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Motivation

Examine asymptotic safety (AS) scenario using a systematic vertex
expansion

• extend the expansion to the dynamical graviton four-point
function

• obtain closed flow equation for the graviton propagator
• investigate convergence properties of the vertex expansion
• access different tensor structures in the flow
• technical improvement towards more quantitative results
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Quantum Einstein gravity
Einstein-Hilbert action:

SEH(g) = 1
16πGN

∫
d4x √g (2Λ− R(g)) (1)

gauge symmetry: diffeomorphism invariance
gauge fixing necessitates background metric ḡ :

• use a linear metric split g = ḡ + h
• with a flat Euclidean background ḡ = 1

• gauge-fixed action (with Fadeev-Popov ghosts c̄, c):

Sgf(ḡ , h) = 1
2ξ1

∫
d4x

√
ḡ ḡµνFµFν

Fµ = ∇̄νhµν −
1 + ξ2

4 ∇̄µhνν

S(ḡ , h, c̄, c) = SEH(ḡ + h) + Sgf(ḡ , h) + Sgh(ḡ , h, c̄, c) (2)
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Systematic vertex expansion

Solve Wetterich equation via vertex expansion (φ = (h, c, c̄)):

Γk(ḡ , φ) ≈
N∑

n=0

1
n! Γ(n)

k (ḡ , φ)
∣∣∣
φ=0

φn (3)

⇒ obtain tower of coupled differential
equations

• compute flow equations up to N = 4
• closed flow for graviton propagator
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Flows of fluctuation correlation functions are closed
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Background flows

Non-trivial Nielsen identities (NI) connect derivatives w.r.t.
background and fluctuation field:

δΓk(ḡ , h)
δḡi

= δΓk(ḡ , h)
δhi

+N gf
k,i (ḡ , h) +N reg

k,i (ḡ , h) (4)

Obtain flow equations for background couplings using heat kernel
methods:

∂t ḡ = 2ḡ − ḡ2fR1(λ2; ηh, ηc) (5)

∂t λ̄ = −4λ̄+ λ̄
∂t ḡ
ḡ + ḡ fR0(λ2; ηh, ηc) (6)

• flow of background couplings depends on couplings of the
dynamical two-point functions
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n-point functions
Ansatz for n-point functions (p = (p1, . . . , pn)):
Fischer & Pawlowski 2009, Christiansen et.al. 2012, 2014, 2015

Γ(φ1,...,φn)(p) =
( n∏

i=1
Z 1/2
φi

(p2
i )
)

(k−2gn(p))
n−2

2 T (φ1,...,φn)(p) (7)

T (φ1,...,φn)(p) = GNS(φ1,...,φn)(p; Λ→ k2λn)

• disentangle background and fluctuation couplings
• concentrate on tensor structures generated by gauge-fixed
EH-action

• introduce level-n fluctuation couplings λn, gn(p) for each
n-point function

• λn describes momentum-independent part of Γ(n)
k

• gn(p) carries global scale- and momentum dependence
• RG-running carried by wave function renormalisations Zφi (p2

i )
• only appear via anomalous dimensions
ηφi (p2) = −Żφi (p2)/Zφi (p2)
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Systematic vertex expansion

• concentrate on transverse-traceless (TT) parts of the flow
equations

• spin-two, numerically dominant, gauge-independent
• assume uniform wave function renormalisations
• apply TT projectors to all external graviton legs

• evaluate momenta at the symmetric point:
• (n − 1)-simplex configuration where all angles and absolute
values are the same

• 〈pi , pj〉 = nδij − 1
n − 1 p2

• p → p2

• use Litim regulator r(x) = (x−1 − 1)Θ(1− x)
• analytic flow equations for couplings at p2 = 0

Tobias Denz (Heidelberg University, ITP) 8



Systematic vertex expansion
Summary

• vertex expansion around ḡ = 1 up to the graviton four-point
function

• ansatz for n-point vertices:
• tensor structures generated from gauge-fixed EH action
• RG-running carried by Zφi

• overall momentum and scale dependence carried by gn(p)
• momentum independent part described by λn

• concentrate on transverse-traceless (TT) parts of the flow
equations

• evaluate momenta at the symmetric point
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Accessing tensor structures
In principle, the flow generates all tensor structures:

• tensor structures of higher curvature invariants contribute to
momentum dependence of Γ(n)(p2) via gn and Zφi

⇒ resolving momentum dependence allows to identify these
invariants

Schematically, R ∼ h2
TT +O(h3

TT) and Rµν ∼ hTT +O(h2
TT)

For our projection scheme:
⇒ graviton three-point function:

• overlap with R, R2
µν , R3

µν , Rµν f (3)
µνρσ(∇)Rρσ,

RµνRρσf (3)
µνρσωζ(∇)Rωζ tensor structures

• no overlap with Rn≥2 tensor structures
⇒ graviton four-point function:

• analogous to three-point function plus R2, R4
µν ,

RαβRµνRρσf (4)
αβµνρσωζ(∇)Rωζ tensor structures

• no overlap with Rn≥3 tensor structures
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Graviton 3-point function

momentum dependence of the flow of the normalised three-point
function (p2 ∈ [0, k2], |λn| . 1):
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Flow
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ηh(p
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Bilocal: 0.57p2

• polynomial structure up to p2

• no signature of R2
µν tensor structures or others that would result

in p4 contribution
⇒ R2

µν can be excluded as a UV-relevant direction
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Graviton 4-point functions
momentum dependence of the flow of the normalised four-point
function (p2 ∈ [0, k2], |λn| . 1):
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0
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Flow

(4)
G (p2)

)
/
(
−2ηh(p

2)− 2
)

Trilocal: 0.60p2 − 0.24p4

• polynomial structure up to p4

• generation of p6 contributions non-trivially suppressed
• R2

µν was excluded as a UV-relevant direction
⇒ UV-relevant part can be attributed to R2 tensor structures

• suggests strategy to disentangle contributions from R, R2

In our work, we include the contribution of R2 via the momentum
dependence of g4(p2).
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UV fixed point

Look for a fixed point for µ = −2λ2, λ3, λ4, g3(p2), and g4(p2)
• project onto Γ(n)(p2 = 0) for µ, λ3,4

• project bilocally at p2 = 0 and p2 = k2 for
g3,4 = g3,4(p2) ≈ g3,4(k2)

Fixed point values and critical exponents:

(µ∗, λ∗
3, λ

∗
4, g∗

3 , g∗
4 ) = (−0.45, 0.12, 0.028, 0.83, 0.57) (8)
θi = (−4.7, −2.0± 3.1i, 2.9, 8.0) (9)

Three relevant directions, can be attributed to Λ, R, and R2

• in agreement with previous background field approximation
studies
e.g. Lauscher & Reuter 2002, Codello et.al. 2007 & 2009, Machado & Saueressig 2007, Falls et.al. 2013
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IR behaviour
example trajectory connecting UV fixed point with GR:
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1 − 2λ̄ ḡ

1 + µ g3

1 − 2λ3 g4

1 − 2λ4

tune ḡ and λ̄ via solving NI in the IR:
δΓ(ḡ , h)
δḡ = δΓ(ḡ , h)

δh for µ→∞ & k → 0 (10)

• couplings scale classically in the IR
• diffeomorphism invariance corresponds to gn = g3 for k → 0
⇒ fine-tuning problem
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Apparent convergence

We want to estimate the quality of our truncation of the vertex
expansion up to N = 4.
⇒ look for signatures of apparent convergence:

• compare results for different levels of the expansion, here
N = 3 and N = 4

• Does the system become more stable?
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UV fixed point
Compare fixed point values and critical exponents:

N = 3:
Christiansen, Knorr, Meibohm, Pawlowski, Reichert 2015

(µ∗, λ∗
3, g∗

3 ) = (−0.57, 0.095, 0.62) (11)
θi = (−1.3± 4.1i, 12) (12)

N = 4:

(µ∗, λ∗
3, λ

∗
4, g∗

3 , g∗
4 ) = (−0.45, 0.12, 0.028, 0.83, 0.57) (13)
θi = (−4.7, −2.0± 3.1i, 2.9, 8.0) (14)

• fixed point values are comparable
• four-point truncation has one relevant direction more due to
inclusion of R2
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Stability matrix approximation
The critical exponents are the eigenvalues of the stability matrix
Jij = ∂αj α̇i

• need to make ansatz for higher couplings
• here: g5,6 = g4 and λ5,6 = λ3 for N = 4
• for N = 3: g4,5 = g3 and λ4,5 = λ3

⇒ approximation for stability matrix of the truncated flow is
ambiguous

• details of the approximation should become less important for
improved truncations

θi : identify higher couplings first, then take derivatives
θ̃i : first take derivatives, then identify higher couplings

three-point function four-point function
θi −1.3± 4.1i, 12 −4.7, −2.0± 3.1i, 2.9, 8.0
θ̃i −7.3, 3.4, 7.4 −5.0, −0.37± 2.4i, 5.6, 7.9

⇒ critical exponents are more stable for the improved truncation
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Identification of higher couplings
Identification of higher order couplings is not fixed

• Which choices still allow for the existence of the UV FP?
N = 3 N = 4

• identifying higher order gn with g3 possible in both cases
• existence of UV FP in the four-point truncation depends less
on closure of the flow equations
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Apparent convergence
Summary

• fixed point values change little from N = 3 to N = 4
• one additional relevant direction for the improved truncation
due to R2

• UV FP becomes generally more stable
• less dependence on approximation of the stability matrix
• more freedom for the identification of higher couplings

Conclusion: promising hints towards apparent convergence
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Summary and Outlook

systematic vertex expansion up to the graviton four-point function
• closed graviton propagator flow
• identified different diffeomorphism-invariant structures via
momentum dependence of n-point functions

• non-trivial UV fixed point
• three relevant directions corresponding to Λ, R, and R2

• connected to GR in the IR
• found promising hints towards apparent convergence

potential next steps:
• include further tensor structures in the vertices, especially of R2

• look at all graviton modes
• improve bounds for gravity-matter systems
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Thank you for your attention!
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