 
the rest of the FP pattern is still to be explored.

N=3/2

Plane of first derivatives 
of u and f at the origin.

Other cutoff schemes:



• We also propose the use of a different kind of gauge fixing procedure 
      related to the York decomposition. 

Conclusions
• We went back to the problem of scalar fields interacting with gravity. 
      Depending  on the truncations chosen as usual one may encounter  
      difficulties to find fixed point solutions and in constructing global flows.

• The choice of how to parametrize the metric fluctuations can be important 
     The exponential parametrization, being an interesting choice by itself, 
      can help to bypass some bad features brought in by poor truncations. 

•  For a single scalar field case we obtain much simpler flow equations  
     compared to the previous approach. We find some analytical solutions. 
     In d=3 they admit a WF scaling solution. 
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• We have also used the same approach the analyze the linear O(N) 
     scalar model coupled to gravity. It presents similar features but admit a new  
     non minimally coupled scaling solution for N>1. 
     



Outlook
• Type I and type II cutoff, being spectrally adjusted in this framework, 
      may be dangerous, breaking the field splitting in the scalar sector.  
     We have started to use alternative cutoffs. More work is needed. 
     In the gravitational sector the well known issue of dependence on the 
     backgroud metric has to be addressed. This is related to the double metric 
     framework and the msWI.

• In this framework we expect no special difficulties to construct a global 
     flow for the RG trajectories from the UV to the IR. These are needed also 
     for any phenomenological application.

• In this formalism it could be interesting to go beyond the maximally 
    symmetric background.

• At the level of larger truncations we have started to analyze the local 
    truncation based on a lagrangian 
    We expect to obtain much simpler equations that in a previous works.
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Fk(⇢, R)

• Anomalous dimensions? Fermions and vectors?
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Many thanks for your attention!


