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Introduction

Properties of interacting fixed points and RG trajectories for multi-field theories ind = 3
Euclidean dimensions.

We consider coupled vector representations of O(N) symmetry group, i.e., ®; O(N;) theories.
This allows for a large number of possible scaling solutions!

These theories are trivial in d = 4 and therefore serve only as a toy model for asymptotically safe
and / or IR-complete theories.

... but nevertheless might be useful for coupling scalar fields to gravity in d = 4 dimensions.
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Renormalization group approach

To establish the scaling properties of fixed point solutions in d = 3 dimensions we use a
Wilsonian RG framework (functional RG / e-expansion).

In the absence of symmetry-breaking fields, all FPs arise from a perturbation of the Gaussian
scaling solution.

The upper critical dimension of the considered models is d = 4 and therefore a low-order
expansion in € = 4 — d is not applicable (although it might be useful to inspect the presence of
different FPs).

3/28



Truncations of functional RG flow equations for multi-field models

The RG S-functions are derived from the nonperturbative flow equation for the scale-dependent
effective action functional I' = I' [{¢;}] in d-dimensional Euclidean space:

kﬁ I = Flowg [[?]

Ik Wetterich, PLB 301 (1993) 90

k is a characteristic (RG) scale associated with the regulator function R = R(k).

The infinite hierarchy of flow equations is truncated by the following ansatz for the effective
action of n distinct field degrees of freedom ¢;:

I = fddx

M n 2 m;
[T, (67 — ki)™
U = D Ay — ,

n ¥
i=1 i

1 n
3 ;zi (86> + U({i})

m1+...+mn:2

Although a large number of couplings A, ..., and parameters are introduced, typically only
few of them appear in the bare action S = I'(k = A) defined at the cutoff scale.
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Questions?
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We introduce the following notation for the S-functions

O,y

Bmy-my, =k £y

that are expressed in terms of the rescaled (renormalized, dimensionless) couplings:

n
—2m; 1 (d—4)m;
Ay omg = Ka | | 27K, o,
i=1

Ky = [(47r)d/2r(d/2 + 1)/2]'1

They take the following form:

Bty ooy =~y ey Ay ey + Ko mn LA .y )

canonical scaling

loop contributions

op
Critical exponents: 6 € —Spec( M )
FP

EYT

In the following, we will assume that the parameters «; have been tuned to their respective
critical values (for a given FP).
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In general, multi-field models will feature a large number of possible scaling solutions.

The B-functions are non-polynomial functions of the couplings and it is therefore challenging to
make sure that numerical fixed-point searches do indeed uncover all stable fixed points of the
system.

How can we classify possible solutions and identify stability properties?

To address this problem, we match the solutions of the renormalization group S-functions

derived within the framework of the functional RG to those obtained with the Wilsonian
momentum-shell RG by employing an expansion in € = 4 — d.
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The B-functions to one-loop order in the e-expansion may also be obtained from the
nonperturbative RG flow equation.

This is achieved by employing an expansion around the upper critical dimension and restricting
the functional space to those operators that appear in the bare action.

By virtue of one-loop universality, the expanded functional RG SB-functions are exact and

independent of the chosen (nonperturbative) regulator.

We obtain:

1-1 - e m -

canonical scaling

Ay = O(€)
e=4-d

loop contributions
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Questions?
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In the context of coupled-field models one finds that different fixed points govern the IR scaling
behavior of the model.

First we examine (multicritical) scaling solutions of the O(N1) & O(N;) theory.
In this case, two relevant (mass-like) parameters need to be tuned to put the system onto the

critical hypersurface of a given FP. Note, that the number of parameters that need to be tuned
increases with the number of coupled vector representations.
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O(N1) @ O(N») two-field model

The decoupled (DFP), isotropic fixed point (IFP), and partially decoupled scaling solutions, can
be deduced from the existence of the Wilson-Fisher fixed point.

They correspond to a complete decoupling of the two sectors with a discrete Z, exchange
symmetry, a full symmetry enhancement to the O(N{ + N,) symmetry group, and partial
decoupling, respectively.

This model features another fully-coupled FP — the biconal fixed point (BFP) — that emerges due
to the nontrivial interactions between the two field sectors (no symmetry enhancement).

In general, the presence of a large number of nontrivial FPs provides the possibility to define
complete RG trajectories, with interacting FPs both in the IR / UV.
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Stability exchange in two-field models

Keep N1 =1 fixed.

As we increase N, to larger values, the Biconal FP
exchanges stability between two symmetry-
enhanced FPs.

The stability properties of the respective scaling
solutions is captured be the exponent 63

(61 and 0, relate to the relevant x; parameters).

All possible multicritical FPs can be reached.
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Example for complete RG trajectories with continuous symmetry enhancement.

On critical hypersurface RG flow is attracted to IR-stable fixed point with O(2) symmetry.

Two-field model, functional RG (d = 3)
Ni+Ny =2

Isotropiq FP

15
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Example for complete RG trajectories with continuous symmetry enhancement.

On critical hypersurface RG flow is attracted to IR-stable fixed point with O(2) symmetry —
if initial couplings are within the domain of attraction.

Two-field model, functional RG (d = 3)
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Questions?
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IR-stability of two-field models in (N, N;) plane

Functional RG (d = 3) to different orders in the field expansion:

Isotropic FP is IR-stable only for small
Ni+Ny» <524

Decoupled FP takes over IR-stability for
Ni+N, >4
which can also be deduced from the scaling relation:

O3 =601 +6,—-d

Isotropic FP Biconal FP

These results are comparable to those obtained with the fourth order e-expansion and six-loop

fixed dimension expansion (d = 3).
Calabrese et al., PRB 67 (2003) 054505
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17-conjecture

“In general ®* theories with a single quadratic invariant, the infrared stable FP is the one that
corresponds to the fastest decay of correlations.”

Vicari & Zinn-Justin, NJP 8 (2006) 321

This suggests that all one needs to do to assess IR-stability is to check the values of the
anomalous dimensions 77 (if an IR-stable FP exists).

Can this conjecture be extended to multi-field theories?

”In this situation, the exponent 1 is replaced by a matrix and the conjecture applies to the trace
of the matrix. However, the empirical evidence, beyond the e-expansion is more limited.”

While the present data is consistent with this statement, more elaborate truncations are
necessary to make a definite statement.
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Questions?
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So how do these results generalize to multi-field models?

We systematically investigate the properties of scaling solutions and their respective domains of
attraction. This allows us to define complete RG trajectories for these models.

Due to the complicated non-polynomial nature of the RG S-functions we start by considering a
one-loop e-expansion to identify all possible FPs that arise from the perturbation around the
Gaussian FP.

Here, three relevant (mass-like) parameters need to be tuned to put the system onto the critical
hypersurface.
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One-loop e-expansion and three-field models

Although the B-functions take a simple form, they still allow for a large number of FPs . . .
To one-loop order in the e-expansion, the 8 functions take the form:

B200 = —€d200 + (N +8) A3 + Na A%, + N3 ATy,
Bo20 = —€dono + N1 A7 g + (N2 +8) A5, + N3 A3,
,3()()2 = —6/1002 +N1/l%01 + Nz/lgll + (N3 + 8)/1802
B11o = —€d110 + (N1 +2)A110A200 + (N2 + 2) Ap20A110 + N3Ap11 101 + 4/1%10
Bio1 = —€dio01 + (N1 +2)A101 200 + N2oA110d011 + (N3 +2) Apo2 A 101 + 4/1%01
Boi1 = —€do11 + N1 101 110 + (N2 +2) Ao11 do2o + (N3 +2) Aooa Ao11 + 445,

Note, at this order no 7 = O(€?) effects!
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Similar as in the two-field model, the critical hypersurface can be partitioned into different
domains (see Figure). The complicated geometry allows for interesting flow topologies and FP
dynamics as the number of field components N; is varied.

In particular, we observe that FPs with continuous symmetry enhancement sit on the symmetry
axes of the Cayley surface.

From the known scaling solutions of the two-field model
it is straightforward to identify he following FPs:

* Isotropic FP (IFP)
* Decoupled FP (DFP)
* Partially decoupled biconal FP (DBFP)

A110
&110 = ——m———,
V2001020

101
£l101 = ———, etc.

V200002
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Questions?
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IR stability in three-field models

IR-stable FPs in (N,, N3) plane (one-loop e-expansion, € = 1):

Ni=1
3)oeONNNNNNAAAAAAAAAAAAAAAAAAAAAL
ONNEEENAAAAAAAAAAAAAAAAAAAAA
ONNEEEBNAAAAAAAAAAAAAAAAAAAAA

HEEEENAAAAAAAAAAAAAAAAAAAA
HEEEENAAAAAAAAAAAAAAAAAAAA
HEEEENAAAAAAAAAAAAAAAAAAAAL
HEEEENAAAAAAAAAAAAAAAAAAAAD
HEEEENAAAAAAAAAAAAAAAAAAAA
HEEEENAAAAAAAAAAAAAAAAAAAA
HEEEENAAAAAAAAAAAAAAAAAAAAD
HEEEENAAAAAAAAAAAAAAAAAAAA
HEEEENAAAAAAAAAAAAAAAAAAAA

HEEEEAAAAAAAAAAAAAAALAAAAAAL

00000000

[\®}
(=)

EEEEEAAAAAAAAAAAAAAAAAAAAA
™ EEEENAAAAAAAAAAAAAAAAAAAAA
= 15k EEEENAAAAAAAAAAAAAAAAAAAAA
ONEEEAAAAAAAAAAAAAAAAAAAAAL
EEENAAAAAAAAAAAAAAAAAAAAA
ONENAAAAAAAAAAAAAAAAAAAAA
GONNAAAAAAAAAAAAAAAAAAAAA
10k GOOAAAAAAAAAAAAAAAAAAAAA
¢¢oNEEENEEEEEEEEEEEEEEER
¢ooNEEEEEEEEEEEEEEEEEER
¢¢EEEEEEEEEEEEEEEEENE
¢oEEEEEEENEEEEEEEEEE

5* ¢SEEEEEEEEEEEEEEEN

...-...-.:::

1;7 ‘ ‘ ‘ ‘ ..Q:::::

1 5 10 15 20 25 30
N,

We observe the absence of IR-stable FP for small and intermediate values of N;, in contrast to
two-field model.
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IR stability in

three-field models

IR-stable FPs in (N,, N3) plane (one-loop e-expansion, € = 1):
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two-field model.

Emergence of new fully-coupled scaling solutions, while other FPs can be deduced from the
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two-field model. This pattern extends to general multi-field models.
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Questions?
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Fully-coupled FPs in three-field models

Pair of fully-coupled FPs emerges from the complex plane — only one of them is IR-stable. This
scenario does not appear in the two-field model!
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truncation to 4th order in the fields, 77 # 0

only a small window of opportunity.
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Exchange of IR-stability in three-field models

There are other examples of fully-coupled FPs that are never IR stable (without additional fine
tuning). Some of these FPs feature the same type of stability trading that we observed already in

the two-field model.
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Summary

We have explored a large class of multicritical FPs in two-, three-, and four-field models. They
come with an increasing number of (IR) relevant parameters that need to be tuned appropriately.

Even after the system has been tuned to the critical hypersurface, this does not guarantee that the
IR-stable scaling solution is reached.

However, we observe that for values of N; where a symmetry-enhanced fixed point exists and is
IR stable all other fixed points feature a higher degree of fine-tuning required to reach them as

IR FPs. Thus, symmetry-enhancement in the IR is the “natural” possibility.

It will be interesting to explore the coupling of similar scalar models to gravity.
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