Solutions to the Reconstruction Problem in Asymptotic Safety

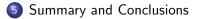
Zoë Slade

University of Southampton

Based on: T. R. Morris and Z. H. Slade, arXiv:1507.08657

Contents

2 Definitions



The effective average action

UV cutoff $\Lambda > IR$ cutoff k

$$Z_{k}^{\Lambda}[J] = \int \mathcal{D}\phi \, \mathrm{e}^{-\mathcal{S}^{\mathsf{tot},\Lambda}[\phi] + \frac{1}{2}\phi \cdot \mathrm{R}_{k} \cdot \phi + J \cdot \phi} \equiv \mathrm{e}^{\mathrm{W}_{k}^{\Lambda}[J]} \quad \xrightarrow{\mathsf{Legendre}}_{\mathsf{transform}} \quad \hat{\Gamma}_{k}^{\Lambda}[\varphi]$$

The flow equation

$$\partial_k \hat{\Gamma}_k^{\Lambda}[\varphi] = \frac{1}{2} \operatorname{tr}_{\Lambda} \left[\left(R_k + \hat{\Gamma}_k^{\Lambda(2)} \right)^{-1} \partial_k R_k \right]$$

Can remove UV cutoff Λ if $\partial_k R_k(p)$ decays quickly for $p^2 \gg k^2$:

$$\partial_k \hat{\Gamma}_k[\varphi] = \frac{1}{2} \operatorname{tr}\left[\left(R_k + \hat{\Gamma}_k^{(2)}\right)^{-1} \partial_k R_k\right]$$

- Search for asymptotically safe theory using $\hat{\Gamma}_k[\varphi]$.
- ► No need to define a regularized path integral and bare action.

The Reconstruction Problem

There are reasons for wanting access to path integral representation:

- Study Hamiltonian formulations.
- Understand properties of a the QFT (e.g. constraints, local symmetries, ...)
- Compare with other approaches (e.g. loop quantum gravity, perturbation theory, ...)

The reconstruction problem:

How can we reconstruct a bare action that corresponds to the asymptotically safe theory found using $\hat{\Gamma}_k$?

One-loop solution:

$$\hat{\Gamma}^{\Lambda}_{k=\Lambda}[\varphi] - \hat{\mathcal{S}}^{\Lambda}[\varphi] = \frac{1}{2} \mathrm{tr}_{\Lambda} \ln \left\{ \hat{\mathcal{S}}^{\Lambda(2)}[\varphi] + R_{\Lambda} \right\}$$

E. Manrique and M. Reuter, arXiv:0811.3888

Effective average action

$$\hat{\mathsf{\Gamma}}_{k}[\varphi] = \frac{1}{2}\varphi \cdot \rho^{2} \cdot \varphi + \mathsf{\Gamma}_{k}[\varphi] \tag{1}$$

Total effective action

$$\Gamma_{k}^{\text{tot}}[\varphi] = \hat{\Gamma}_{k}[\varphi] + \frac{1}{2}\varphi \cdot R_{k} \cdot \varphi$$
⁽²⁾

$$= \Gamma_{k}[\varphi] + \frac{1}{2}\varphi \cdot (\Delta_{k})^{-1} \cdot \varphi$$
(3)

Multiplicative IR cutoff

$$\Delta_k = \frac{C_k(p)}{p^2} \tag{4}$$

such that

$$C_k(p) = \frac{p^2}{p^2 + R_k(p)}$$
 (5)

UV cutoff $\Lambda > IR$ cutoff k

$$Z_{k}^{\Lambda}[J] = \int \mathcal{D}\phi \,\mathrm{e}^{-\mathcal{S}^{\mathrm{tot},\Lambda}[\phi] + \frac{1}{2}\phi \cdot \mathrm{R}_{k} \cdot \phi + \mathrm{J} \cdot \phi} \tag{6}$$

UV & IR regularisation appear in resulting effective action:

$$\Gamma_{k}^{\text{tot},\Lambda}[\varphi] = \Gamma_{k}^{\Lambda}[\varphi] + \frac{1}{2}\varphi \cdot (\Delta_{k}^{\Lambda})^{-1} \cdot \varphi \tag{7}$$

Multiplicative cutoff

$$\Delta_k^{\Lambda} = \frac{C_k^{\Lambda}(p)}{p^2} \tag{8}$$

where e.g.

$$C_k^{\Lambda}(p) = \frac{p^2 \theta(\Lambda - |p|)}{p^2 + R_k(p)}$$
(9)

Bare interactions $\hat{\mathcal{S}}^{\Lambda}[\phi] = \frac{1}{2}\phi \cdot p^2 \cdot \phi + \mathcal{S}^{\Lambda}[\phi]$

Wilsonian interactions

$$\hat{S}^{k}[\Phi] = rac{1}{2} \Phi \cdot p^{2} \cdot \Phi + S^{k}[\Phi]$$

Total bare action

Total Wilsonian effective action

$$\mathcal{S}^{\mathrm{tot},\Lambda}[\phi] = \mathcal{S}^{\Lambda} + \frac{1}{2}\phi \cdot (\tilde{\Delta}^{\Lambda})^{-1} \cdot \phi$$

 $S^{\mathrm{tot},k}[\Phi] = S^k[\Phi] + \frac{1}{2} \Phi \cdot (\Delta^k)^{-1} \cdot \Phi$

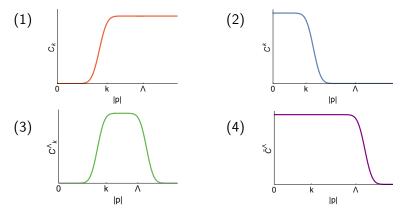
where

$$\Delta^k = \frac{C^k(p)}{p^2}$$

$$ilde{\Delta}^{\wedge} = rac{ ilde{C}^{\wedge}(p)}{p^2}$$

where

Cutoff profiles:



- \tilde{C}^{Λ} and C^{k} obey the same general conditions but are otherwise unrelated.
- Remove UV cutoff: $C_k^{\infty}(p) \equiv C_k(p)$.

Require that cutoffs obey sum rule

$$C_k^{\Lambda}(p) + C^k(p) = \tilde{C}^{\Lambda}(p)$$
(10)

Example:

$$\tilde{C}^{\Lambda}(p) = \theta(\Lambda - |p|), \quad C^{k}(p) = \theta(k - |p|)$$
 (11)

and
$$C_k^{\Lambda}(p) = \theta(\Lambda - |p|) - \theta(k - |p|)$$
 (12)

Compatibility condition:

$$C^{\Lambda}_{k=\Lambda}(p) = 0 \tag{13}$$

If this is satisfied then

$$\tilde{C}^{\wedge}(p) = C^{k=\wedge}(p) \tag{14}$$

Starting point:

$$Z^{\Lambda}[J] = \int \mathcal{D}\phi \,\mathrm{e}^{-\mathcal{S}^{\mathrm{tot},\Lambda}[\phi] + J \cdot \phi} = \int \mathcal{D}\phi \,\mathrm{e}^{-\frac{1}{2}\phi \cdot \left(\tilde{\Delta}^{\Lambda}\right)^{-1} \cdot \phi - \mathcal{S}^{\Lambda}[\phi] + J \cdot \phi}$$

Introduce intermediate scale k by re-expressing propagator as

$$ilde{\Delta}^{\mathsf{A}} = \Delta^{\mathsf{A}}_k + \Delta^k$$

Can show functional integral is

$$Z^{\Lambda}[J] = \int \mathcal{D}\phi_{>} \mathcal{D}\phi_{<} e^{-\frac{1}{2}\phi_{>} \cdot \left(\Delta_{k}^{\Lambda}\right)^{-1} \cdot \phi_{>} - \frac{1}{2}\phi_{<} \cdot \left(\Delta^{k}\right)^{-1} \cdot \phi_{<} - \mathcal{S}^{\Lambda}[\phi_{>} + \phi_{<}] + J \cdot (\phi_{>} + \phi_{<})}$$

• Refer to $\phi_>$ ($\phi_<$) as high (low) modes.

Ĉ٨

Consider integral over high modes:

$$Z_k^{\Lambda}[J,\phi_{<}] \equiv \int \mathcal{D}\phi_{>} e^{-\frac{1}{2}\phi_{>}\cdot\left(\Delta_k^{\Lambda}\right)^{-1}\phi_{>}-\mathcal{S}^{\Lambda}[\phi_{>}+\phi_{<}]+J\cdot(\phi_{>}+\phi_{<})}$$

Perform linear shift $\phi_{>} = \phi - \phi_{<}$ and rewrite interaction S^{Λ} as a function of $\delta/\delta J$:

$$Z_{k}^{\Lambda}[J,\phi_{\leq}] = \mathrm{e}^{-\frac{1}{2}\phi_{\leq}\cdot\left(\Delta_{k}^{\Lambda}\right)^{-1}\cdot\phi_{\leq}} \mathrm{e}^{-\mathcal{S}^{\Lambda}\left[\frac{\delta}{\delta J}\right]} \int \mathcal{D}\phi \, \mathrm{e}^{-\frac{1}{2}\phi\cdot\left(\Delta_{k}^{\Lambda}\right)^{-1}\cdot\phi+\phi\cdot\left(J+\left(\Delta_{k}^{\Lambda}\right)^{-1}\cdot\phi_{\leq}\right)}$$

Perform another change of variables $\phi' = \phi - \Delta_k^{\Lambda} \cdot J - \phi_{<}$. Remaining integral is a decoupled Gaussian in ϕ' . After some rearranging:

$$Z_{k}^{\Lambda}[J,\phi_{<}] = e^{\frac{1}{2}J\cdot\Delta_{k}^{\Lambda}\cdot J+J\cdot\phi_{<}} e^{-\frac{1}{2}(J+(\Delta_{k}^{\Lambda})^{-1}\phi_{<})\cdot\Delta_{k}^{\Lambda}\cdot (J+(\Delta_{k}^{\Lambda})^{-1}\phi_{<})} \times e^{-\mathcal{S}^{\Lambda}[\frac{\delta}{\delta J}]} e^{\frac{1}{2}(J+(\Delta_{k}^{\Lambda})^{-1}\phi_{<})\cdot\Delta_{k}^{\Lambda}\cdot (J+(\Delta_{k}^{\Lambda})^{-1}\phi_{<})}$$

Perform all derivatives in $S^{\Lambda}[\delta/\delta J]$:

$$Z_k^{\Lambda}[J,\phi_{<}] = e^{\frac{1}{2}J \cdot \Delta_k^{\Lambda} \cdot J + J \cdot \phi_{<} - S^k[\Delta_k^{\Lambda} \cdot J + \phi_{<}]}$$
(15)

Functional S^k we have introduced is the interaction part of a Wilsonian effective action. Why?

Substituting the above expression back into original partition function gives:

$$Z^{\Lambda}[J] = \int \mathcal{D}\phi_{<} e^{-\frac{1}{2}\phi_{<} \cdot \left(\Delta^{k}\right)^{-1} \phi_{<} + \frac{1}{2}J \cdot \Delta^{\Lambda}_{k} \cdot J + J \cdot \phi_{<} - S^{k}[\Delta^{\Lambda}_{k} \cdot J + \phi_{<}]}$$
(16)

Consider that $\Delta_k^{\Lambda} \cdot J = 0$, then $Z^{\Lambda}[J]$ simplifies to

$$Z^{\Lambda}[J] = \int \mathcal{D}\phi_{<} e^{-\frac{1}{2}\phi_{<} \cdot \left(\Delta^{k}\right)^{-1} \cdot \phi_{<} - S^{k}[\phi_{<}] + J \cdot \phi_{<}}$$
(17)

Integration over high modes related to generator of connected Green's functions W_k^{Λ} :

$$e^{W_k^{\Lambda}[J,\phi_{<}]} \equiv Z_k^{\Lambda}[J,\phi_{<}] = e^{\frac{1}{2}J\cdot\Delta_k^{\Lambda}\cdot J + J\cdot\phi_{<} - S^k[\Delta_k^{\Lambda}\cdot J + \phi_{<}]}$$
(18)

Legendre transform of W_k^{Λ} gives

$$\Gamma_k^{\text{tot},\Lambda}[\varphi,\phi_{<}] = -W_k^{\Lambda}[J,\phi_{<}] + J \cdot \varphi$$
(19)

$$=\frac{1}{2}(\varphi-\phi_{<})\cdot\left(\Delta_{k}^{\Lambda}\right)^{-1}\cdot\left(\varphi-\phi_{<}\right)+\Gamma_{k}^{\Lambda}[\varphi] \qquad (20)$$

From (18), (19) and (20):

$$S^{k}[\Phi] = \Gamma_{k}^{\Lambda}[\varphi] + \frac{1}{2}(\varphi - \Phi) \cdot (\Delta_{k}^{\Lambda})^{-1} \cdot (\varphi - \Phi)$$
(21)

where $\Phi = \Delta_k^{\Lambda} \cdot J + \phi_{<}$.

Duality relation:

$$S^{k}[\Phi] = \Gamma_{k}^{\Lambda}[\varphi] + \frac{1}{2}(\varphi - \Phi) \cdot (\Delta_{k}^{\Lambda})^{-1} \cdot (\varphi - \Phi)$$
(22)

If we have $\{\Gamma_k, 0 \le k < \infty\}$, then $\Gamma_k \equiv \Gamma_k^{\infty}$, $\Delta_k \equiv \Delta_k^{\infty}$ and

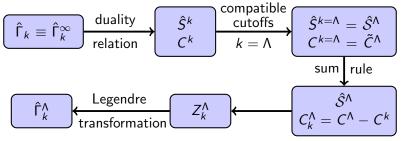
$$S^{k}[\Phi] = \Gamma_{k}[\varphi] + \frac{1}{2}(\varphi - \Phi) \cdot (\Delta_{k})^{-1} \cdot (\varphi - \Phi)$$
(23)

- S^k with $C^k = 1 C_k$ can play the role of the bare interactions: $S^{k=\Lambda} = S^{\Lambda}$.
- Can reconstruct partition function Z^{Λ} (fully regulated in UV).
- Not the same Z_k^{Λ} from whence $\Gamma_k(\Gamma_k^{\Lambda})$ came!

What hope is there of finding an exact relationship between $\hat{\Gamma}_k$ and the bare action which lives inside original functional integral?

$$\hat{\Gamma}_k \xrightarrow{?} Z_k^{\Lambda} = \int \mathcal{D}\phi \, \mathrm{e}^{-\mathcal{S}^{\mathrm{tot},\Lambda}[\phi] + \frac{1}{2}\phi \cdot \mathrm{R}_k \cdot \phi + \mathrm{J} \cdot \phi}$$

- $\hat{\Gamma}_k^{\Lambda}$ derived from Z_k^{Λ} necessarily depends on both cutoffs Λ and k.
- ▶ Best we can hope for is map from $\hat{\Gamma}_k$ to pair $\{S^{\Lambda}, \hat{\Gamma}_k^{\Lambda}\}$ s.t. $\hat{\Gamma}_k^{\Lambda} \rightarrow \hat{\Gamma}_k$ as $\Lambda \rightarrow \infty$.



Can construct Γ_k^{Λ} vertex by vertex from Γ_k by utilising the duality relation:

$$S^{k}[\Phi] = \Gamma^{\Lambda}_{k}[\varphi] + \frac{1}{2}(\varphi - \Phi) \cdot (\Delta^{\Lambda}_{k})^{-1} \cdot (\varphi - \Phi)$$
(24)

$$= \Gamma_k^{\mathring{\Lambda}}[\mathring{\varphi}] + \frac{1}{2}(\mathring{\varphi} - \Phi) \cdot (\Delta_k^{\mathring{\Lambda}})^{-1} \cdot (\mathring{\varphi} - \Phi)$$
(25)

where we have two different UV cutoff profiles \tilde{C}^{Λ} and $\mathring{C}^{\mathring{\Lambda}}$ with $\mathring{\Lambda} > \Lambda$,

$$\implies \Gamma_{k}^{\Lambda}[\varphi] = \Gamma_{k}^{\mathring{\Lambda}}[\mathring{\varphi}] + \frac{1}{2}(\mathring{\varphi} - \Phi) \cdot (\Delta_{\Lambda}^{\mathring{\Lambda}})^{-1} \cdot (\mathring{\varphi} - \Phi)$$
(26)

Send $\Lambda\to\infty$

$$\implies \Gamma_{k}^{\Lambda}[\Phi] = \Gamma_{k}[\varphi] + \frac{1}{2}(\varphi - \Phi) \cdot (\Delta_{\Lambda})^{-1} \cdot (\varphi - \Phi)$$
(27)

- Relation between two effective actions with different UV cutoffs.
- Change from \tilde{C}^{Λ} to $\mathring{C}^{\mathring{\Lambda}}$ implies change $\mathcal{S}^{\Lambda} \mapsto \mathring{\mathcal{S}}^{\mathring{\Lambda}}$.

How does solution 2 relate to the one-loop solution?

$$\hat{\Gamma}^{\Lambda}_{k=\Lambda}[\varphi] - \hat{\mathcal{S}}^{\Lambda}[\varphi] = \frac{1}{2} \operatorname{tr}_{\Lambda} \ln \left\{ \hat{\mathcal{S}}^{\Lambda(2)}[\varphi] + R_{\Lambda} \right\}$$
(28)

E. Manrique, M. Reuter, arXiv:0811.3888

Re-express (28) as

$$\Gamma_{k=\Lambda}^{\Lambda}[\varphi] = \mathcal{S}^{\Lambda}[\varphi] + \frac{1}{2} \operatorname{tr} \ln \left\{ \mathcal{S}^{\Lambda(2)}[\varphi] + (\Delta_{\Lambda}^{\Lambda})^{-1} \right\}$$
(29)

In solution 2 we specialise to compatible cutoffs: $C_{k=\Lambda}^{\Lambda}(p) = 0$.

$$\implies \Gamma^{\Lambda}_{k=\Lambda}[\varphi] = \mathcal{S}^{\Lambda}[\varphi] \tag{30}$$

$$\operatorname{tr} \ln \left\{ \mathcal{S}^{\Lambda(2)}[\varphi] + (\Delta^{\Lambda}_{\Lambda})^{-1} \right\} = -\operatorname{tr} \ln \left\{ \Delta^{\Lambda}_{\Lambda} \right\} + \operatorname{tr} \ln \left\{ 1 + \Delta^{\Lambda}_{\Lambda} \cdot \mathcal{S}^{\Lambda(2)}[\varphi] \right\}$$

Most direct expression relating Wilsonian interactions and bare interactions:

$$Z_k^{\Lambda}[0,\phi_{<}] = e^{-\mathcal{S}^k[\phi_{<}]} = \int \mathcal{D}\phi_{>} \mathrm{e}^{-\frac{1}{2}\phi_{>}\cdot(\Delta_k^{\Lambda})^{-1}\cdot\phi_{>} - \mathcal{S}^{\Lambda}[\phi_{>} + \phi_{<}]}$$
(31)

For compatible cutoffs at $k = \Lambda$

$$S^{\Lambda}[\varphi] = S^{\Lambda}[\varphi] \tag{32}$$

Triple equality:

$$\Gamma^{\Lambda}_{k=\Lambda}[\varphi] = \mathcal{S}^{\Lambda}[\varphi] = \mathcal{S}^{\Lambda}[\varphi]$$
(33)

For non-compatiblle cutoffs there is still a non-trivial functional integral to do at k = Λ.

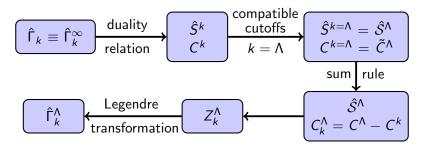
Summary and Conclusions

Provided two solutions to the reconstruction problem:

(1) Exact duality relation

$$S^{k}[\Phi] = \Gamma_{k}[\varphi] + rac{1}{2}(\varphi - \Phi) \cdot (\Delta_{k})^{-1} \cdot (\varphi - \Phi)$$

(2) Map from $\hat{\Gamma}_k$ to pair $\{S^{\Lambda}, \hat{\Gamma}_k^{\Lambda}\}$ s.t. $\hat{\Gamma}_k^{\Lambda} \to \hat{\Gamma}_k$ as $\Lambda \to \infty$



Summary and Conclusions

Relation between two effective average actions with different UV cutoff profiles C
^Λ, C^Å:

$$\Gamma_{k}^{\Lambda}[\varphi] = \Gamma_{k}^{\Lambda}[\mathring{\varphi}] + \frac{1}{2}(\mathring{\varphi} - \Phi) \cdot (\Delta_{\Lambda}^{\mathring{\Lambda}})^{-1} \cdot (\mathring{\varphi} - \Phi)$$

- Explored relation to one-loop formula.
- Generalise relations to multiple fields, fermions, …
- Extend to full quantum gravity.

Additional slide: Why a UV regulated effective average action must depend on the UV regulator

Re-write flow equation

$$\frac{\partial}{\partial k} \hat{\Gamma}_{k}^{\Lambda}[\varphi] = \frac{1}{2} \operatorname{tr}_{\Lambda} \left[\left(R_{k} + \frac{\delta^{2} \hat{\Gamma}_{k}^{\Lambda}}{\delta \varphi \delta \varphi} \right)^{-1} \frac{\partial R_{k}}{\partial k} \right]$$
(34)
$$\left[\left(R_{k} + \frac{\delta^{2} \hat{\Gamma}_{k}^{\Lambda}}{\delta \varphi \delta \varphi} \right)^{-1} \frac{\partial R_{k}}{\partial k} \right] - \frac{1}{2} \operatorname{tr} \left[\theta(|p| - \Lambda) \left(R_{k} + \frac{\delta^{2} \hat{\Gamma}_{k}^{\Lambda}}{\delta \varphi \delta \varphi} \right)^{-1} \frac{\partial R_{k}}{\partial k} \right]$$
(35)

(with Λ sharp)

 $=\frac{1}{2}$ tr

Remainder term vanishes for optimised IR cutoff profle $\partial_k R_k(p) = 2k\theta(k^2 - p^2).$

• $\hat{\Gamma}_k^{\Lambda}$ obeys same FRGE as $\hat{\Gamma}_k$ for $k \leq \Lambda$? Consistently set $\hat{\Gamma}_k^{\Lambda} = \hat{\Gamma}_k$?

Additional slide: Why a UV regulated effective average action must depend on the UV regulator

Full inverse propagator:

$$\hat{\Delta}^{-1}(p) := R_k(p) + \frac{\delta^2 \hat{\Gamma}_k^{\Lambda}}{\delta \varphi(p) \delta \varphi(-p)} \bigg|_{\varphi=0}$$
(36)

Define $\Gamma'[\varphi]$ to be the remainder after the term quadratic in the fields is removed. Then

- - - -

$$\left(R_{k} + \frac{\delta^{2}\hat{\Gamma}_{k}^{\Lambda}}{\delta\varphi\delta\varphi}\right)^{-1}(p, -p) = \left(\hat{\Delta}^{-1} + \frac{\delta^{2}\Gamma'}{\delta\varphi\delta\varphi}\right)^{-1}(p, -p)$$
(37)

$$= \hat{\Delta}(p) - \hat{\Delta}(p) \frac{\delta^{2} \Gamma'}{\delta \varphi(p) \delta \varphi(-p)} \hat{\Delta}(p) + \int_{\alpha}^{\alpha} \frac{d^{d} q}{(2\pi)^{d}} \hat{\Delta}(p) \frac{\delta^{2} \Gamma'}{\delta \varphi(p) \delta \varphi(-p-q)} \hat{\Delta}(p+q) \frac{\delta^{2} \Gamma'}{\delta \varphi(p+q) \delta \varphi(-p)} \hat{\Delta}(p) - \cdots$$

Additional slide: Why a UV regulated effective average action must depend on the UV regulator

The momentum q is the external momentum injected by the fields remaining in Γ' :

$$\frac{\delta^2 \Gamma'}{\delta \varphi(p) \delta \varphi(-p-q)} = \Gamma^{(3)}(p, -p-q, q; k, \Lambda) \varphi(-q) + \mathcal{O}(\varphi^2)$$
(38)

- External momenta |q| ≤ Λ and momenta running through internal line |p + q| ≤ Λ are restricted.
- Momentum p already cutoff at k due to ∂_kR_k(p) and so Λ invisible for it.
- However cutoff Λ remains inside inverse because of internal momenta.
- $\hat{\Gamma}_k^{\Lambda}$ non-trivial function of Λ .