On the two-loop counterterm in Quantum Gravity

Benjamin Knorr

in collaboration with H. Gies, S. Lippoldt and F. Saueressig

based on arXiv:1601.01800 and work in progress

Theoretisch-Physikalisches Institut Friedrich-Schiller-Universität Jena

Asymptotic Safety Seminar

seit 1558

Outline	Perturbative QG	AS&GS: setup	AS&GS: calculation	
Outline				

- Short recap: why perturbative QG is thought to fail
- AS and the Goroff-Sagnotti term: setup and analytical results
- AS and the Goroff-Sagnotti term: explicit calculations
- Summary

Einstein-Hilbert action

$$S_{\mathsf{EH}} = rac{1}{16\pi\,G_N}\int\sqrt{-\mathsf{det}g}\left(R-2\Lambda
ight)$$

- naive power-counting suggests that gravity is perturbatively nonrenormalisable: $[G_N] = -[M_{Pl}^2] = -2$
- possible way around: (on-shell) cancellations

A basis of tensor structures

- introduce a basis of curvature invariants (in 4 dimensions):
 - order 0: "1" • order 1: R • order 2: R^2 , $R_{\mu\nu}R^{\mu\nu}$, $C_{\mu\nu\rho\sigma}C^{\mu\nu\rho\sigma}$ • order 3: $R \Box R$, $R_{\mu\nu} \Box R^{\mu\nu}$, R^3 , $R R_{\mu\nu}R^{\mu\nu}$, $R_{\mu}^{\ \nu}R_{\nu}^{\ \rho}R_{\rho}^{\ \mu}$, $R_{\mu\nu}R_{\rho\sigma}C^{\mu\rho\nu\sigma}$, $R C_{\mu\nu\rho\sigma}C^{\mu\nu\rho\sigma}$, $C_{\mu\nu}^{\ \rho\sigma}C_{\rho\sigma}^{\ \tau\omega}C_{\tau\omega}^{\ \mu\nu}$ • ...

due to negative mass dimension of G_N, order 2 invariants are generated by renormalisation (see, e.g., t'Hooft and Veltman)
 schematically,

$$\Delta\Gamma_{\rm div} \sim \frac{1}{\epsilon} \int \sqrt{-{\rm det}g} \left(\alpha R^2 + \beta R_{\mu\nu} R^{\mu\nu} + \gamma C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma} \right)$$

■ in 4 dimensions, the Euler characteristic

$$\chi = \frac{1}{32\pi^2} \int \sqrt{-\det g} \left(\frac{2}{3} R^2 - 2R_{\mu\nu} R^{\mu\nu} + C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma} \right)$$

is a topological invariant \Rightarrow eliminate C^2 -term

- - remaining divergent part of effective action:

$$\Delta \Gamma_{
m div} \sim rac{1}{\epsilon} \int \sqrt{-{
m det}g} \left(lpha' R^2 + eta' R_{\mu
u} R^{\mu
u}
ight)$$

- go on-shell (with Λ = 0): R = 0, R_{µν} = 0
 ⇒ gravity (with vanishing cosmological constant) is one-loop finite!
- does this hold to all orders?

2-loop renormalisation - Goroff and Sagnotti

- at the 2-loop level, only one invariant remains on-shell, the "Goroff-Sagnotti term" $C_{\mu\nu}{}^{\rho\sigma}C_{\rho\sigma}{}^{\tau\omega}C_{\tau\omega}{}^{\mu\nu}$
- Goroff and Sagnotti (1985), van de Ven (1991): gravity is 2-loop divergent,

$$\Delta\Gamma_{\rm div} = (32\pi G_N) \frac{-209}{2880(4\pi)^4} \frac{1}{\epsilon} \int \sqrt{-\det g} \, C_{\mu\nu}^{\ \rho\sigma} C_{\rho\sigma}^{\ \tau\omega} C_{\tau\omega}^{\ \mu\nu}$$

there is no topological invariant that could rescue us here
 it is believed that this problem reoccurs to all higher orders (C⁴...)

AS and the Goroff-Sagnotti term - some expectations

Will the Asymptotic Safety Program fail once a "proper perturbative counterterm" is included?

- answer from outside: yes, because nature is obviously made up of (strings/loops/...)¹
- answer from inside: see below!

¹depending on whom you ask...

Outline	Perturbative QG

Questions?

AS and the Goroff-Sagnotti term - setup

Will the Asymptotic Safety Program fail once a "proper perturbative counterterm" is included?

 investigate minimal setup: Einstein and Hilbert meet Goroff and Sagnotti on Weinbergs BBQ:

$$\Gamma_{k} = \int \sqrt{\det g} \left[\frac{1}{16\pi G_{N}} \left(-R + 2\Lambda \right) + \sigma \frac{C_{\mu\nu}}{c_{\rho\sigma}} C_{\rho\sigma} C_{\sigma\nu} C_{\tau\omega}^{\mu\nu} \right]$$

curvature expansion along the lines of the URGMsingle metric

What can we conclude without explicit calculation?

$$\Gamma^{(2)} \sim rac{1}{G_N} \cdot (1, R) + \sigma \cdot \left(C, C^2, C^3\right)$$

• C is traceless $\rightarrow \beta_g$ and β_λ are independent of σ !

Conclusion 1: The AS fixed point of the EH truncation is not influenced by the GS term.

AS&GS: analytical insights II

• we can even write down the form of the beta function of σ :

$$\dot{\sigma} = c_0 + (2 + c_1)\sigma + c_2\sigma^2 + c_3\sigma^3$$

- straightforward consequence of the curvature expansion of the flow equation and the schematic form of $\Gamma^{(2)}$
- independent of the truncation: inclusion of R^2, C^2, \ldots does not change this form (but c_i are changed)
- central question: $c_3 \neq 0$?

- this can be answered by inspection of the explicit form of $\Gamma^{(2)}$
- \blacksquare only the term $\sim \sigma {\it C}$ (as a vertex insertion) contributes to c_3
- it projects the propagator onto its identity component², thus c₃ is nonzero

Conclusion 2: The coupling σ always has a real fixed point.

Conclusion 3=1+2: Asymptotic Safety withstands the inclusion of the two-loop counterterm.

²details still to be figured out

AS&GS: analytical insights IV

explicit calculation shows that schematically,

$$c_3 = \gamma \int \mathrm{d}p \, \left(G^{TT}(p^2) \right)^4 \dot{R}_k(p^2) > 0$$

which is even gauge-independent, and positivity is independent of the truncation

G^{TT}: scalar part of the identity component of propagator
 EH: G^{TT} = 32πG_N (p² + R_k(p²) - 2Λ)⁻¹

Conclusion 4: There is a real fixed point where σ is UV-repulsive.

B. Knorr

Outline	Perturbative	QG
---------	--------------	----

Questions?

15/20

B. Knorr On the 2-loop counterterm in QG

AS&GS: explicit calculation

Several ingredients to actually calculate the beta function of σ :

- heavy use of tensor algebra package xAct
- terms including R and $R_{\mu\nu}$ can be dropped, as they cannot combine to C^3 (formally, project onto K3 background)³
- optimised regulator and harmonic gauge fixing ($\alpha = \beta = 1$) simplify calculation tremendously
- lots of patience and coffee

³covariantly constant doesn't do the trick: $C\Delta C = 3C^3 + ...$

AS&GS: fixed points

scenario A: $\Lambda = 0$

	g _*	σ_*	θ_{g}	θ_{σ}
FP 1	1.64	-0.226	2.09	-77.4
FP 2	1.64	-0.0186	2.09	5.62
FP 3	1.64	-0.00227	2.09	-6.06

■ scenario B: "full" flow

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline g_{*} & \lambda_{*} & \sigma_{*} & \theta_{1,2} & \theta_{\sigma} \\ \hline 0.707 & 0.193 & -0.305 & 1.48 \pm 3.04 \ \mathbf{i} & -79.4 \\ \hline \end{array}$$

AS&GS: setup

AS&GS: phase diagram

18/20

TPI Uni Jena

B. Knorr

On the 2-loop counterterm in QG

Summary and Outlook

- Asymptotic Safety withstands the Goroff-Sagnotti term
- it seems that the coupling is completely irrelevant, in accord with its mass dimension
- partly answered: what happens when one includes more invariants?
- unanswered: what happens beyond the background approximation?

TPI Uni Jena

B. Knorr

utline Perturbative QG

Thank you for your attention! Questions? Comments?

20/20

TPI Uni Jena

B. Knorr On the 2-loop counterterm in QG