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Introduction Power spectrum and primordial perturbations

Quantum generation of initial spectrum

Quantum fluctuations

/!
(ador)” + <k2 + Z) (adpx) =0 z=12 (9:9)
z H
Two-point correlations function:
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Spectral index and tensor-to-scalar-ratio
log(k/kg) dns

ns—1-+ 5
Pr(k) = As (%) 2 dlog(k)

Pi(k) = As (k—’;>nt F= Af‘—z ko ~ 0.05Mpc™! pivot scale
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RIS  Slow-roll inflation

Slow-roll inflation and power spectrum

Scalar field - inflaton - us a perfect fluid with:

po~ 5P + V(D) po~ 5(@0) ~ V(9)

Definitions of slow-roll parameters:
o b V’(¢>)>2 _1<V"(¢)>
=z (w) =W

Slow-roll inflation & o)<l A o)<l J

The values of the slow-roll parameters identify:

Spectral index n, tensor-to-scalar-ratio r

ns = 1+21(¢i) — 6 (¢7) r =16 ¢(¢;) J
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RIS  Slow-roll inflation

Inflationary models and cosmic data
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Introduction Super-Planckian initial conditions

Problem: Super-Planckian initial conditions
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H(t) ~a/t a>1 A. Bonanno, M. Reuter, JCAP 08 (2007) 024
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Beyond the Einsten-Hilbert truncation
Asymptotically safe inflation from quadratic gravity

AS inflation ~ Weinberg Phys. Rev. D 81, 083535 (2010)

Consider a general truncation to obtain a de Sitter solution which is
unstable but lasts N > 60 e-folds.

Let us consider the UV Lagrangian:

k2

= g — 2N = AR (1)

L

Where gi, Ak, Bk are dimensionless running coupling constants, such that:

Ilm {g/ﬁAkHBk} — {g*a)‘*7/8*}
k—o0
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S o A T WA O BT 0T W TIEL [V I R-A=Vis Al  Beyond the Einsten-Hilbert truncation

By solving the linearized flow equations for g(k), A(k) and (k), we obtain:

o 67TC1k2 (2)
&k = 6mp? + 23c1(k? — p?)
N 2
Bk = Bx + bo (M2> Ak ~ ok~ (3)

Where:

@ 4 is an infrared renormalization scale
@ 03 is the critical exponent relative to (k)

@ by, cg and ¢; are free parameters

bg, co, c1 < relevant directions of the UV critical surface )
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Asymptotically safe inflation from quadratic gravity Beyond the Einsten-Hilbert truncation

The effective action can be obtained by substituting into the UV action:

Aoy — )\(k) 8uv — g(k) Buv — B(k)

Cutoff scale identification?

k as function of the cosmological time t:

k(t)=¢/t, £€>0 (4)
However this identification breaks diffeomorphism invariance.
o By noting that:  a(t) ~t* = R~ 1/t>~ k?

@ We can identify:
k? = ¢R (5)

A. Bonanno, Phys. Rev. D 85, 081503 (2012)
E. J. Copeland, C. Rahmede, I. D. Saltas, Phys. Rev. D 91, 103530 (2015)
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S o A T WA O BT 0T W TIEL [V I R-A=Vis Al  Beyond the Einsten-Hilbert truncation

We thus obtain the effective action at the inflationary era:

1 R?
5:/\/7—g R+aR*™% + 2 _ Al d*x
2K2 6m?

Where:
2 487I'2C1 —
® R = G mB(ir2fc0)a — 8mGn
o N\ — w?co (67—23¢1)

T 6mp2—23(p2+2¢co)cr

o av=—2u%hg M;Z
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Conformal transformation
Inflation in f(R) gravity model

Let us consider the following general action:

Slg] = 53 [ V& {R+F(R)} d'x

If F”(R) # 0, we can do a conformal transformation:

Bw — B = P J
So that:
R 1
el = [ V= { s - Jet 00,0 - V(o) s
1 ;.
VO = s (o= D xlo) - Fx(e)) p=eVE™
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In our case:
03 93
_ 1-8 X
QO(X)=1+CV<2—2 X 2to 5 (7)
This relation, due to its non-linearity, cannot be inverted.

In our case, as 63 is rather close to unity, and in order to have an analytical
expression for V(¢), we set 63 = 1.

In this way we explicitly obtain the two branches:

X+ = 2(27a2m4 +8m%p — 8m* + 3V/3 \/270‘4”78 +16a2m®(p — 1)>

With the reality condition y > 1 — 27m?a?/16.
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Asymptotically safe inflation from quadratic gravity EEHITTHEIRIENEITHIENTY

The scalar inflationary potential is the following:

2 —2\/?«# 2
Vi(g)= -8 {—192 (eﬁ“’ _ 1> +3a% — 128A +

256 K2

2 2
13a2 <a2 + 160V 3% _ 16> + 6a2\/a2 <a2 + 160V 3% _ 16>+

v (4001 Wf))

We can study the inflationary scenario coming from the potential V/(¢). ]
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Asymptotically safe inflation from quadratic gravity Constraints on (a, A)

The shape of the potential depends on the values («, A). J
Examples:
\é(i’) V()
\ \ A>1, a<0 ’r A<0
. a ‘ ‘ — -,
-2 2 6 8 10

We choose ranges for a and A such that:
@ V(o) has a minimum (oscillatory phase);
@ We can have a “graceful” exit from inflation < V/(émin) < 0.
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Asymptotically safe inflation from quadratic gravity Constraints on (a, A)

These features are verified for V(¢) = V4(¢) if o € [1,3] and A € [0, 1.5] J

V(¢)
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Asymptotically safe inflation from quadratic gravity Risults: Spectral index and tensor-to-scalar ratio

e Planck 2015: ns = 0.968 & 0.006 r <0.11
e AS inflation: n, € [0.968,0.970] r € [0.005, 0.006]
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SV oL A T VARV T BT 0T W TTEL [EV [Tl Oscillatory phase after inflation

Oscillatory phase after inflation

After the end of inflation, the inflaton field ¢ begins to oscillate around the
minimum @min of V(). J

To study this phase, we can approximate:

V(6) ~ 3 [(¢ = émin)? = b]
Where:
® Pmin = Pmin(; \)
o a(e.A) = V" (émin)

° bla, ) = =2y
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SV oL A T VARV T BT 0T W TTEL [EV [Tl Oscillatory phase after inflation

In particular:

\@ (303 (02 — 4) — 32aA + 4 (a2 — 6) )
Pmin(c, \) = 6 (a2 — 8) (a2 +2) — 64aN + 8 (a? —9) |af3

48 + 1802 —3a* +32A—4a3|al +36alal
a(a,N\) = 1

b(a,N) = 8ar (15a* — 30 — 96A + 802(15 + 4N)) |ov|
’ 8 (48 + 1802 — 304 + 32A — 4a (a2 — 9) |al)?
. —2508 + 132a° — 384a2A
8 (48 + 1802 — 30* + 32A — 4a (a2 — 9) |a])
480*(21 + 4A) — 1024A(3 + A)
§ (48 + 1802 — 30 + 32A — 4 (a2 — 9) |a)’
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SV oL A T VARV T BT 0T W TTEL [EV [Tl Oscillatory phase after inflation

The time evolution of the field ¢(t) is given by

36+ 3H(E) () + V(6(1)) =0 )
Where: e 1/2
H(e) = |5 (5002 + Vot
Putting:
o X(£) = V3 (6(£) ~ dmin)
o ()= d(®)

The original equation is equivalent to the following dynamical system:

== 2+ —ab))y —Vax
X=+ay
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SV oL A T VARV T BT 0T W TTEL [EV [Tl Oscillatory phase after inflation

The long time behavior is determined by the sign of ab = —2 V/(¢min) J

@ V(¢min) < 0 = Limit cycle behavior (our case)
@ V(émin) > 0 = (Pmin, V(¢min)) is an attractive node

@ V(¢min) = 0 is an Hopf bifurcation point

\

1ol
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SV oL A T VARV T BT 0T W TTEL [EV [Tl Oscillatory phase after inflation

This analysis can be useful to determine the scale factor a(t). We obtain:
_ 2/3
[Sm (\/ % |V(¢min)‘ t)} V(¢min) <0
a(t) = t2/3 V(émin) =0 (10)
_ 3 2/3
[s.nh ( 31V (Grmin)| t)] V(@min) > 0
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(DI PETLE Conclusions

Conclusions

@ Our model is significatly different from the Starobinsky model because
it predicts a tensor-to-scalar ratio which is significantly higher, and a
dynamics characterized by a limit-cycle behavior at the inflation exit;

@ It is in agreement with Planck 2015 data;

@ Present CMB data can put important constraints on the structure of
the effective Lagrangian at the Planck scale;

@ Limitation: simple tensorial structure of the effective Lagrangian which
assumes a functional dependence of the f(R) type.
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