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Background independence

Background independence

» Background independence is a fundamental requirement for a
theory of quantum gravity.

Background field method

guy = g,u,u + Euu

v

Use background metric g, to build Laplacian operator V2.

Cutoff Ry is function of background metric:

v

Re(—V?)

v

Background independence lost (at intermediate k).

Imposing modified split Ward identity restores background
independence in limit kK — 0.

v
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Background independence

Background independence in conformally reduced gravity

Conformally reduced gravity

B = f(q@) g’;w

Findings of J. A. Dietz and T. R. Morris (arXiv:1502.07396):

» Background independence can in general be in conflict with the
existence of fixed points, unless careful choices are made.
» Background independent description of flow can be uncovered if

cutoff is power law
Rk o p—2n
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Conformally reduced gravity

Conformally reduced gravity

B = f(é) (X + 90) 6 s B = f(X) 5#1/

» Background field x, fluctuation field ¢.

» Parameterisation f is chosen to be independent of k.
The flow equation

-1

1 8T
“ L RX]| 9:RilX]

8trk[§07X] 1 \/>\F 5§06

where ¢ = (@)
In the conformal truncation, cutoff depends on background field :

Ri[=V?] = Rilx]
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Conformally reduced gravity

The modified split Ward identity

The Ward identity

1 /6T, 5rk> 1 [ 1 52, T 1 {5Rk[X] d }
— — - — =_Tr — _7—|—R — —|—*8 Inf R,
= ( 5 )= e am s t R| 2 T G0N Rl

> Keeps track of background dependence.

» Background independence realised if RHS vanishes i.e. if I is function
of total field ¢ = x + .

> Background independence automatically restored in limit k — 0 (since
Ry vanishes).

> Need Ward identity to control arbitrary enlargement of theory space.
» Not an optional extra!

> Also used to uncover a background independent description.
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Conformally reduced gravity  The derivative expansion

The derivative expansion

Tk, x] = /d"X\/E (—;K(% X)8" 0updup + V (o, x)>

» Slowly varying background field .

Flow equation for potential V:
—d d—1p f
0V (e.) = F0F [dpp? QR

Ward identity for V:

8XV—8¢V+g(")X|nf V= f(X)_% /dppd_lQp <8XRP + g@xlnf Rp)

where
K —].
Q= <a§v - p2? + R,,>
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Conformally reduced gravity  The derivative expansion

The derivative expansion

Flow equation for K:
_ _d _ -
Fiok(e) =202 [ dop1Po(o 0,
Ward identity for K:
-1 d-2 -4 d—1 d
oK —0,K + Taxlan =272 [dpp® Py, x) [OxRp + Eaxlnf Ry

where
PP: Pp(VaK/faRp)
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Compatibility

Compatibility

Compatibility: Flow equation and Ward identity satisfied
simultaneously for all values of k.

Test for compatibility:

1. Write Ward identity as W =0
2. Take RG time derivative = W

3. If W = 0 then follows without further constraints, we have
compatibility.
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Compatibility Compatibility at the exact level

Compatibility at the exact level

Ward identity: (arXiv:hep-th /9802064 & 9809020)
6Fk 5Fk 1 6ryX

PR S, S . 1

w OXw 0w 2 y5Xw 0 W)
where

52T 4 -
B = (g tny)  and ny = VERIVEDIRAxY)
x0Py

Taking the RG time derivative gives

S PR | 2ry Srpe 1 OFp

=k koA A N

M= e o 2 [ (590&/9 i 0w 270X
xy
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Compatibility Compatibility at the exact level

Compatibility at the exact level

Substitute in flow equation [k:

. 1 52 or or 1 52 o,

w=—=(AFA)z - " Auu/ Uy Ay = Ay,
" o (A78) 0z 02 <6Xw 5%)+ 4 (5%5%/ >r Y X

Expanding out second term:

52 or,
7Auu’ .u’u Az’ isz 2

(5§025992’ ) " 4 5Xw ( )
= sz (Auv rzvsAsv’ I—z’v/s’As’u’ + Auv’ I—v’s’z’As’vl—zvsAsu’ (3)

dryx

- Auv’ I_v’s/zz’ As’u/> ’;u/qu/yi

OXw

52 Sryx 0"«

= (AFA)g where [ . =

80 0ps Y Bxu 50,005,
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Compatibility Compatibility at the exact level

Compatibility at the exact level

62

. 1 2 r r
= Wo=—5(Ai0)z d (5 d

Sordpn \oxe 5@) (AR

W = —2tr (ArA o W
) dpdp ¥

The flow equation and Ward identity are compatible.
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Compatibility Compatibility at the exact level

Compatibility at the exact level

52 or,
7Auu’ .u’u Az’ isz 4
(5%5%/ ) " Y X ®)

= sz <Auv I—zvsAsv’ rz’v’s’As’u’ + Auv’ rv/s’z’As’vrzvsAsu/

Oryx
Y 6w
52 5ryx P

3, 0 Xy% i

P
s, ﬁ o o,
" ' " "
q

i q
1)
X or

ox

- Auv’ rv’s/zz’ As’u/> ’;u’uA

= (A':A)slvl
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Compatibility Compatibility in the derivative expansion

Compatibility in the derivative expansion

Flow of Ward identity for V:

WV = / Q%R, (a;w<‘/)—p2w(’<>> —~ / Q2 (aj, Qq—2p2Pq> [R, Oy R+7R]gp
2] P

q
where [ = f(x)~2 [ dpp?~t and v = 20, Inf.

Compatibility realised if

[R,0R +R| = R0 +1Rp) = Ro(OxRq +7Rg) =0 (6)
OyR, R Oy R, R
= (O pR‘i"Y 2 :( X qR+7 a) (ratio independent of momentum)
P q

= |OyRp +7Rp = F(X, t) Ry (7
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Compatibility Compatibility in the derivative expansion

Compatibility in the derivative expansion

Flow of Ward identity for K:
» More complicated

» Get additional commutator-like terms:
(OxRo + YRp) O Ro — Rp0ls (Ox Rp + YRp)

These vanish if, again,

IRy +vRp = F(x, t) Rp

» This provides a necessary and sufficient condition to ensure
compatibility in the derivative expansion.
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Compatibility Required form of cutoff R)

Required form of cutoff Ry
Denote dimensionless quantities with a bar:
p=K1p,  x=k"% () = kTF(X),
V(p,x) = k" V(@,X),  K(p,x) = k29 K(5, %)
where dy = d(1 — df/2) and dr = dy — 1.

By dimensions, we have

2
p .
R(p?/f) = —k% r <k2_dff> — — k9% r(p?) (10)
— YR, = dy [OyRy + YRs] — 1YRp (11)
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Compatibility Required form of cutoff R)

Required form of cutoff Ry

YRy = dy [0y Ry + YR] — 1Ry (12)

» If » = 0 compatibility condition |0\ R, + YR, = F(x, t) Rp

automatically satisfied (F(x, t) = v/d,).
> If 7 %~ 0 the compatibility condition implies

d

A Y a2y ~2
pdﬁr(p ) =—2nr(p") (13)

for some constant n = d/2(nF/(d,F —~) — 1) and

r(p?) o< p2" (14)
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Local potential approximation (LPA)

Local potential approximation (LPA)

n _oV 17 8V /dAAdldRr —Vﬁr’

0.V +dy V- 1520 1
eV av 2¢a- 5+ r— 02V
) NS

ox &p 0 p2+r—83-,V

where r’ = dr(p?)/dp and from the change to dimensionless variables:

d
5 > 68 Inf (e”t/2 77/2)‘() (15)
Ward identity forces V to depend on t through 7 = fixed points

forbidden in general, unless...

1.n=0or
2. set f to be power law: f x x¥ = 7 = p const.

)

d
2

>
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Local potential approximation (LPA)

Local potential approximation (LPA) - Example 1

Choose:
» f(x) power law
> d=4
» Optimised cutoff r(p?)=(1 — p?)0(1 — p?)

- - N_a o N dr . 7 1
VidyV—Tso,v—"Tv0.v= (BT > _ (5
OV dvV =305V = 5x9 <6 +12)1—835v (1e)
_ -5 1
OV -0,V +3V =1~ __ 17
X 7 61— 02V (7)

Combine equations:

20:V +nV — (g —ax)9zV — (n+ a)xd;V =0 (18)
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Local potential approximation (LPA)

Local potential approximation (LPA) - Example 1

Combined equation:

20:V +nV — (0@ —ax) 0V — (n+a)x0zV =0 (19)
Solve by method of characteristics:

v ﬂ:_onrn)Z dp _ax —ng
Todt 2 Todt

dVv n
3 (20)

-
— V= e V(3,3) = eV (2[5 + X1, TY) ()

where hatted variables \7,<;A5,>2 are initial data. Substitute V back into
flow equation:

ROV +2pV zg (22)

= No solutions unless n = 0.
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Local potential approximation (LPA)

Local potential approximation (LPA) - Example 2

Choose:
» f(x) general and instead n =0
» d=4
» Optimised cutoff r(p?)=(1 — p?)0(1 — p?)

Combined equation:

_ 2—df _
OV + L (9,V
RN

whose characteristic curves satisfy:

d dF—2  d 2 — %
—X = f =, —SO = df_‘, df =0 (24)
dt OyInf dt OyInf dt
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Local potential approximation (LPA)

Local potential approximation (LPA) - Example 2

d d—2 d 2—d dVv
ax _ o s f =0 (25)

dt — ayInf’ dt  dInf’ dt

From first equation: _
Inf

2 — df
From first two equations: ¢ = ¢ 4 x is an integration constant for the
characteristics.

t=t+

(26)

From last equation: V is also a constant for the characteristics.

Thus solution is given by:

V=V(e,1) (27)
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Local potential approximation (LPA)

Local potential approximation (LPA) - Example 2

Substituting V into flow:

~ ~ dV ].
oV+4+dyV=——7"-+ 28
A 1 )

» Background independent i.e. independent of x (and of f).
» Fixed points in t coincide with fixed points in t:
0:V = 0,V

» When flow and Ward identity compatible can uncover a
background independent (and f independent) description.
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Polynomial truncations

Polynomial truncations

Expand potential and equations in a double power series:

\7(9502): Z anm®@" X" (29)

—2p——Ly==—= [ dpp 30
2795  2X oy PP —zy O
v oV _ 0 r—Lpr
5y =5 [ dppdt——_dF 31
ox o VT ) PP ez BY

_ do. - _
5= Ea—ilnf (e”t/zu"/2x) (32)
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Polynomial truncations

Polynomial truncations

Choose:
» f(x) power law
> d=4
» Optimised cutoff r(p?)=(1 — p?)0(1 — p?)

At zeroth order:

dr | 1 1 p 1
d = —_ —_— _— 2 e
v 00 < 6 12> 1 2m0’ P07 3T 2a P
= dv =dr +1/2 (34)

but previously had dy = dg + 7

— Fixed points excluded unless n = 0.
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Polynomial truncations

Polynomial truncations

_ pn_0V n_oVv /OOM drr— 2 pr
dyV—-—=-0p——_yv— = d 35
ov oV _ o0 Lpr
_—_+-vz-/d“d1 d 36
AT gl gl A PP P02V (36)

Count number of equations:

> Plug in V(5, _) = > nm=0 anmP"X"-

> Act with 5 6 - then set ¢ = ¥ = 0 to obtain system at order
r=i +J

» For a particular r, have 2(r, 4+ 1) equations.

Up to order r:
Negn(r) => 2(i+1)=r’+3r+2 (37)

i=0
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Polynomial truncations

Polynomial truncations

- - dy a1
- n_0V n_0oV © o ,drr—=Ypr
dyV— @~ —ox——= [ dpp?t —I = (38)
27 0p 2 X 0 p>+r—0zV
ov. ov - (e . r=1pr
— ’YV—’Y/ dpp' Tt ——= (39
ox 0p 0 p*+r—03V
Count number of coefficients on LHS:
> Plug in V(3,%) = Xm0 3m@"X"-
» For any fixed pair (/,)
» Ward identity > aj, ait+1,j, aij+1 whilst flow equation > aj
Up to order r from LHS:
{200,801, ce o3 80,r41,3105 -+ -5 ALy 5 A2 15 - - -,ar+1,o} (40)
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Polynomial truncations

Polynomial truncations

Count number of coefficients on RHS:

1 =
1-92V

» Propagator ( ) gives r + 1 coefficients.

> 7 gives r + 2 coefficients.

> Not forgetting 1 and df.
Up to order r from both LHS and RHS:

ncoeff(r) = Nps + (f + 1) + (r -+ 2) +2

1
:§r2+gr+8 (41)
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Polynomial truncations

Polynomial truncations

Number of equations:
Neqn(r) = r? +3r 42 (42)
Number of coefficients:

1 9
Neoeff(r) = 5 r?+ St 8 (43)

» Asymptotically twice as many equations as coefficients.
» Number of equations and coefficients equal when r = 5.3

» Equations either over-constrained or highly redundant beyond
six-point level.
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Summary and conclusions

Summary and conclusions

> Investigated the potential conflict between fixed points and
background independence.

» Compatibility guaranteed at exact level.
> In the derivative expansion, compatibility only guaranteed if
1 = 0 or cutoff Ry is power law.
» If incompatible then no solutions - confirmed with LPA example.
» If compatible, fixed points can still be forbidden:
ov oV _ o0 r—ipr
_—_-l-_V:_/ dppdt — 4= 44
ox “ap VTV )y PP mr ey W
do -
7= o= Inf (en/22%) 45
7= %20% X (45)
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Summary and conclusions

Summary and conclusions

» Expanding in vertices, the flow and Ward identity shown to

become either over-constrained or highly redundant beyond the

six-point level.

» If compatible, can combine flow and Ward identity to uncover a
background independent description.

» What about full gravity?

parametrisation f

[

cutoff profile r

|

[ n ] type | dr [ runs [[ power-law [ not power-law |
not power-law any yes PR FP
#0 power law #£pn/2 | yes FP # FP | incompatible
f=x" =p/2 | no FP = FP
- 70 | yes _ 5B
=0 any — o FP = FP
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