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Motivation

Motivation

m generic situation in FRG-business: non-linear coupled
ODEs/PDEs that capture critical physics near fixed point

m standard treatment: local expansions or shooting method
m downside: expensive, global aspects hard to calculate

m idea: expand in orthogonal polynomials that are defined on
whole interval
= (rational) Chebyshev polynomials
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Basics of pseudo-spectral methods

Basics of pseudo-spectral methods |

m for simplicity, stick to Rt

m reminder: Chebyshev polynomials (of first kind):
Th(cos(x)) := cos(nx)

m rational Chebyshev polynomials:

—-L
Rn(X) = Tn (X—i-L) ,L >0

X

m divide R4 into two regions:
m x € [0, x0]: Chebyshev polynomials
B X € [xp,00]: rational Chebyshev polynomials
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Basics of pseudo-spectral methods

Basics of pseudo-spectral methods Il

m thus, expand any function f via

N
'ZOCI'Ti(%i )7 X§X07
=

N,

foo(x) 3 riRi(x — x0), X > X0,
=0

f(x) =

m two free numerical parameters:

®m Xxg. matching point, should be large enough that essential
physics “happens” for x < xg
m L: encodes the specific compactification

m both parameters can be used to optimize numerical
convergence
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Basics of pseudo-spectral methods

Basics of pseudo-spectral methods Il

m evaluation of a Chebyshev series via recursive Clenshaw
algorithm

m calculation of derivative of a Chebyshev series via recursive
algorithm (again yields Chebyshev series)

m coefficients of the series encode the convergence properties
and deliver estimate on (series) truncation error

m for “sufficiently nice” functions: exponential convergence,
i.e. series coefficients decrease exponentially fast
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Basics of pseudo-spectral methods

Taylor expansion vs. Chebyshev expansion
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Basics of pseudo-spectral methods

Questions?

B. Knorr TPI Uni Jena

Global solutions of functional fixed point equations via pseudo-spectral methods



Examples

O(1) model in d=3, LPA and LPA’
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B. Knorr

O(1) model in d=3, eigenperturbations in LPA’
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Examples

O(1) model in d=2.4, LPA’
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Examples

Gross-Neveu model in d=3, LPA’

. . 1.0
. .
8 . .
.
0.8
o
6 .
o " 06
® No
LA : n,
[N v 04
. *
.
2
LI 0.2
. . . .
o 0
2 4 6 8 10 12 2 4 6 8 10 2
N N

B. Knorr TPI Uni Jena

Global solutions of functional fixed point equations via pseudo-spectral methods



Examples

Scalar-tensor model in d=3
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Examples

Scalar-tensor model in d=3, eigenperturbations
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Examples

The problem with f(R)-gravity

choice of regulator impedes globally well-defined solution(s)

problem lies in “spectral adjusting”
in case of f(R):

RTT 0.8 f/(R)

m local solutions give some evidence that for some Ry,
f'(Ro) =0
— regulator changes sign, proper regularization questionable

m similar in scalar-tensor model
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Summary

Summary

m pseudo-spectral methods are handy to represent solutions to
fixed point equations

m globally,
m with high precision,
m efficiently

m perturbations to fixed point equations can be resolved in that
way as well — high-precision critical exponents

m application to flows: stay tuned
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Summary

Controversial statement(s)

m local expansions are uncontrolled (anyway, we want to do
non-perturbative physics!)

m shooting method gets expensive very fast (starting values for
every operator, anomalous dimensions self-consistenly, ... )

m (global) spectral methods solve both problems

Thank you for your attention!
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