Connections and geodesics in the space of metrics

The exponential parametrization from a geometric perspective

Andreas Nink

Institute of Physics University of Mainz

September 21, 2015

Based on: M. Demmel and A.N., arXiv:1506.03809

The exponential metric parametrization

$$g_{\mu\nu} = \bar{g}_{\mu\rho} (\mathrm{e}^h)^{\rho}{}_{\nu}$$

 $(\bar{g}_{\mu\nu}$: background metric, $h_{\mu\nu} = h_{\nu\mu}$: symmetric tensor field)

Use in literature

- ▶ Kawai et al. (≥ 1993): Perturbative QG in $d = 2 + \epsilon$
- Eichhorn (2013 and 2015): Unimodular QG
- A.N. (2014): Single & bi-metric EH truncations
- Codello and D'Odorico (2014): Scaling exponents and KPZ
- Percacci and Vacca (2015): Scalar tensor models
- ▶ Falls (2×2015): Gauge independent EA at one-loop
- Labus, Percacci and Vacca (2015): Scalar tensor models
- Ohta and Percacci (2015): Conformal gravity
- Ohta, Percacci and Vacca (2015): f(R) gravity
- ▶ Gies, Knorr and Lippoldt (2015): Analysis of parametrization dependence

The exponential metric parametrization

$$g_{\mu\nu} = \bar{g}_{\mu\rho} (\mathrm{e}^h)^{\rho}{}_{\nu}$$

 $(\bar{g}_{\mu
u}$: background metric, $h_{\mu
u} = h_{
u\mu}$: symmetric tensor field)

Why is it used?

Up to now: viewed as appropriate choice of "coordinate system"

- ► Easy separation of conformal factor \rightarrow trace of fluctuations $h_{\mu\nu} = \hat{h}_{\mu\nu} + \frac{1}{d}\bar{g}_{\mu\nu}\phi$, easy volume element $\sqrt{g} = \sqrt{\bar{g}} e^{\frac{1}{2}\phi}$
- Avoid unphysical singularities in flow equations
- Reproduce central charge c = 25

Why do we care about parametrizations?

 \rightarrow Because $\bar{g}_{\mu\rho}(e^{h})^{\rho}{}_{\nu}$ is a metric $\forall h_{\mu\nu}$ while $\bar{g}_{\mu\nu} + h_{\mu\nu}$ is not!

- $\bar{g}_{\mu\rho}(\mathrm{e}^{h})^{
 ho}{}_{\nu}$ is symmetric and has the same signature as $\bar{g}_{\mu\nu}$
- $\bar{g}_{\mu\nu} + h_{\mu\nu}$ is symmetric, but can have wrong signature, in particular it can be degenerate (e.g. for $h_{\mu\nu} = -\bar{g}_{\mu\nu}$)

Question: path integral $\int \mathcal{D}h$ over valid metrics only?

- ► Exponential parametrization respects nonlinear structure of space of metrics, ∫ Dh involves only valid metrics
- Linear split (without further restrictions on $h_{\mu\nu}$): $\int Dh$ captures degenerate "metrics", too

 $Exp \leftrightarrow$ linear not a reparametrization! No on-shell equivalence!?

Overview

- ▶ View $h_{\mu\nu}$ as tangent vector and exponential parametrization as geodesics in the space of metrics \rightarrow derive connection
- Show fundamental geometric origin of the connection
- Attention with Lorentzian signatures!
- Compare with Levi-Civita and Vilkovisky-DeWitt connection
- Covariance and geometric effective action

Derive connection in the space \mathcal{F} of metrics

Connection s.t. geodesics in \mathcal{F} are parametrized by $\bar{g}_{\mu\rho}(\mathrm{e}^{t\,h})^{
ho}{}_{\nu}$

Geodesic $t \mapsto g_{\mu\nu}(t)$ with BC $g_{\mu\nu}(0) = \bar{g}_{\mu\nu}$ and $g_{\mu\nu}(1) = g_{\mu\nu}$

$$\ddot{g}_{\mu\nu}(t) + \Gamma^{\alpha\beta\rho\sigma}_{\mu\nu} \,\dot{g}_{\alpha\beta}(t) \dot{g}_{\rho\sigma}(t) = 0 \tag{(*)}$$

In Taylor series $g_{\mu\nu}(t) = \sum_{n=0}^{\infty} \frac{t^n}{n!} \left(\frac{\mathrm{d}^n}{\mathrm{d}t^n} g_{\mu\nu}(t) \big|_{t=0} \right)$ replace all higher derivatives in terms of $\dot{g}_{\mu\nu}(t)$ by eq. (*) with $h_{\mu\nu} = \dot{g}_{\mu\nu}(0)$:

$$g_{\mu\nu} = g_{\mu\nu}(t=1) = \bar{g}_{\mu\nu} + h_{\mu\nu} - \frac{1}{2} \bar{\Gamma}^{\alpha\beta\rho\sigma}_{\mu\nu} h_{\alpha\beta} h_{\rho\sigma} + \mathcal{O}(h^3)$$

where $\bar{\Gamma}^{\alpha\beta\,\rho\sigma}_{\mu\nu} \equiv \Gamma^{\alpha\beta\,\rho\sigma}_{\mu\nu}(\bar{g})$

Derive connection in the space \mathcal{F} of metrics

Compare this with direct expansion of $g_{\mu\nu} = \bar{g}_{\mu\rho} (e^h)^{\rho}{}_{\nu}$

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu} + \frac{1}{2} h_{\mu\rho} h^{\rho}{}_{\nu} + \mathcal{O}(h^3) = \bar{g}_{\mu\nu} + h_{\mu\nu} + \frac{1}{2} \delta^{(\alpha}{}_{(\mu} \bar{g}^{\beta)(\rho} \delta^{\sigma)}{}_{\nu)} h_{\alpha\beta} h_{\rho\sigma} + \mathcal{O}(h^3)$$

where indices embraced by round brackets are symmetrized. From 2nd order we read off (spacetime dependence restored):

$$\Gamma^{\alpha\beta\,\rho\sigma}_{\mu\nu}(x,y,z) = -\delta^{(\alpha}_{(\mu}\,g^{\beta)(\rho}\,\delta^{\sigma)}_{\nu)}\,\delta(x-y)\delta(x-z)$$

Derive connection in the space \mathcal{F} of metrics

Yet to be proven: equality of expansions at all orders

(1) Insert new connection $\Gamma^{\alpha\beta\rho\sigma}_{\mu\nu} = -\delta^{(\alpha}_{(\mu} g^{\beta)(\rho} \delta^{\sigma)}_{\nu)}$ in geodesic equation: $\ddot{q}_{\mu\nu} - q^{\alpha\rho} \dot{q}_{\mu\alpha} \dot{q}_{\rho\nu} = 0$

2) Multiply with
$$g^{\nu\sigma}$$
, rewrite derivatives: $\frac{d}{dt}(\dot{g}_{\mu\nu}g^{\nu\sigma}) = 0$
 $\Rightarrow \dot{g}_{\mu\nu}g^{\nu\sigma} = \text{const}$

(3) This is a 1st order ODE: $\dot{g}_{\mu\nu}(t) = c^{\sigma}_{\mu} g_{\sigma\nu}(t)$

(4) Initial conditions: $g_{\mu\nu}(0) = \bar{g}_{\mu\nu}$ and $\dot{g}_{\mu\nu}(0) = c^{\sigma}_{\mu} \bar{g}_{\sigma\nu} = h_{\mu\nu}$ (5) Unique solution: matrix exponential

$$g_{\mu\nu}(t) = \bar{g}_{\mu\rho} (\mathrm{e}^{t\,h})^{\rho}{}_{\nu}$$

(6) Setting t = 1 proves the equality

The fundamental geometric origin of the connection

Pointwise character of geodesics (and $\Gamma^{\alpha\beta\rho\sigma}_{\mu\nu} \propto \delta(x-y)\delta(x-z)$) \Rightarrow Discussion reduces to 1 (arbitrary) spacetime point!

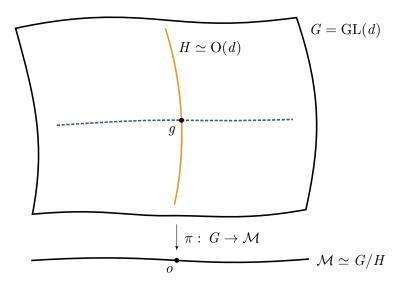
Locally metrics are symmetric matrices of prescribed signature:

$$\mathcal{M} \equiv \left\{ A \in \mathrm{GL}(d) \middle| A^T = A, A \text{ has signature } (p, q) \right\}$$

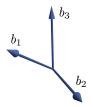
For now: Euclidean signature (symmetric positive definite matrices) Agenda

- Show that \mathcal{M} is base space of some principal bundle
- Principal bundle induces canonical connection

Illustration of the bundle



Relation between G = GL(d) and \mathcal{M}



Fix metric, say η , by declaring some frame $B = (b_1 \ b_2 \ \dots \ b_d)$ to be orthonormal:

$$\eta(b_i, b_j) \equiv \eta_{\mu\nu}(b_i)^{\mu}(b_j)^{\nu} = \delta_{ij}$$

• In matrix form: $B^T \eta B = \mathbb{1}$, $B \in \operatorname{GL}(d)$

 $\eta = (B^{-1})^T \, \mathbb{1} \, B^{-1}$

▶ But: invariance under $B \to BR^{-1}$ with $R \in O(d)$

 \Rightarrow coset space structure

$$\mathcal{M} \simeq \operatorname{GL}(d) / \operatorname{O}(d)$$

Group action and isotropy groups

Define group action of G on \mathcal{M}

$$\xrightarrow{\longleftarrow \phi \longrightarrow} \mathcal{M}$$

$$\phi: G \times \mathcal{M} \to \mathcal{M}, \ (g, o) \mapsto \phi(g, o) \equiv (g^{-1})^T o g^{-1}$$

Consider fixed but arbitrary base point $\bar{o} \in \mathcal{M}$ ("origin") with isotropy group (stabilizer)

$$H \equiv \left\{ h \in \mathbb{R}^{d \times d} \mid h^T \bar{o} h = \bar{o} \right\}$$

H is stabilizer since $\phi(h,\bar{o})=\bar{o} \;\; \forall h\in H$

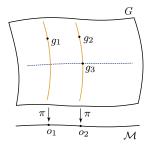
 $\Rightarrow \mathcal{M}$ is homogeneous space (i.e. coset space G/H without origin)

G as a principal bundle

Define canonical projection

$$\pi: G \to \mathcal{M}, \ g \mapsto \pi(g) \equiv (g^{-1})^T \bar{o} g^{-1}$$

 $\Rightarrow (G,\pi,\mathcal{M},H) \text{ is principal bundle}$



Tangent spaces: given by Lie algebras

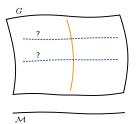
$$\begin{split} \mathfrak{g} &= \mathbb{R}^{d \times d} \\ \mathfrak{h} &= \left\{ A \in \mathbb{R}^{d \times d} \mid A^T \, \bar{o} = -\bar{o}A \right\} \quad \text{(vertical direction)} \end{split}$$

The canonical connection

What is horizontal in tangent space? What about projections?

Projections depend on both coordinate axes!

Distinguished definition of horizontal direction



$$\mathfrak{m} = \left\{ A \in \mathbb{R}^{d \times d} \mid A^T \, \bar{o} = \bar{o}A \right\}$$

▶ m is vector space complement of \mathfrak{h} in g: $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{h}$

- ▶ Both m and h are invariant under Ad(H) ⇒ Homogeneous space M is reductive
- By $d\pi|_{\mathfrak{m}}$ we can identify $\mathfrak{m} \simeq T_{\bar{o}}\mathcal{M}$

Canonical connection determined by $\mathcal{H}_g \equiv dL_g \mathfrak{m}$

Computation of the canonical connection

Metric on \mathcal{M} :

$$\gamma(X, Y) \equiv \operatorname{tr}(\bar{o}^{-1}X\bar{o}^{-1}Y) + \frac{c}{2}\operatorname{tr}(\bar{o}^{-1}X)\operatorname{tr}(\bar{o}^{-1}Y)$$

with $X, Y \in T_{\bar{o}}\mathcal{M}$ (symmetric matrices), c an arbitrary constant

► γ is *G*-invariant, i.e. the group action is isometric Canonical connection on (G, π, \mathcal{M}, H) induces connection on tangent bundle $T\mathcal{M} \simeq G \times_{\mathrm{Ad}(H)} \mathfrak{m} \equiv (G \times \mathfrak{m})/H$

▶ given by the Levi-Civita connection on TM w.r.t. γ :

$$\bar{\Gamma}(X, Y) = -\frac{1}{2} (X \bar{o}^{-1} Y + Y \bar{o}^{-1} X)$$

Index notation, $\bar{\Gamma}^{\alpha\beta\rho\sigma}_{\mu\nu} X_{\alpha\beta} Y_{\rho\sigma} \equiv \bar{\Gamma}(X, Y)$, base point $\bar{o} = \bar{g}_{\mu\nu}$:

$$\bar{\Gamma}^{\alpha\beta\,\rho\sigma}_{\mu\nu}{}^{\rho\sigma} = -\delta^{(\alpha}_{(\mu}\,\bar{g}^{\beta)(\rho}\,\delta^{\sigma)}_{\nu)}$$

Geodesics in $\ensuremath{\mathcal{M}}$

 \mathcal{M} inherits exponential map from $G = \operatorname{GL}(d)$ (matrix exponential)

$$\exp_{\bar{o}} X = \pi \left(\mathrm{e}^{\mathrm{d}\pi_e^{-1}X} \right)$$

for $X \in T_{\bar{o}}\mathcal{M}$. Inserting the canonical projection π :

$$o = \exp_{\bar{o}} X = \bar{o} e^{\bar{o}^{-1}X}$$

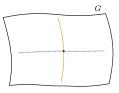
In index notation with $o = g_{\mu\nu}$, $\bar{o} = \bar{g}_{\mu\nu}$ and $X = h_{\mu\nu}$:

$$g_{\mu\nu} = \bar{g}_{\mu\rho} (\mathrm{e}^h)^{\rho}{}_{\nu}$$

 \Rightarrow Geodesics in \mathcal{M} , right signature by construction!

Interim conclusion

- \mathcal{M} is homogeneous space, $\mathcal{M} \simeq G/H$
- G has principal bundle structure
- ► Natural way of defining the horizontal direction ⇒ canonical connection
- Geodesics in \mathcal{M} w.r.t. canonical connection parametrized by $g_{\mu\nu} = \bar{g}_{\mu\rho} (e^h)^{\rho}{}_{\nu}$



$$\mathcal{M} \simeq G/H$$

Exponential parametrization: adapted to basic structure of space of metrics

Two important terms for classifying $\ensuremath{\mathcal{M}}$

Geodesic completeness:

Every maximal geodesic is defined on the entire real line ${\mathbb R}$

- ▶ Geodesics "stay in *M*" and do not run into singularities
- Exponential map defined on entire tangent space

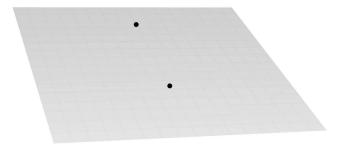
Geodesic connectedness:

Any two points in \mathcal{M} can be connected by a geodesic

Note: Connectedness plus geodesic completeness does not imply geodesic connectedness!

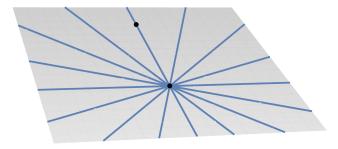
Example 1: flat plane \mathbb{R}^2

Geodesically complete and geodesically connected



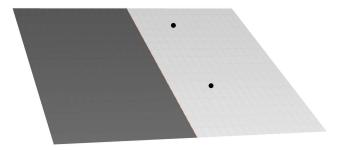
Example 1: flat plane \mathbb{R}^2

Geodesically complete and geodesically connected



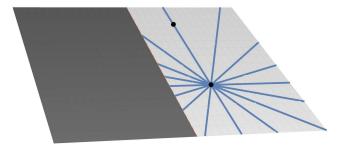
Example 2: half plane

Not geodesically complete but geodesically connected



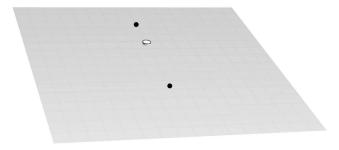
Example 2: half plane

Not geodesically complete but geodesically connected



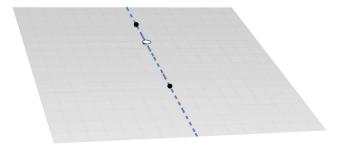
Example 3: punctured plane $\mathbb{R} \setminus \{0\}$

Neither geodesically complete nor geodesically connected



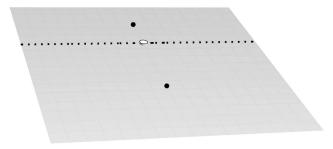
Example 3: punctured plane $\mathbb{R} \setminus \{0\}$

Neither geodesically complete nor geodesically connected



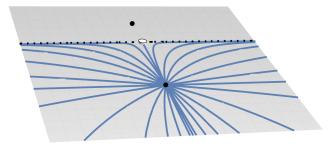
Example 4: punctured plane, non-flat connection

Geodesically complete but not geodesically connected



Example 4: punctured plane, non-flat connection

Geodesically complete but not geodesically connected



Properties of \mathcal{M} for different signatures (p, q)

For all signatures $(\boldsymbol{p},\boldsymbol{q})$ the set $\mathcal M$ is

- ▶ open (⇒ one chart sufficient)
- non-compact
- path-connected
- geodesically complete

For Euclidean signatures (p arbitrary, q = 0) \mathcal{M} is

- geodesically connected
- simply connected

For Lorentzian signatures $(p \ge 1, q \ge 1) \mathcal{M}$ is

- not geodesically connected
- not simply connected

Illustration for 2×2 -matrices

Parametrize symmetric matrices ($\supseteq \ensuremath{\mathcal{M}})$ by

$$\begin{pmatrix} z-x & y \\ y & z+x \end{pmatrix}$$

Eigenvalues given by

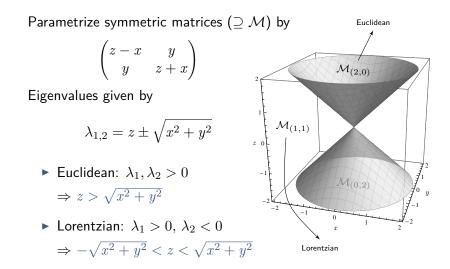
$$\lambda_{1,2} = z \pm \sqrt{x^2 + y^2}$$

• Euclidean:
$$\lambda_1, \lambda_2 > 0$$

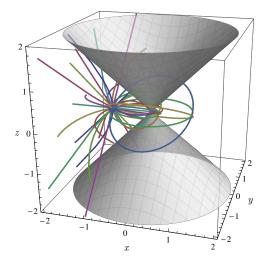
 $\Rightarrow z > \sqrt{x^2 + y^2}$

► Lorentzian:
$$\lambda_1 > 0$$
, $\lambda_2 < 0$
 $\Rightarrow -\sqrt{x^2 + y^2} < z < \sqrt{x^2 + y^2}$

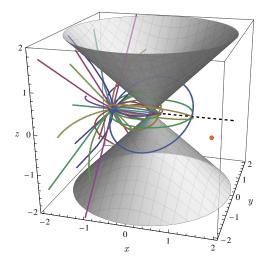
Illustration for 2×2 -matrices



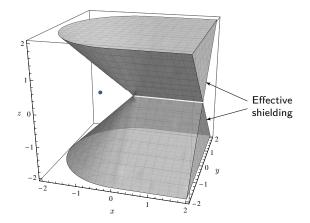
Geodesics in $\mathcal{M}_{(1,1)}$ (Lorentzian signature)



Geodesics in $\mathcal{M}_{(1,1)}$ (Lorentzian signature)



Region in $\mathcal{M}_{(1,1)}$ that can be reached by geodesics



Lorentzian case: exponential map neither surjective nor injective!

From $\mathcal M$ to $\mathcal F$

Recall: we had metric γ in \mathcal{M} . In index notation:

$$\gamma^{\mu\nu\rho\sigma} = g^{\mu(\rho}g^{\sigma)\nu} + \frac{c}{2}g^{\mu\nu}g^{\rho\sigma}$$

 \Rightarrow metric G in \mathcal{F} ?

Yes. With correct spacetime dependence and density weight:

$$G^{\mu\nu\rho\sigma}(x,y) = \sqrt{g(x)} \gamma^{\mu\nu\rho\sigma}(g(x))\delta(x-y)$$

This is the DeWitt metric. It is the unique metric that is

- ultra-local and diagonal in x-space
- gauge invariant (diffeomorphisms are isometric)

Connections on $\mathcal M$ and $\mathcal F$

Proportionality factor \sqrt{g} entails further field dependence \Rightarrow Levi-Civita connection on \mathcal{F} contains additional terms:

$$\Gamma_{\mathcal{F}}^{(\mathsf{LC})} = \left(\Gamma_{\mathcal{M}}^{(\mathsf{LC})} + T\right)(x) \ \delta(x-y)\delta(x-z)$$

General connection on \mathcal{F} : every smooth bi-linear bundle homomorphism A defines a connection by

$$\Gamma_{\mathcal{F}} = \Gamma_{\mathcal{F}}^{(\mathsf{LC})} + A$$

Choosing A = -T cancels contributions from \sqrt{g} and reproduces

$$\Gamma_{\mathcal{F}} = \Gamma_{\mathcal{M}}^{(\mathsf{LC})}(x)\,\delta(x-y)\delta(x-z)$$
$$= -\delta_{(\mu}^{(\alpha}\,g^{\beta)(\rho}(x)\,\delta_{\nu)}^{\sigma)}\,\delta(x-y)\delta(x-z)$$

Connections on ${\mathcal M}$ and ${\mathcal F}$

Another famous choice is $A = A^{(VDW)}$ (Vilkovisky-DeWitt)

- \blacktriangleright adapted to gauge bundle structure of ${\cal F}$
- ► A^(VDW) involves generators of gauge group
- highly non-local!

Summary:

$$\Gamma_{\mathcal{F}} = \Gamma_{\mathcal{F}}^{(\mathsf{LC})} + A$$

$$A = \begin{cases} 0 & \text{LC} & \stackrel{\text{derived from metric}}{\text{metric}} & \stackrel{\text{geodesics still}}{\text{calculable}} \\ \\ A^{(\text{VDW})} & \text{VDW} & \stackrel{\text{adapted to gauge}}{\text{bundle structure}} & \stackrel{\text{complicated non-local geodesics}}{\text{local geodesics}} \\ \\ -T & \text{new} & \stackrel{\text{adapted to geometric}}{\text{structure of } \mathcal{M}} & \stackrel{\text{very simple}}{\text{geodesics!}} \end{cases}$$

Covariance in field space \mathcal{F}

- Employ condensed DeWitt notation: $i \equiv (\mu\nu, x)$
- Consider a functional Γ of g and \bar{g}

 $\Gamma[g,\bar{g}]$

- Parametrize g in terms of h by a geodesic: $g \equiv g[h; \overline{g}]$
- ► Define $\tilde{\Gamma}[h; \bar{g}] \equiv \Gamma[g[h; \bar{g}], \bar{g}]$
- From geodesic equation follows

$$\frac{\delta^n}{\delta h^{i_1}\cdots \delta h^{i_n}} \,\tilde{\Gamma}[h;\bar{g}]\Big|_{h=0} = \mathcal{D}_{(i_1}\cdots \mathcal{D}_{i_n)} \,\Gamma[g,\bar{g}]\Big|_{g=\bar{g}}$$

 \Rightarrow Simple derivatives w.r.t. h are covariant derivatives in \mathcal{F} !

Covariance in field space \mathcal{F}

Consequences

With the exponential parametrization, Γ⁽²⁾_k (appearing e.g. in the flow equation) is automatically covariant in field space:

$$\frac{\delta^2 \Gamma_k \left[\bar{g} \, \mathrm{e}^{\bar{g}^{-1}h}, \bar{g} \right]}{\delta h^i \delta h^j} \Big|_{h=0} = \mathcal{D}_{(i} \mathcal{D}_{j)} \, \Gamma_k[g, \bar{g}] \Big|_{g=\bar{g}}$$

- Geometric formalism (for any connection) suited for computing covariant objects
- Allows for construction of reparametrization invariant geometric effective action
- ▶ Modified Nielsen identities: relate $\delta \Gamma_k / \delta \bar{g} \leftrightarrow \delta \Gamma_k / \delta g$

Summary & conclusion

- Fundamental geometric structure $\mathcal{M} \simeq \operatorname{GL}(d) / \operatorname{O}(p,q)$
- Principal bundle induces canonical connection
- Geodesics parametrized by $g_{\mu\nu} = \bar{g}_{\mu\rho} (e^h)^{\rho}{}_{\nu}$
- Produces only valid metrics!
- Attention with Lorentzian signatures