Background Independence in a Background Dependent Renormalization Group

Zoë Slade

University of Southampton

Based on: Peter Labus, Tim R. Morris and Zoë H. Slade, arXiv:1603.04772

Contents

- Background independence
- Conformally reduced gravityThe derivative expansion
- 3 Compatibility
 - Compatibility at the exact level
 - Compatibility in the derivative expansion
 - Required form of cutoff R_k
- 4 Local potential approximation (LPA)
- 5 Polynomial truncations
- 6 Summary and conclusions

Background independence

 Background independence is a fundamental requirement for a theory of quantum gravity.

Background field method

$$ilde{g}_{\mu
u}=ar{g}_{\mu
u}+ ilde{h}_{\mu
u}$$

- Use background metric $\bar{g}_{\mu\nu}$ to build Laplacian operator $\bar{\nabla}^2$.
- Cutoff R_k is function of background metric:

$$R_k(-\bar{\nabla}^2)$$

- ► Background independence lost (at intermediate *k*).
- Imposing modified split Ward identity restores background independence in limit k → 0.

Zoë Slade

Background independence in conformally reduced gravity

Conformally reduced gravity

$$ilde{g}_{\mu
u}=f(ilde{\phi})\,\hat{g}_{\mu
u}$$

Findings of J. A. Dietz and T. R. Morris (arXiv:1502.07396):

- Background independence can in general be in conflict with the existence of fixed points, unless careful choices are made.
- Background independent description of flow can be uncovered if cutoff is power law

$$R_k \propto p^{-2n}$$

Conformally reduced gravity

$$ilde{g}_{\mu
u} = f(ilde{\phi}) \, \delta_{\mu
u} = f(\chi + ilde{arphi}) \, \delta_{\mu
u} \quad , \quad ar{g}_{\mu
u} = f(\chi) \, \delta_{\mu
u}$$

• Background field χ , fluctuation field $\tilde{\varphi}$.

Parameterisation f is chosen to be independent of k.

The flow equation

$$\partial_t \Gamma_k[\varphi, \chi] = \frac{1}{2} \operatorname{Tr} \left[\frac{1}{\sqrt{\overline{g}}\sqrt{\overline{g}}} \frac{\delta^2 \Gamma_k}{\delta \varphi \delta \varphi} + R_k[\chi] \right]^{-1} \partial_t R_k[\chi]$$

where $\varphi = \langle \tilde{\varphi} \rangle$

In the conformal truncation, cutoff depends on background field χ :

$$R_k[-\bar{\nabla}^2] \to R_k[\chi]$$

The modified split Ward identity

The Ward identity

$$\frac{1}{\sqrt{\overline{g}}} \left(\frac{\delta \Gamma_k}{\delta \chi} - \frac{\delta \Gamma_k}{\delta \varphi} \right) = \frac{1}{2} \operatorname{Tr} \left[\frac{1}{\sqrt{\overline{g}}\sqrt{\overline{g}}} \frac{\delta^2 \Gamma_k}{\delta \varphi \delta \varphi} + R_k[\chi] \right]^{-1} \frac{1}{\sqrt{\overline{g}}} \left\{ \frac{\delta R_k[\chi]}{\delta \chi} + \frac{d}{2} \partial_{\chi} \ln f R_k[\chi] \right\}$$

- Keeps track of background dependence.
- ► Background independence realised if RHS vanishes i.e. if Γ_k is function of total field $\phi = \chi + \varphi$.
- ▶ Background independence automatically restored in limit $k \rightarrow 0$ (since R_k vanishes).
- ► Need Ward identity to control arbitrary enlargement of theory space.
- Not an optional extra!
- Also used to uncover a background independent description.

The derivative expansion

$$\Gamma_{k}[\varphi,\chi] = \int d^{d}x \sqrt{\bar{g}} \left(-\frac{1}{2} \mathcal{K}(\varphi,\chi) \bar{g}^{\mu\nu} \partial_{\mu}\varphi \partial_{\nu}\varphi + \mathcal{V}(\varphi,\chi) \right)$$

Slowly varying background field χ .

Flow equation for potential V:

$$\partial_t V(\varphi, \chi) = f(\chi)^{-\frac{d}{2}} \int d\rho \, \rho^{d-1} Q_\rho \dot{R}_\rho$$

Ward identity for V:

$$\partial_{\chi} V - \partial_{\varphi} V + \frac{d}{2} \partial_{\chi} \ln f V = f(\chi)^{-\frac{d}{2}} \int dp \, p^{d-1} Q_{p} \left(\partial_{\chi} R_{p} + \frac{d}{2} \partial_{\chi} \ln f R_{p} \right)$$

where

$$Q_{p} = \left(\partial_{\varphi}^{2} V - p^{2} \frac{K}{f} + R_{p}\right)^{-1}$$

The derivative expansion

Flow equation for K:

$$f^{-1}\partial_t K(\varphi,\chi) = 2f^{-rac{d}{2}} \int dp \, p^{d-1} P_p(\varphi,\chi) \dot{R}_p$$

Ward identity for K:

$$f^{-1}\left(\partial_{\chi}K - \partial_{\varphi}K + \frac{d-2}{2}\partial_{\chi}\ln f K\right) = 2f^{-\frac{d}{2}}\int dp \, p^{d-1}P_{p}(\varphi,\chi)\left(\partial_{\chi}R_{p} + \frac{d}{2}\partial_{\chi}\ln f R_{p}\right)$$

where

$$P_p = P_p(V, K/f, R_p)$$

Compatibility

Compatibility: Flow equation and Ward identity satisfied simultaneously for all values of *k*.

Test for compatibility:

- 1. Write Ward identity as $\mathcal{W}=\mathbf{0}$
- 2. Take RG time derivative $\implies \dot{\mathcal{W}}$
- 3. If $\dot{\mathcal{W}} = 0$ then follows without further constraints, we have compatibility.

Ward identity:

(arXiv:hep-th/9802064 & 9809020)

$$\mathcal{W}_{\omega} \equiv \frac{\delta \Gamma_{k}}{\delta \chi_{\omega}} - \frac{\delta \Gamma_{k}}{\delta \varphi_{\omega}} - \frac{1}{2} \Delta_{xy} \frac{\delta r_{yx}}{\delta \chi_{\omega}} = 0$$
(1)

where

$$\Delta_{xy} \equiv \left(\frac{\delta^2 \Gamma_k}{\delta \varphi_x \delta \varphi_y} + r_{xy}\right)^{-1} \quad \text{and} \quad r_{xy} \equiv \sqrt{\bar{g}(x)} \sqrt{\bar{g}(y)} R_k(x, y)$$

Taking the RG time derivative gives

$$\dot{\mathcal{W}}_{\omega} = \frac{\delta \dot{\Gamma}_{k}}{\delta \chi_{\omega}} - \frac{\delta \dot{\Gamma}_{k}}{\delta \varphi_{\omega}} + \frac{1}{2} \left[\Delta \left(\frac{\delta^{2} \dot{\Gamma}_{k}}{\delta \varphi \delta \varphi} + \dot{r} \right) \Delta \right]_{xy} \frac{\delta r_{yx}}{\delta \chi_{\omega}} - \frac{1}{2} \Delta_{xy} \frac{\delta \dot{r}_{yx}}{\delta \chi_{\omega}}$$

Substitute in flow equation $\dot{\Gamma}_k$:

$$\dot{\mathcal{W}}_{\omega} = -\frac{1}{2} (\Delta \dot{r} \Delta)_{zz'} \frac{\delta^2}{\delta \varphi_{z'} \delta \varphi_z} \left(\frac{\delta \Gamma}{\delta \chi_{\omega}} - \frac{\delta \Gamma}{\delta \varphi_{\omega}} \right) + \frac{1}{4} \left(\frac{\delta^2}{\delta \varphi_z \delta \varphi_{z'}} \Delta_{uu'} \right) \dot{r}_{u'u} \Delta_{z'y} \frac{\delta r_{yx}}{\delta \chi_{\omega}} \Delta_{xz}$$

Expanding out second term:

$$\begin{pmatrix} \frac{\delta^2}{\delta\varphi_z\delta\varphi_{z'}}\Delta_{uu'} \end{pmatrix} \dot{r}_{u'u} \Delta_{z'y} \frac{\delta r_{yx}}{\delta\chi_{\omega}} \Delta_{xz}$$

$$= \Delta_{xz} \left(\Delta_{uv} \Gamma_{zvs} \Delta_{sv'} \Gamma_{z'v's'} \Delta_{s'u'} + \Delta_{uv'} \Gamma_{v's'z'} \Delta_{s'v} \Gamma_{zvs} \Delta_{su'} \right)$$

$$= (\Delta_{uv'} \Gamma_{v's'zz'} \Delta_{s'u'}) \dot{r}_{u'u} \Delta_{z'y} \frac{\delta r_{yx}}{\delta\chi_{\omega}}$$

$$= (\Delta \dot{r} \Delta)_{s'v'} \frac{\delta^2}{\delta\varphi_{v'}\delta\varphi_{s'}} \Delta_{xy} \frac{\delta r_{yx}}{\delta\chi_{\omega}}$$

$$\qquad \text{where} \quad \Gamma_{x_1...x_n} \equiv \frac{\delta^n \Gamma_k}{\delta\varphi_{x_1}...\delta\varphi_{x_n}}$$

.'

$$\implies \dot{\mathcal{W}}_{\omega} = -\frac{1}{2} (\Delta \dot{r} \Delta)_{zz'} \frac{\delta^2}{\delta \varphi_{z'} \delta \varphi_z} \left(\frac{\delta \Gamma}{\delta \chi_{\omega}} - \frac{\delta \Gamma}{\delta \varphi_{\omega}} \right) + (\Delta \dot{r} \Delta)_{s'v'} \frac{\delta^2}{\delta \varphi_{v'} \delta \varphi_{s'}} \Delta_{xy} \frac{\delta r_{yx}}{\delta \chi_{\omega}}$$

$$\dot{\mathcal{W}}_\omega = -rac{1}{2} {
m tr} \left(\Delta \dot{r} \Delta rac{\delta^2}{\delta arphi \delta arphi}
ight) \mathcal{W}_\omega$$

The flow equation and Ward identity are compatible.

$$\begin{pmatrix} \frac{\delta^{2}}{\delta\varphi_{z}\delta\varphi_{z'}}\Delta_{uu'} \end{pmatrix} \dot{r}_{u'u} \Delta_{z'y} \frac{\delta r_{yx}}{\delta\chi_{\omega}} \Delta_{xz}$$

$$= \Delta_{xz} \left(\Delta_{uv} \Gamma_{zvs} \Delta_{sv'} \Gamma_{z'v's'} \Delta_{s'u'} + \Delta_{uv'} \Gamma_{v's'z'} \Delta_{s'v} \Gamma_{zvs} \Delta_{su'} - \Delta_{uv'} \Gamma_{v's'zz'} \Delta_{s'u'} \right) \dot{r}_{u'u} \Delta_{z'y} \frac{\delta r_{yx}}{\delta\chi_{\omega}}$$

$$= (\Delta \dot{r} \Delta)_{s'v'} \frac{\delta^{2}}{\delta\varphi_{v'}\delta\varphi_{s'}} \Delta_{xy} \frac{\delta r_{yx}}{\delta\chi_{\omega}}$$

$$\stackrel{i}{\frac{\delta^{3}\Gamma_{k}}{\delta\varphi^{3}}} \underbrace{ \int_{\frac{\delta^{3}\Gamma_{k}}{\delta\chi}}^{p+q} \int_{\frac{\delta^{3}\Gamma_{k}}{\delta\chi^{3}}}^{\delta^{3}\Gamma_{k}} \int_{\frac{\delta^{4}\Gamma_{k}}{\delta\chi^{4}}}^{i}$$

$$(5)$$

Compatibility in the derivative expansion

Flow of Ward identity for V:

$$\dot{\mathcal{W}}^{(V)} = -\int_{p} Q_{p}^{2} \dot{R}_{p} \left(\partial_{\varphi}^{2} \mathcal{W}^{(V)} - p^{2} \mathcal{W}^{(K)} \right) - \int_{p,q} Q_{p}^{2} \left(\partial_{\varphi}^{2} Q_{q} - 2p^{2} P_{q} \right) [\dot{R}, \partial_{\chi} R + \gamma R]_{qp}$$

where $\int_{p} \equiv f(\chi)^{-d/2} \int dp p^{d-1}$ and $\gamma \equiv \frac{d}{2} \partial_{\chi} \ln f$.

Compatibility realised if

$$\left[\dot{R},\partial_{\chi}R+\gamma R\right]_{qp} \equiv \dot{R}_{q}(\partial_{\chi}R_{p}+\gamma R_{p})-\dot{R}_{p}(\partial_{\chi}R_{q}+\gamma R_{q})=0 \quad (6)$$

$$\implies \frac{(\partial_{\chi}R_{p} + \gamma R_{p})}{\dot{R}_{p}} = \frac{(\partial_{\chi}R_{q} + \gamma R_{q})}{\dot{R}_{q}} \quad \text{(ratio independent of momentum)}$$
$$\implies \boxed{\partial_{\chi}R_{p} + \gamma R_{p} = F(\chi, t) \dot{R}_{p}} \qquad (7)$$

Compatibility in the derivative expansion

Flow of Ward identity for K:

- More complicated
- Get additional commutator-like terms:

$$\left(\partial_{\chi}R_{\rho} + \gamma R_{\rho}\right)\partial_{\rho^{2}}^{k}\dot{R}_{\rho} - \dot{R}_{\rho}\partial_{\rho^{2}}^{k}\left(\partial_{\chi}R_{\rho} + \gamma R_{\rho}\right)$$
(8)

These vanish if, again,

$$\partial_{\chi} R_{\rho} + \gamma R_{\rho} = F(\chi, t) \dot{R}_{\rho}$$
(9)

This provides a necessary and sufficient condition to ensure compatibility in the derivative expansion.

Required form of cutoff R_k

Denote dimensionless quantities with a \overline{bar} :

$$\varphi = k^{\eta/2} \bar{\varphi}, \qquad \chi = k^{\eta/2} \bar{\chi}, \qquad f(\chi) = k^{d_f} \bar{f}(\chi),$$

$$V(\varphi,\chi) = k^{d_V} \bar{V}(\bar{\varphi},\bar{\chi}), \qquad K(\varphi,\chi) = k^{d_R-2+d_f} \bar{K}(\bar{\varphi},\bar{\chi})$$

where $d_V = d(1 - d_f/2)$ and $d_R = d_V - \eta$.

By dimensions, we have

$$R(p^{2}/f) = -k^{d_{R}} r\left(\frac{p^{2}}{k^{2-d_{f}}f}\right) = -k^{d_{R}} r(\hat{p}^{2})$$
(10)

$$\implies \gamma \dot{R}_{\rho} = d_V \left[\partial_{\chi} R_{\rho} + \gamma R_{\rho} \right] - \eta \gamma R_{\rho} \tag{11}$$

Required form of cutoff R_k

$$\gamma \dot{R}_{\rho} = d_{V} \left[\partial_{\chi} R_{\rho} + \gamma R_{\rho} \right] - \eta \gamma R_{\rho}$$
(12)

- ▶ If $\eta = 0$ compatibility condition $\left[\partial_{\chi} R_{p} + \gamma R_{p} = F(\chi, t) \dot{R}_{p} \right]$ automatically satisfied $(F(\chi, t) = \gamma/d_{v})$.
- If $\eta \neq 0$ the compatibility condition implies

$$\hat{p}\frac{d}{d\hat{p}}r(\hat{p}^2) = -2n\,r(\hat{p}^2) \tag{13}$$

for some constant $n=d/2(\eta F/(d_vF-\gamma)-1)$ and

$$\therefore \quad r(\hat{p}^2) \propto \hat{p}^{-2n} \tag{14}$$

Local potential approximation (LPA)

$$\begin{aligned} \partial_t \bar{V} + d_V \bar{V} - \frac{\eta}{2} \bar{\varphi} \frac{\partial \bar{V}}{\partial \bar{\varphi}} - \frac{\eta}{2} \bar{\chi} \frac{\partial \bar{V}}{\partial \bar{\chi}} &= \int_0^\infty d\hat{p} \, \hat{p}^{d-1} \frac{d_R \, r - \frac{d_V}{d} \, \hat{p} \, r'}{\hat{p}^2 + r - \partial_{\bar{\varphi}}^2 \bar{V}} \\ \frac{\partial \bar{V}}{\partial \bar{\chi}} - \frac{\partial \bar{V}}{\partial \bar{\varphi}} + \bar{\gamma} \, \bar{V} &= \bar{\gamma} \int_0^\infty d\hat{p} \, \hat{p}^{d-1} \frac{r - \frac{1}{d} \, \hat{p} \, r'}{\hat{p}^2 + r - \partial_{\bar{\varphi}}^2 \bar{V}} \end{aligned}$$

where $r' = dr(\hat{p}^2)/d\hat{p}$ and from the change to dimensionless variables:

$$\bar{\gamma} = \frac{d}{2} \frac{\partial}{\partial \bar{\chi}} \ln \bar{f} \left(e^{\eta t/2} \mu^{\eta/2} \bar{\chi} \right)$$
(15)

Ward identity forces \bar{V} to depend on t through $\bar{\gamma} \implies$ fixed points forbidden in general, unless...

1. $\eta = 0$ or

2. set f to be power law: $f \propto \chi^{\rho} \implies \bar{\gamma} = \frac{d}{2} \frac{\rho}{\bar{\chi}}$, ρ const.

Zoë Slade

Choose:

- ► f(x) power law
- ► *d* = 4
- Optimised cutoff $r(\hat{p}^2) = (1 \hat{p}^2)\theta(1 \hat{p}^2)$

$$\partial_t \bar{V} + d_V \bar{V} - \frac{\eta}{2} \bar{\varphi} \, \partial_{\bar{\varphi}} \bar{V} - \frac{\eta}{2} \bar{\chi} \, \partial_{\bar{\chi}} \bar{V} = \left(\frac{d_R}{6} + \frac{\eta}{12}\right) \frac{1}{1 - \partial_{\bar{\varphi}}^2 \bar{V}}$$
(16)
$$\partial_{\bar{\chi}} \bar{V} - \partial_{\bar{\varphi}} \bar{V} + \bar{\gamma} \bar{V} = \frac{\bar{\gamma}}{6} \frac{1}{1 - \partial_{\bar{\varphi}}^2 \bar{V}}$$
(17)

Combine equations:

$$2\partial_t \bar{V} + \eta \bar{V} - (\eta \bar{\varphi} - \alpha \bar{\chi}) \partial_{\bar{\varphi}} \bar{V} - (\eta + \alpha) \bar{\chi} \partial_{\bar{\chi}} \bar{V} = 0$$
(18)

Combined equation:

$$2\partial_t \bar{V} + \eta \bar{V} - (\eta \bar{\varphi} - \alpha \bar{\chi}) \,\partial_{\bar{\varphi}} \bar{V} - (\eta + \alpha) \bar{\chi} \partial_{\bar{\chi}} \bar{V} = 0 \tag{19}$$

Solve by method of characteristics:

$$\frac{d\bar{V}}{dt} = -\frac{\eta}{2}\bar{V}, \quad \frac{d\bar{\chi}}{dt} = -\frac{\alpha+\eta}{2}\bar{\chi}, \quad \frac{d\bar{\varphi}}{dt} = \frac{\alpha\bar{\chi}-\eta\bar{\varphi}}{2}$$
(20)

$$\Longrightarrow \bar{V} = \mathrm{e}^{-\eta t/2} \, \hat{V}(\hat{\phi}, \hat{\chi}) = \mathrm{e}^{-\eta t/2} \, \hat{V} \left(\, \mathrm{e}^{\eta t/2} [\bar{\varphi} + \bar{\chi}], \mathrm{e}^{(\eta + \alpha)t/2} \bar{\chi} \right) \quad (21)$$

where hatted variables $\hat{V}, \hat{\phi}, \hat{\chi}$ are initial data. Substitute \bar{V} back into flow equation:

$$\hat{\chi}\partial_{\hat{\chi}}\hat{V} + 2\rho\hat{V} = \frac{\rho}{3} \frac{1}{e^{-\frac{\eta}{2}t} - \partial_{\hat{\phi}}^2 \hat{V}}$$
(22)

 \implies No solutions unless $\eta = 0$.

Choose:

- $f(\chi)$ general and instead $\eta = 0$
- ► *d* = 4
- Optimised cutoff $r(\hat{p}^2) = (1 \hat{p}^2)\theta(1 \hat{p}^2)$

Combined equation:

$$\partial_t \bar{V} + \frac{2 - d_f}{\partial_\chi \ln \bar{f}} \left(\partial_\varphi \bar{V} - \partial_\chi \bar{V} \right) = 0$$
⁽²³⁾

whose characteristic curves satisfy:

$$\frac{d\chi}{dt} = \frac{d_f - 2}{\partial_\chi \ln \bar{f}}, \quad \frac{d\varphi}{dt} = \frac{2 - d_f}{\partial_\chi \ln \bar{f}}, \quad \frac{d\bar{V}}{dt} = 0$$
(24)

$$\frac{d\chi}{dt} = \frac{d_f - 2}{\partial_\chi \ln \bar{f}}, \quad \frac{d\varphi}{dt} = \frac{2 - d_f}{\partial_\chi \ln \bar{f}}, \quad \frac{d\bar{V}}{dt} = 0$$
(25)

From first equation:

$$\hat{t} = t + \frac{\ln \bar{f}}{2 - d_f} \tag{26}$$

From first two equations: $\phi=\varphi+\chi$ is an integration constant for the characteristics.

From last equation: \bar{V} is also a constant for the characteristics.

Thus solution is given by:

$$ar{V} = \hat{V}(\phi, \hat{t})$$
 (27)

Substituting \bar{V} into flow:

$$\partial_{\hat{t}}\hat{V} + d_V\hat{V} = \frac{d_V}{6}\frac{1}{1 - \partial_{\phi}^2\hat{V}}$$
⁽²⁸⁾

- Background independent i.e. independent of χ (and of f).
- Fixed points in t coincide with fixed points in \hat{t} :

$$\partial_t \bar{V} = \partial_{\hat{t}} \hat{V}$$

When flow and Ward identity compatible can uncover a background independent (and f independent) description.

Expand potential and equations in a double power series:

$$\bar{V}(\bar{\varphi},\bar{\chi}) = \sum_{n,m=0}^{\infty} a_{nm} \bar{\varphi}^n \bar{\chi}^m$$
⁽²⁹⁾

Fixed point equations:

$$d_{V}\bar{V} - \frac{\eta}{2}\bar{\varphi}\frac{\partial\bar{V}}{\partial\bar{\varphi}} - \frac{\eta}{2}\bar{\chi}\frac{\partial\bar{V}}{\partial\bar{\chi}} = \int_{0}^{\infty} d\hat{p}\,\hat{p}^{d-1}\frac{d_{R}\,r - \frac{d_{V}}{d}\,\hat{p}\,r'}{\hat{p}^{2} + r - \partial_{\bar{\varphi}}^{2}\bar{V}}$$
(30)
$$\frac{\partial\bar{V}}{\partial\bar{\chi}} - \frac{\partial\bar{V}}{\partial\bar{\varphi}} + \bar{\gamma}\,\bar{V} = \bar{\gamma}\int_{0}^{\infty} d\hat{p}\,\hat{p}^{d-1}\frac{r - \frac{1}{d}\,\hat{p}\,r'}{\hat{p}^{2} + r - \partial_{\bar{\varphi}}^{2}\bar{V}}$$
(31)
$$\bar{\gamma} = \frac{d}{2}\frac{\partial}{\partial\bar{\chi}}\ln\bar{f}\left(e^{\eta t/2}\mu^{\eta/2}\bar{\chi}\right)$$
(32)

Choose:

- ► f(\chi) power law
- ► d=4
- Optimised cutoff $r(\hat{p}^2) = (1 \hat{p}^2)\theta(1 \hat{p}^2)$

At zeroth order:

$$d_V a_{00} = \left(\frac{d_R}{6} + \frac{\eta}{12}\right) \frac{1}{1 - 2a_{20}}, \qquad 2\rho a_{00} = \frac{\rho}{3} \frac{1}{1 - 2a_{20}} \qquad (33)$$
$$\implies d_V = d_R + \eta/2 \qquad (34)$$

but previously had $d_V = d_R + \eta$

 \implies Fixed points excluded unless $\eta = 0$.

$$d_{V}\bar{V} - \frac{\eta}{2}\bar{\varphi}\frac{\partial\bar{V}}{\partial\bar{\varphi}} - \frac{\eta}{2}\bar{\chi}\frac{\partial\bar{V}}{\partial\bar{\chi}} = \int_{0}^{\infty} d\hat{p}\,\hat{p}^{d-1}\frac{d_{R}\,r - \frac{d_{V}}{d}\,\hat{p}\,r'}{\hat{p}^{2} + r - \partial_{\bar{\varphi}}^{2}\bar{V}}$$
(35)
$$\frac{\partial\bar{V}}{\partial\bar{\chi}} - \frac{\partial\bar{V}}{\partial\bar{\varphi}} + \bar{\gamma}\,\bar{V} = \bar{\gamma}\int_{0}^{\infty} d\hat{p}\,\hat{p}^{d-1}\frac{r - \frac{1}{d}\,\hat{p}\,r'}{\hat{p}^{2} + r - \partial_{\bar{\varphi}}^{2}\bar{V}}$$
(36)

Count number of equations:

• Plug in
$$\bar{V}(\bar{\varphi}, \bar{\chi}) = \sum_{n,m=0}^{\infty} a_{nm} \bar{\varphi}^n \bar{\chi}^m$$
.

- Act with $\frac{\partial^{i+j}}{\partial \bar{\varphi}^i \partial \bar{\chi}^j}$ then set $\bar{\varphi} = \bar{\chi} = 0$ to obtain system at order r = i + j.
- For a particular r_* have $2(r_* + 1)$ equations.

Up to order *r*:

$$n_{\rm eqn}(r) = \sum_{i=0}^{r} 2(i+1) = r^2 + 3r + 2$$
(37)

$$d_{V}\bar{V} - \frac{\eta}{2}\bar{\varphi}\frac{\partial\bar{V}}{\partial\bar{\varphi}} - \frac{\eta}{2}\bar{\chi}\frac{\partial\bar{V}}{\partial\bar{\chi}} = \int_{0}^{\infty} d\hat{p}\,\hat{p}^{d-1}\frac{d_{R}\,r - \frac{d_{V}}{d}\,\hat{p}\,r'}{\hat{p}^{2} + r - \partial_{\bar{\varphi}}^{2}\bar{V}}$$
(38)
$$\frac{\partial\bar{V}}{\partial\bar{\chi}} - \frac{\partial\bar{V}}{\partial\bar{\varphi}} + \bar{\gamma}\,\bar{V} = \bar{\gamma}\int_{0}^{\infty} d\hat{p}\,\hat{p}^{d-1}\frac{r - \frac{1}{d}\,\hat{p}\,r'}{\hat{p}^{2} + r - \partial_{\bar{\varphi}}^{2}\bar{V}}$$
(39)

Count number of coefficients on LHS:

- Plug in $\bar{V}(\bar{\varphi}, \bar{\chi}) = \sum_{n,m=0}^{\infty} a_{nm} \bar{\varphi}^n \bar{\chi}^m$.
- For any fixed pair (i, j)
 - ▶ Ward identity $\ni a_{ij}, a_{i+1,j}, a_{i,j+1}$ whilst flow equation $\ni a_{ij}$

Up to order r from LHS:

$$\left\{a_{00}, a_{01}, \ldots, a_{0,r+1}, a_{10}, \ldots, a_{1,r}, \ldots, a_{2,r-1}, \ldots, a_{r+1,0}\right\}$$
(40)

Count number of coefficients on RHS:

- Propagator $\left(\frac{1}{1-\partial^2 \bar{V}}\right)$ gives r+1 coefficients.
- $\bar{\gamma}$ gives r + 2 coefficients.
- Not forgetting η and d_f .

Up to order r from both LHS and RHS:

$$n_{\text{coeff}}(r) = n_{\text{lhs}} + (r+1) + (r+2) + 2$$
$$= \frac{1}{2}r^2 + \frac{9}{2}r + 8$$
(41)

Number of equations:

$$n_{\rm eqn}(r) = r^2 + 3r + 2$$
 (42)

Number of coefficients:

$$n_{\text{coeff}}(r) = \frac{1}{2}r^2 + \frac{9}{2}r + 8$$
 (43)

- Asymptotically twice as many equations as coefficients.
- Number of equations and coefficients equal when r = 5.3
- Equations either over-constrained or highly redundant beyond six-point level.

Summary and conclusions

- Investigated the potential conflict between fixed points and background independence.
- Compatibility guaranteed at exact level.
- In the derivative expansion, compatibility only guaranteed if η = 0 or cutoff R_k is power law.
- If incompatible then no solutions confirmed with LPA example.
- If compatible, fixed points can still be forbidden:

$$\frac{\partial \bar{V}}{\partial \bar{\chi}} - \frac{\partial \bar{V}}{\partial \bar{\varphi}} + \bar{\gamma} \, \bar{V} = \bar{\gamma} \int_0^\infty d\hat{p} \, \hat{p}^{d-1} \, \frac{r - \frac{1}{d} \, \hat{p} \, r'}{\hat{p}^2 + r - \partial_{\bar{\varphi}}^2 \bar{V}} \qquad (44)$$
$$\bar{\gamma} = \frac{d}{2} \frac{\partial}{\partial \bar{\chi}} \ln \bar{f} \left(e^{\eta t/2} \mu^{\eta/2} \bar{\chi} \right) \qquad (45)$$

Summary and conclusions

- Expanding in vertices, the flow and Ward identity shown to become either over-constrained or highly redundant beyond the six-point level.
- If compatible, can combine flow and Ward identity to uncover a background independent description.
- What about full gravity?

	parametrisation f			cutoff profile r	
η	type	d _f	runs	power-law	not power-law
≠ 0	not power-law	any	yes	J≉K FP	incompatible
	power law	$ eq ho \eta/2 $	yes	$FP \neq \widehat{\mathrm{FP}}$	
	$f=\chi^ ho$	$= ho \eta/2$	no	$FP = \widehat{FP}$	
= 0	any	≠ 0	yes	$FP = \widehat{\mathrm{FP}}$	
		= 0	no		