Global solutions of functional fixed point equations via pseudo-spectral methods

Benjamin Knorr in collaboration with Julia Borchardt

Theoretisch-Physikalisches Institut Friedrich-Schiller-Universität Jena

 $\begin{array}{c} \mbox{Asymptotic Safety Seminar}\\ \mbox{04}/13/15\\ \mbox{work based on arXiv:1502.07511} \end{array}$

seit 1558

Outline	Motivation	Basics of pseudo-spectral methods	
Outline			

- Motivation
- Basics of pseudo-spectral methods
- O(1) model in d=3 and d=2.4
- Gross-Neveu model in d=3
- Scalar-tensor model in d=3 (see also last talk by G. P. Vacca)
- Quo vadis f(R)-gravity?
- Summary and Outlook

Motivation

- generic situation in FRG-business: non-linear coupled ODEs/PDEs that capture critical physics near fixed point
- standard treatment: local expansions or shooting method
- downside: expensive, global aspects hard to calculate
- idea: expand in orthogonal polynomials that are defined on whole interval

 \Rightarrow (rational) Chebyshev polynomials

Basics of pseudo-spectral methods I

- \blacksquare for simplicity, stick to \mathbb{R}_+
- reminder: Chebyshev polynomials (of first kind):

 $T_n(\cos(x)) := \cos(nx)$

rational Chebyshev polynomials:

$$R_n(x) := T_n\left(\frac{x-L}{x+L}\right), L > 0$$

- divide \mathbb{R}_+ into two regions:
 - $x \in [0, x_0]$: Chebyshev polynomials
 - $x \in [x_0, \infty]$: rational Chebyshev polynomials

Basics of pseudo-spectral methods II

thus, expand any function f via

$$f(x) = \begin{cases} \sum_{i=0}^{N_c} c_i T_i(\frac{2x}{x_0} - 1), \, x \leq x_0 \,, \\ f_{\infty}(x) \sum_{i=0}^{N_r} r_i R_i(x - x_0), \, x \geq x_0 \,, \end{cases}$$

• two free numerical parameters:

- x_0 : matching point, should be large enough that essential physics "happens" for $x < x_0$
- L: encodes the specific compactification
- both parameters can be used to optimize numerical convergence

Basics of pseudo-spectral methods III

- evaluation of a Chebyshev series via recursive Clenshaw algorithm
- calculation of derivative of a Chebyshev series via recursive algorithm (again yields Chebyshev series)
- coefficients of the series encode the convergence properties and deliver estimate on (series) truncation error
- for "sufficiently nice" functions: exponential convergence,
 i.e. series coefficients decrease exponentially fast

Taylor expansion vs. Chebyshev expansion

TPI Uni Jena

B. Knorr

Outline	Motivation	Basics of pseudo-spectral methods	

Questions?

9/17

O(1) model in d=3, LPA and LPA'

O(1) model in d=3, eigenperturbations in LPA'

B. Knorr

TPI Uni Jena

O(1) model in d=2.4, LPA'

TPI Uni Jena

B. Knorr

Gross-Neveu model in d=3, LPA'

TPI Uni Jena

B. Knorr

Scalar-tensor model in d=3

TPI Uni Jena

B. Knorr

Scalar-tensor model in d=3, eigenperturbations

$\theta_1 = 3$,	$ heta_2 = 1.913$,	$ heta_3 = 1.180$,
$ heta_4 = 0.6679,$	$\theta_5=-0.2812,$	$ heta_6 = -1.217$

14/17

Global solutions of functional fixed point equations via pseudo-spectral methods

B. Knorr

The problem with f(R)-gravity

- choice of regulator impedes globally well-defined solution(s)
- problem lies in "spectral adjusting"
- in case of f(R):

$$R_{\rm TT} \propto f'(R)$$

- local solutions give some evidence that for some R_0 , $f'(R_0) = 0$
 - \rightarrow regulator changes sign, proper regularization questionable
- similar in scalar-tensor model

Outline	Motivation	Basics of pseudo-spectral methods	Summary
Summary	,		

- pseudo-spectral methods are handy to represent solutions to fixed point equations
 - globally,
 - with high precision,
 - efficiently
- \blacksquare perturbations to fixed point equations can be resolved in that way as well \to high-precision critical exponents
- application to flows: stay tuned

Controversial statement(s)

- local expansions are uncontrolled (anyway, we want to do non-perturbative physics!)
- shooting method gets expensive very fast (starting values for every operator, anomalous dimensions self-consistenly, ...)
- (global) spectral methods solve both problems

Thank you for your attention!