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The exponential metric parametrization

Juv = Gup (eh)pv

(guw : background metric, hy,, = hy,, : symmetric tensor field)
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VVYVYVYVYVYVvYVvYYVYYyY

2/38



The exponential metric parametrization

Juv = Gup (eh)pv

(guw : background metric, hy,, = hy,, : symmetric tensor field)

Why is it used?
Up to now: viewed as appropriate choice of “coordinate system”
» Easy separation of conformal factor — trace of ﬂuctu:intions
Py = by + é?]uyqi easy volume element /g = Vgez?
» Avoid unphysical singularities in flow equations

» Reproduce central charge ¢ =25



Why do we care about parametrizations?

— Because g,,(e")”, is a metric Vh,,, while g, + hy, is not!

> Gup(e")’, is symmetric and has the same signature as g,
> Guv + hyuw is symmetric, but can have wrong signature,
in particular it can be degenerate (e.g. for hy,, = —g,)
Question: path integral [ Dh over valid metrics only?

» Exponential parametrization respects nonlinear structure of
space of metrics, [ Dh involves only valid metrics

» Linear split (without further restrictions on hy,,):
J Dh captures degenerate “metrics”, too

‘ Exp <> linear not a reparametrization! No on-shell equivalence!?
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Overview

v

View hy,, as tangent vector and exponential parametrization
as geodesics in the space of metrics — derive connection

v

Show fundamental geometric origin of the connection

v

Attention with Lorentzian signatures!

» Compare with Levi-Civita and Vilkovisky-DeWitt connection

v

Covariance and geometric effective action



Derive connection in the space F of metrics

Connection s.t. geodesics in JF are parametrized by g,,(e‘")”,

Geodesic ¢ — g, (t) with BC ¢,,(0) = g, and g, (1) = gu

Guv (1) + TP Gap (1) dpo (t) = 0 (+)
In Taylor seres g.,(1) = 33 & (g0 (1], ) replace al

higher derivatives in terms of §,,(t) by eq. () with h,, = §,,(0):
G = gu(t=1) = Gu + by — 5 fgfﬂd heghpe + O(R?)

where T8 77 = T98r7(3)



Derive connection in the space F of metrics

Compare this with direct expansion of g, = gy, (")’

G = Guv + by + 5 Buph?y, + O(h?)

= g;w + hHV + 35 6(( A% 0 )) ha,BhpU + O(hS)

where indices embraced by round brackets are symmetrized.

From 2nd order we read off (spacetime dependence restored):

9807 (3,y, 2) = =0 g9 67) 8(z — 4)d(z — 2)




Derive connection in the space F of metrics

Yet to be proven: equality of expansions at all orders
(1) Insert new connection I'3J 77 = —68 g?e 65)) in geodesic
equation:

Guv — gapguagpu =0
(2) Multiply with ¢”?, rewrite derivatives: %(g,u,g””) =0
= Guvg”’ = const

(3) This is a 1st order ODE: §,,,(t) = ¢} gou (1)
(4) Initial conditions: g,,,,(0) = gy and 3, (0) = ¢f, Gor = Iy

(5) Unique solution: matrix exponential

Guv(t) = Gup (et h)pv

(6) Setting t = 1 proves the equality O



The fundamental geometric origin of the connection

Pointwise character of geodesics (and FZ‘E"" x 6(z — y)o(z — 2))
= Discussion reduces to 1 (arbitrary) spacetime point!

Locally metrics are symmetric matrices of prescribed signature:

M= {4€GL(A)| AT = 4, A has signature (p, )}

For now: Euclidean signature (symmetric positive definite matrices)

Agenda
» Show that M is base space of some principal bundle

> Principal bundle induces canonical connection



[llustration of the bundle




Relation between G = GL(d) and M

b » Fix metric, say n, by declaring some frame
B = (b by ... bg) to be orthonormal:

(i, b;) = My (b)" (b5)” = 655

> In matrix form: BTnB =1, B € GL(d)

b

n=(BHT1B!

» But: invariance under B — BR™! with R € O(d)
= coset space structure

M = GL(d)/ O(d)




Group action and isotropy groups

— ¢ —

Define group action of G on M — o——M

p:GxM—=M, (g,0)— d(g.0)=(g ") og!

Consider fixed but arbitrary base point 0 € M (“origin") with
isotropy group (stabilizer)

H={heR™|1Toh= o}
H is stabilizer since ¢(h,0) =0 Yh € H

= M is homogeneous space (i.e. coset space G/H without origin)



G as a principal bundle

Define canonical projection

TG M, gm(g)=(g") g

= (G, 7, M, H) is principal bundle

Tangent spaces: given by Lie algebras
g= Rdxd
h= {A e R AT G = —bA} (vertical direction)



The canonical connection b

What is horizontal in tangent space? A %]

What abOUt proj eCtionS? Projections depend on both

coordinate axes!

Distinguished definition of horizontal direction
m={AerR™ | AT5=54}

» m is vector space complement of b in g:
g=mo
» Both m and b are invariant under Ad(H)
=- Homogeneous space M is reductive
» By dm|yn we can identify m ~ T, M

Canonical connection determined by H, = dLsm ‘
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Computation of the canonical connection

Metric on M:

VX, YV)=tr(0'Xo ' Y) + Str(o7 ' X) tr(o7! V)

with X, Y € TgM (symmetric matrices), ¢ an arbitrary constant
> v is G-invariant, i.e. the group action is isometric

Canonical connection on (G, 7, M, H) induces connection on
tangent bundle TM ~ G xpqgym = (G xm)/H

» given by the Levi-Civita connection on TM w.r.t. y:
[(X,Y)=-i(Xo'Y + Yo 'X)
Index notation, ['%)#* X,3Y,, = T'(X, Y), base point 6 = g

rnafpo _ 3 o)
pugp = =4, A &)
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Geodesics in M

M inherits exponential map from G = GL(d) (matrix exponential)
exps; X = ﬂ(ed”e_lx)

for X € T3 M. Inserting the canonical projection 7:

1x

0=-exp; X =o¢e’

In index notation with 0 = g,,,, 0 = g, and X = hy,,:

Y = Gup (eh)pv

= Geodesics in M, right signature by construction!



Interim conclusion

v

M is homogeneous space, M ~ G/H

v

G has principal bundle structure

v

Natural way of defining the horizontal
direction = canonical connection

Geodesics in M w.r.t. canonical con-
nection parametrized by g, = g,,(e")”,

v

M~ G/H

Exponential parametrization: adapted
to basic structure of space of metrics




Two important terms for classifying M

t—»oo/

Geodesic completeness: = \/

Every maximal geodesic is defined on the entire real line R

» Geodesics “stay in M" and do not run into singularities

» Exponential map defined on entire tangent space

Geodesic connectedness:

Any two points in M can be connected by a geodesic D

Note: Connectedness plus geodesic completeness does not imply
geodesic connectedness!



Example 1: flat plane R?

Geodesically complete and geodesically connected




Example 1: flat plane R?

Geodesically complete and geodesically connected




Example 2: half plane

Not geodesically complete but geodesically connected




Example 2: half plane

Not geodesically complete but geodesically connected




Example 3: punctured plane R\{0}

Neither geodesically complete nor geodesically connected




Example 3: punctured plane R\{0}

Neither geodesically complete nor geodesically connected
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Example 4: punctured plane, non-flat connection

Geodesically complete but not geodesically connected



R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRREEEEEEERERRRRRRRRRNSNNSSSSS—————

Example 4: punctured plane, non-flat connection

Geodesically complete but not geodesically connected




Properties of M for different signatures (p, q)

For all signatures (p, ¢) the set M is
» open (= one chart sufficient)
» non-compact

» path-connected

v

geodesically complete

For Euclidean signatures For Lorentzian signatures

(p arbitrary, ¢ =0) M is (p>1,¢g>1) Mis
» geodesically connected » not geodesically connected
» simply connected » not simply connected



[[lustration for 2 x 2-matrices

Parametrize symmetric matrices (2 M) by

22—z Y
Y zZ+T

Eigenvalues given by

>\172:z:|:\/m2+y2

» Euclidean: A1, 22 >0
= 2> 12 + 92

» Lorentzian: A1 >0, Ao <0

=> —Va? +y? <z < a?+y?




lllustration for 2 x 2-matrices
Parametrize symmetric matrices (2 M) by Euclidean

22—z Y
Y zZ+T

Eigenvalues given by

>\172:z:|:\/m2+y2

» Euclidean: A1, 22 >0
= 2> 12 + 92

> Lorentzian: A\; > 0, Ay <0
= — /x2 _I_ y2 < z < 1-2 _j’_ y2 Lorentzian




Geodesics in My ;) (Lorentzian signature)




Geodesics in My ;) (Lorentzian signature)




Region in My ;) that can be reached by geodesics

Effective
shielding

| Lorentzian case: exponential map neither surjective nor injective! |




From M to F

Recall: we had metric v in M. In index notation:

ARV P — gu(p ga)v + £ gyt

= metric G in F?

Yes. With correct spacetime dependence and density weight:

G (@) = \[9(x) ¥ (g(2))o(z — 1)

This is the DeWitt metric. It is the unique metric that is
» ultra-local and diagonal in z-space

» gauge invariant (diffeomorphisms are isometric)




Connections on M and F

Proportionality factor /g entails further field dependence

= Levi-Civita connection on F contains additional terms:
P& = (080 + 1) (2) 6z — 9)3(2 - 2)

General connection on F: every smooth bi-linear bundle
homomorphism A defines a connection by

Tr=T09 4 4
Choosing A = —T' cancels contributions from /g and reproduces

Tr=T0(2) (2 — y)d(z — 2)

= —58‘ ¢ (2) 55)) o(x —y)d(z — 2)



Connections on M and F

Another famous choice is A = A(VPW) (Vilkovisky-DeWitt)
> adapted to gauge bundle structure of F
» AVDW) involves generators of gauge group

» highly non-locall!

Summary:
LC
Tr=T09 4+ 4
derived from geodesics still
0 LC metric calculable
. (VDW) adapted to gauge complicated non-

A= A VDW bundle structure local geodesics

i adapted to geometric very simple

T new structure of M geodesics!



Covariance in field space F

» Employ condensed DeWitt notation: i = (uv, x)

v

Consider a functional I of g and g

g, g]

v

Parametrize g in terms of h by a geodesic: g = g[h; g]
Define

v

['[h; g] = T'[g[h; 9], 9]

From geodesic equation follows

v

or S _
g L],y =P D Tlodl]

= Simple derivatives w.r.t. h are covariant derivatives in F !



Covariance in field space F

Consequences

» With the exponential parametrization, I‘f) (appearing e.g. in

the flow equation) is automatically covariant in field space:

82Tk [ge? 7, g]
Shishi |, _,

= D(;Dj) T'k[g, g] ‘g:g

» Geometric formalism (for any connection) suited for
computing covariant objects

> Allows for construction of reparametrization invariant
geometric effective action

» Modified Nielsen identities: relate 0T';/0g <> 0T /dg



Summary & conclusion

v

Fundamental geometric structure M ~ GL(d)/ O(p, q)

v

Principal bundle induces canonical connection

Geodesics parametrized by g, = g,,(e")”,

v

v

Produces only valid metrics!

v

Attention with Lorentzian signatures



