Asymptotically safe f(R)-gravity coupled to matter

Frank Saueressig

Research Institute for Mathematics, Astrophysics and Particle Physics Radboud University Nijmegen

N. Alkofer and F. Saueressig, arXiv:1802.00498

International Asymptotic Safety Seminar March 19th, 2018

Outline

- introduction
- f(R)-gravity minimally coupled to matter
 - setup
 - coarse-graining operators
 - operator traces as spectral sums
- solutions I: polynomial expansion
- solutions II: complete solutions
- summary and open issues

Outline

- introduction
- f(R)-gravity minimally coupled to matter
 - setup
 - coarse-graining operators
 - operator traces as spectral sums
- solutions I: polynomial expansion
- solutions II: complete solutions
- summary and open issues

Related work:

introduction

- a) non-Gaussian fixed point (NGFP)
 - controls the UV-behavior of the RG-trajectory
 - ensures the absence of UV-divergences

- a) non-Gaussian fixed point (NGFP)
 - controls the UV-behavior of the RG-trajectory
 - ensures the absence of UV-divergences
- b) NGFP has finite-dimensional UV-critical surface $S_{\rm UV}$
 - ensures predictive power
 - $^{\circ}$ $\,$ fixing the position of a RG-trajectory in $\mathcal{S}_{\rm UV}$

 \iff experimental determination of relevant parameters

- a) non-Gaussian fixed point (NGFP)
 - controls the UV-behavior of the RG-trajectory
 - ensures the absence of UV-divergences
- b) NGFP has finite-dimensional UV-critical surface $S_{\rm UV}$
 - ensures predictive power
 - $^{\circ}$ fixing the position of a RG-trajectory in $\mathcal{S}_{\rm UV}$

 \iff experimental determination of relevant parameters

- c) connection to observable low-energy physics
 - tests of general relativity (cosmological signatures, ...)
 - compatibility with standard model of particle physics at 1 TeV

- a) non-Gaussian fixed point (NGFP)
 - controls the UV-behavior of the RG-trajectory
 - ensures the absence of UV-divergences
- b) NGFP has finite-dimensional UV-critical surface $S_{\rm UV}$
 - ensures predictive power
 - $^{\circ}$ fixing the position of a RG-trajectory in $\mathcal{S}_{\rm UV}$

 \iff experimental determination of relevant parameters

- c) connection to observable low-energy physics
 - tests of general relativity (cosmological signatures, ...)
 - compatibility with standard model of particle physics at 1 TeV
- d) structural demands
 - resolution of singularities: (black holes, Landau poles, ...)

Functional renormalization group equation (FRGE) for gravity

M. Reuter, Phys. Rev. D 57 (1998) 971

central idea: integrate out quantum fluctuations shell-by-shell in momentum-space

Functional renormalization group equation (FRGE) for gravity

M. Reuter, Phys. Rev. D 57 (1998) 971

central idea: integrate out quantum fluctuations shell-by-shell in momentum-space

scale-dependence governed by functional renormalization group equation

$$k\partial_k\Gamma_k[h_{\mu\nu};\bar{g}_{\mu\nu}] = \frac{1}{2}\mathrm{STr}\left[\left(\Gamma_k^{(2)} + \mathcal{R}_k\right)^{-1}k\partial_k\mathcal{R}_k\right]$$

- uses background field formalism
- $^{\circ}$ effective vertices capture quantum-corrections with $p^2 > k^2$

Constructing non-perturbative approximate solutions of the FRGE

ansatz for Γ_k restricting to a subset of all monomials

$$\Gamma_k[h_{\mu\nu};\bar{g}_{\mu\nu}] = \sum_{i=1}^N \bar{u}_i(k) \mathcal{O}_i[h_{\mu\nu};\bar{g}_{\mu\nu}]$$

- \implies substitute ansatz into FRGE
- \implies projection of flow onto ansatz gives β -functions for $\bar{u}_i(k)$

 $k\partial_k \bar{u}_i(k) = \beta_i(\bar{u}_i;k)$

Constructing non-perturbative approximate solutions of the FRGE

ansatz for Γ_k restricting to a subset of all monomials

$$\Gamma_k[h_{\mu\nu};\bar{g}_{\mu\nu}] = \sum_{i=1}^N \bar{u}_i(k) \mathcal{O}_i[h_{\mu\nu};\bar{g}_{\mu\nu}]$$

- \implies substitute ansatz into FRGE
- \implies projection of flow onto ansatz gives β -functions for $\bar{u}_i(k)$

$$k\partial_k \bar{u}_i(k) = \beta_i(\bar{u}_i;k)$$

classes of approximations:

• "single-metric" trunctions (level 0):

$$\partial_t \Gamma_k[h_{\mu\nu}; \bar{g}_{\mu\nu}]|_{h_{\mu\nu}=0} = \dots$$

• "bi-metric" truncations (level n) retain information about fluctuation fields

$$\partial_t \Gamma_k^{(n,0)}[h_{\mu\nu};\bar{g}_{\mu\nu}]\Big|_{h_{\mu\nu}=0}=\dots$$

selected asymptotic safety highlights

pure gravity:

- non-Gaussian fixed point established in a wide range of approximations
 - also including the Goroff-Sagnotti counterterm

[H. Gies, B. Knorr, S. Lippoldt and F. Saueressig, arXiv:1601.01800]

• low number of relevant parameters (\simeq 3):

[R. Percacci and A. Codello, arXiv:0705.1769] [P.F. Machado and F. Saueressig, arXiv:0712.0445] [T. Denz, J. Pawlowski, M. Reichert, arXiv:1612.07315] [K. Falls, C. S. King, D. F. Litim, K. Nikolakopoulos and C. Rahmede, arXiv:1801.00162]

• non-Gaussian fixed point is connected to a classical regime by crossover

[M. Reuter and F. Saueressig, hep-th/0110054]

selected asymptotic safety highlights

pure gravity:

- non-Gaussian fixed point established in a wide range of approximations
 - also including the Goroff-Sagnotti counterterm

[H. Gies, B. Knorr, S. Lippoldt and F. Saueressig, arXiv:1601.01800]

• low number of relevant parameters (\simeq 3):

[R. Percacci and A. Codello, arXiv:0705.1769] [P.F. Machado and F. Saueressig, arXiv:0712.0445] [T. Denz, J. Pawlowski, M. Reichert, arXiv:1612.07315] [K. Falls, C. S. King, D. F. Litim, K. Nikolakopoulos and C. Rahmede, arXiv:1801.00162]

non-Gaussian fixed point is connected to a classical regime by crossover

[M. Reuter and F. Saueressig, hep-th/0110054]

gravity coupled to matter:

[R. Percacci and D. Perini, hep-th/0207033] [M. Shaposhnikov and C. Wetterich, arXiv:0912.0208] [P. Dona, A. Eichhorn and R. Percacci, arXiv:1311.2898] [J. Meibohm, J. M. Pawlowski and M. Reichert, arXiv:1510.07018] [J. Biemans, A. Platania and F. Saueressig, arXiv:1702.06539] [N. Christiansen, D. Litim, J. Pawlowski, M. Reichert, arXiv:1710.04665] [A. Eichhorn, Y. Hamada, J. Lumma and M. Yamada, arXiv:1712.00319] [A. Eichhorn and A. Held, arXiv:1803.04027]

f(R)-gravity coupled to matter

Exploring the single-metric theory space spanned by $\Gamma_k^{ m grav}[g]$

finite-dimensional truncations polynomial expansions of f(R)-gravity

[A. Codello, R. Percacci, C. Rahmede, '07]
[P. Machado, F. Saueressig, '07]
[A. Codello, R. Percacci, C. Rahmede, '09]
[A. Bonanno, A. Contillo, R. Percacci, '11]
[K. Falls, D. F. Litim, K. Nikolakopoulos, C. Rahmede, '13]
[K. Falls, D. F. Litim, K. Nikolakopoulos, C. Rahmede, '14]

[A. Eichhorn, '15]

Polynomial expansion of f(R)-gravity

[A. Codello, R. Percacci, C. Rahmede, '07] [P. Machado, F. Saueressig, '07]

flow equation for f(R)-gravity:

$$\Gamma_k^{
m grav}[g] \simeq \int d^4x \sqrt{g} f_k(R)$$

supplemented by geometric gauge

FRGE \Rightarrow partial differential equation governing k-dependence of $f_k(R)$

UV properties of RG flow:

- polynomial expansion: $f_k(R) = \sum_{n=0}^N \bar{u}_n R^n$
- boundary conditions: $\bar{u}_{N+1} = \bar{u}_{N+2} = 0$
- expand flow equation $\Longrightarrow \beta$ -functions for $g_n = \bar{u}_n k^{2n-4}$

 $k\partial_k g_n = \beta_{g_n}(g_0, g_1, \ldots), \quad n = 0, \ldots, N$

reduces search for NGFP to algebraic problem

• Polynomial expansion: $f_k(R) = \sum_{n=0}^N g_n (R/k^2)^n k^4 + \dots$

$$k\partial_k g_i = \beta_{g_i}(g_0, g_1, \ldots), \quad i = 0, \ldots, N$$

• NGFP can be traced through extensions of truncation subspace

N	g_0^*	g_1^*	g_2^*	g_3^*	g_4^*	g_5^*	g_6^*
1	0.00523	-0.0202					
2	0.00333	-0.0125	0.00149				
3	0.00518	-0.0196	0.00070	-0.0104			
4	0.00505	-0.0206	0.00026	-0.0120	-0.0101		
5	0.00506	-0.0206	0.00023	-0.0105	-0.0096	-0.00455	
6	0.00504	-0.0208	0.00012	-0.0110	-0.0109	-0.00473	0.00238

• Polynomial expansion: $f_k(R) = \sum_{n=0}^N g_n (R/k^2)^n k^4 + \dots$

$$k\partial_k g_i = \beta_{g_i}(g_0, g_1, \ldots), \quad i = 0, \ldots, N$$

• NGFP can be traced through extensions of truncation subspace

N	g_0^*	g_1^*	g_2^*	g_3^*	g_4^*	g_5^*	g_6^*
1	0.00523	-0.0202					
2	0.00333	-0.0125	0.00149				
3	0.00518	-0.0196	0.00070	-0.0104			
4	0.00505	-0.0206	0.00026	-0.0120	-0.0101		
5	0.00506	-0.0206	0.00023	-0.0105	-0.0096	-0.00455	
6	0.00504	-0.0208	0.00012	-0.0110	-0.0109	-0.00473	0.00238

NGFP is stable under extension of truncation subspace

• Polynomial expansion: $f_k(R) = \sum_{n=0}^N g_n (R/k^2)^n k^4 + \dots$

$$k\partial_k g_i = \beta_{g_i}(g_0, g_1, \ldots), \quad i = 0, \ldots, N$$

N	Re $ heta_{0,1}$	$Im \ \theta_{0,1}$	$ heta_2$	$ heta_3$	$ heta_4$	$ heta_5$	$ heta_6$
1	2.38	2.17					
2	1.26	2.44	27.0				
3	2.67	2.26	2.07	-4.42			
4	2.83	2.42	1.54	-4.28	-5.09		
5	2.57	2.67	1.73	-4.40	-3.97 + 4.57 <i>i</i>	-3.97 - 4.57 <i>i</i>	
6	2.39	2.38	1.51	-4.16	-4.67 + 6.08 <i>i</i>	-4.67 - 6.08 <i>i</i>	-8.67

• Polynomial expansion: $f_k(R) = \sum_{n=0}^N g_n (R/k^2)^n k^4 + \dots$

$$k\partial_k g_i = \beta_{g_i}(g_0, g_1, \ldots), \quad i = 0, \ldots, N$$

linearized RG flow at NGFP => three UV relevant directions

N	Re $ heta_{0,1}$	$Im \ \theta_{0,1}$	$ heta_2$	$ heta_3$	$ heta_4$	$ heta_5$	$ heta_6$
1	2.38	2.17					
2	1.26	2.44	27.0				
3	2.67	2.26	2.07	-4.42			
4	2.83	2.42	1.54	-4.28	-5.09		
5	2.57	2.67	1.73	-4.40	-3.97 + 4.57 <i>i</i>	-3.97 - 4.57 <i>i</i>	
6	2.39	2.38	1.51	-4.16	-4.67 + 6.08 <i>i</i>	-4.67 - 6.08 <i>i</i>	-8.67

NGFP is stable under extension of truncation subspace

good evidence: fundamental theory has finite number of relevant parameters

f(R)-gravity

minimally coupled to matter

ansatz: gravity supplemented by minimally coupled matter fields

f(R)-ansatz in gravitational sector

$$\Gamma_k^{\text{grav}}[g] \simeq \frac{1}{(4\pi)^2} \int d^4x \sqrt{g} f_k(R)$$

matter sector:

 N_S scalar fields: $S_S = \frac{N_S}{2} \int d^4x \sqrt{g} g^{\mu\nu} (\partial_\mu \phi) (\partial_\nu \phi)$ N_D Dirac spinors: $S_D = i N_D \int d^4x \sqrt{g} \bar{\psi} \nabla \psi$ N_V gauge fields: $S_V = \frac{N_V}{4} \int d^4x \sqrt{g} g^{\mu\alpha} g^{\nu\beta} F_{\mu\nu} F_{\alpha\beta} + S^{\rm gf} + S^{\rm gh}$

ansatz: gravity supplemented by minimally coupled matter fields

f(R)-ansatz in gravitational sector

$$\Gamma_k^{\rm grav}[g] \simeq \frac{1}{(4\pi)^2} \int d^4x \sqrt{g} f_k(R)$$

matter sector:

- $N_{S} \text{ scalar fields:} \qquad S_{S} = \frac{N_{S}}{2} \int d^{4}x \sqrt{g} g^{\mu\nu} (\partial_{\mu}\phi) (\partial_{\nu}\phi)$ $N_{D} \text{ Dirac spinors:} \qquad S_{D} = i N_{D} \int d^{4}x \sqrt{g} \bar{\psi} \nabla \psi$ $N_{V} \text{ gauge fields:} \qquad S_{V} = \frac{N_{V}}{4} \int d^{4}x \sqrt{g} g^{\mu\alpha} g^{\nu\beta} F_{\mu\nu} F_{\alpha\beta} + S^{\text{gf}} + S^{\text{gh}}$
- gauge-fixing:

- parameterization of metric fluctuations:
- background geometry:

physical gauge

$$g_{\mu\nu} = \bar{g}_{\mu\rho} \left[e^{\bar{g}^{-1}h} \right]_{\nu}^{\rho}$$

maximally symmetric *d*-sphere

technicalities I coarse graining operators

construction of flow equation

uses transverse-traceless decomposition:

• metric fluctuations:

$$h_{\mu\nu} = h_{\mu\nu}^{\rm TT} + \bar{D}_{\mu}\xi_{\nu}^{\rm T} + \bar{D}_{\nu}\xi_{\mu}^{\rm T} + (\bar{D}_{\mu}\bar{D}_{\nu} - \frac{1}{d}\bar{g}_{\mu\nu}\bar{D}^{2})\sigma + \frac{1}{4}\bar{g}_{\mu\nu}h,$$

• vector fluctuations:

$$A_{\mu} = A_{\mu}^{\mathrm{T}} + \bar{D}_{\mu} a , \qquad \bar{D}^{\mu} A_{\mu}^{\mathrm{T}} = 0 .$$

construction of flow equation

uses transverse-traceless decomposition:

• metric fluctuations:

$$h_{\mu\nu} = h_{\mu\nu}^{\rm TT} + \bar{D}_{\mu}\xi_{\nu}^{\rm T} + \bar{D}_{\nu}\xi_{\mu}^{\rm T} + (\bar{D}_{\mu}\bar{D}_{\nu} - \frac{1}{d}\bar{g}_{\mu\nu}\bar{D}^{2})\sigma + \frac{1}{4}\bar{g}_{\mu\nu}h,$$

• vector fluctuations:

$$A_{\mu} = A_{\mu}^{\mathrm{T}} + \bar{D}_{\mu} a , \qquad \bar{D}^{\mu} A_{\mu}^{\mathrm{T}} = 0 .$$

for physical gauge:

• 3 traces in gravitational sector

$$h^{\mathrm{TT}}_{\mu
u}\,,\;\xi^{\mathrm{T}}_{\mu}\,,\;s$$

4 traces in matter sector

coarse graining operator

mass-type regulator $\mathcal{R}_k(\Box)$:

• suppresses fluctuations with eigenvalue $\lambda_{\Box} < k^2$ by mass-term

structure of the coarse graining operator:

$$\Box = \Delta - \alpha \bar{R}$$

- $\Delta = -\bar{D}^2$: Laplacian on *d*-sphere
- α : endomorphism parameter

coarse graining operator

mass-type regulator $\mathcal{R}_k(\Box)$:

• suppresses fluctuations with eigenvalue $\lambda_{\Box} < k^2$ by mass-term

structure of the coarse graining operator:

$$\Box = \Delta - \alpha \bar{R}$$

- $\Delta = -\bar{D}^2$: Laplacian on *d*-sphere
- α : endomorphism parameter

setup contains 7 endomorphism parameters

- gravity: $\alpha_T^G, \ \alpha_V^G, \ \alpha_S^G$
- matter: $\alpha_S^M, \ \alpha_D^M, \ \alpha_{V_1}^M, \ \alpha_{V_2}^M$

coarse graining operator

mass-type regulator $\mathcal{R}_k(\Box)$:

• suppresses fluctuations with eigenvalue $\lambda_{\Box} < k^2$ by mass-term

structure of the coarse graining operator:

$$\Box = \Delta - \alpha \bar{R}$$

- $\Delta = -\bar{D}^2$: Laplacian on *d*-sphere
- α : endomorphism parameter

setup contains 7 endomorphism parameters

- gravity: $\alpha_T^G, \ \alpha_V^G, \ \alpha_S^G$
- matter: $\alpha_S^M, \ \alpha_D^M, \ \alpha_{V_1}^M, \ \alpha_{V_2}^M$

allow relative shifts among modes being integrated out at scale k

• Type I: no shifts in the spectra

 $\alpha = 0$

• Type I: no shifts in the spectra

 $\alpha = 0$

• Type ID: uses $\Box = -\vec{D}^2$ in the fermionic sector

 $\alpha_D^M = -\frac{1}{4} \,, \qquad \alpha = 0 \qquad \text{all other fields}$

• Type I: no shifts in the spectra

 $\alpha = 0$

• Type ID: uses $\Box = -\vec{D}^2$ in the fermionic sector

 $\alpha_D^M = -\frac{1}{4} \,, \qquad \alpha = 0 \qquad \text{all other fields}$

• Type II: removes curvature terms from propagators

$$\alpha_T^G = -\frac{1}{6} \,, \; \alpha_S^G = \frac{1}{3} \,, \; \alpha_V^G = \frac{1}{4} \,, \; \alpha_D^M = -\frac{1}{4} \,, \; \alpha_{V_1}^M = -\frac{1}{4} \,, \; \alpha_{V_2}^M = \alpha_S^M = 0$$

• Type I: no shifts in the spectra

 $\alpha = 0$

• Type ID: uses $\Box = -\vec{D}^2$ in the fermionic sector

 $\alpha_D^M = -\frac{1}{4} \,, \qquad \alpha = 0 \qquad \text{all other fields}$

• Type II: removes curvature terms from propagators

$$\alpha_T^G = -\frac{1}{6} \,, \; \alpha_S^G = \frac{1}{3} \,, \; \alpha_V^G = \frac{1}{4} \,, \; \alpha_D^M = -\frac{1}{4} \,, \; \alpha_{V_1}^M = -\frac{1}{4} \,, \; \alpha_{V_2}^M = \alpha_S^M = 0$$

• Type i: interpolates smoothly between Type I (c = 0) and Type II (c = 1)

$$\alpha_T^G = -\frac{c}{6} \,, \; \alpha_S^G = \frac{c}{3} \,, \; \alpha_V^G = \frac{c}{4} \,, \; \alpha_D^M = -\frac{c}{4} \,, \; \alpha_{V_1}^M = -\frac{c}{4} \,, \; \alpha_{V_2}^M = \alpha_S^M = 0$$

technicalities II

evaluating traces through spectral sums

spectrum of Laplacian on *d*-sphere

Laplacian Δ on *d*-sphere with radius *a*:

- eigenvalues: $\lambda_{\ell}^{(s)}$
- degeneracies: $M_{\ell}^{(s)}$

spin s	$\lambda_\ell^{(s)}$	$M_\ell^{(s)}$	
0	$\frac{1}{a^2}\ell(\ell+d-1)$	$\frac{(\ell + d - 2)!}{(d - 1)! \ell!} (2\ell + d - 1)$	$\ell = 0, 1, \dots$
$\frac{1}{2}$	$\frac{1}{a^2}(\ell^2 + d\ell + \frac{d}{4})$	$2^{\lfloor d/2+1 \rfloor} \frac{(\ell+d-1)!}{(d-1)!\ell!}$	$\ell = 0, 1, \dots$
1	$\frac{1}{a^2}\left(\ell(\ell+d-1)-1\right)$	$\frac{(\ell+d-3)!}{(d-2)!(\ell+1)!}(2\ell+d-1)(\ell+d-1)\ell$	$\ell = 1, 2, \dots$
2	$\frac{1}{a^2}\left(\ell(\ell+d-1)-2\right)$	$\frac{(d+1)(d-2)(l+d)(l-1)(2l+d-1)(l+d-3)!}{2(d-1)!(l+1)!}$	$\ell = 2, 3, \dots$

spectrum of Laplacian on *d*-sphere

Laplacian Δ on *d*-sphere with radius *a*:

- eigenvalues: $\lambda_{\ell}^{(s)}$
- degeneracies: $M_{\ell}^{(s)}$

spin s	$\lambda_\ell^{(s)}$	$M_{\ell}^{(s)}$	
0	$\frac{1}{a^2}\ell(\ell+d-1)$	$\frac{(\ell + d - 2)!}{(d - 1)! \ell!} (2\ell + d - 1)$	$\ell = 0, 1, \ldots$
$\frac{1}{2}$	$\frac{1}{a^2}(\ell^2 + d\ell + \frac{d}{4})$	$2^{\lfloor d/2+1 \rfloor} \frac{(\ell+d-1)!}{(d-1)!\ell!}$	$\ell = 0, 1, \ldots$
1	$\frac{1}{a^2}\left(\ell(\ell+d-1)-1\right)$	$\frac{(\ell+d-3)!}{(d-2)!(\ell+1)!}(2\ell+d-1)(\ell+d-1)\ell$	$\ell = 1, 2, \ldots$
2	$\frac{1}{a^2}\left(\ell(\ell+d-1)-2\right)$	$\frac{(d+1)(d-2)(l+d)(l-1)(2l+d-1)(l+d-3)!}{2(d-1)!(l+1)!}$	$\ell=2,3,\ldots$

fermions obey Lichnerowicz formula:

$$\nabla^2 = \Delta + \frac{1}{4}\bar{R}$$

spectral sums

Litim regulator

$$R_k(z) = (k^2 - z)\theta(k^2 - z)$$

traces become (finite) sums over degeneracies

$$S_d^{(s)}(N) \equiv \sum_{\ell=\ell_{\min}}^N M_\ell^{(s)},$$
$$\widetilde{S}_d^{(s)}(N) \equiv \sum_{\ell=\ell_{\min}}^N \lambda_\ell^{(s)} M_\ell^{(s)}$$

spectral sums

Litim regulator

$$R_k(z) = (k^2 - z)\theta(k^2 - z)$$

traces become (finite) sums over degeneracies

$$S_d^{(s)}(N) \equiv \sum_{\ell=\ell_{\min}}^N M_\ell^{(s)},$$
$$\widetilde{S}_d^{(s)}(N) \equiv \sum_{\ell=\ell_{\min}}^N \lambda_\ell^{(s)} M_\ell^{(s)}$$

- N: integer labeling the largest eigenvalue contributing to the sum
- sums can be done analytically
- convergence guaranteed

spectral sums

Litim regulator

$$R_k(z) = (k^2 - z)\theta(k^2 - z)$$

traces become (finite) sums over degeneracies

$$S_d^{(s)}(N) \equiv \sum_{\ell=\ell_{\min}}^N M_\ell^{(s)},$$
$$\widetilde{S}_d^{(s)}(N) \equiv \sum_{\ell=\ell_{\min}}^N \lambda_\ell^{(s)} M_\ell^{(s)}$$

- N: integer labeling the largest eigenvalue contributing to the sum
- sums can be done analytically
- convergence guaranteed
- discrete eigenvalue spectrum \Rightarrow discontinuities in traces

spectral sums: discontinuities in scalar trace

• dimensionless curvature $r \equiv Rk^{-2}$

spectral sums: interpolation schemes

continuous flow equation \Rightarrow treat N as continuous in k

interpolation schemes

- upper staircase
 - connects upper points of staircase
- Iower staircase
 - connects lower points of staircase
- averaged interpolation
 - averages the upper and lower staircase
- optimized averaged interpolation
 - tailored to reproduce the early-time expansion (heat-kernel)

spectral sums: interpolation schemes

- upper staircase
- averaged interpolation
- optimized averaged interpolation
- Iower staircase

spectral sums: interpolation schemes comparison

deviation from the heat-kernel (Euler-MacLaurin summation):

spectral sums: interpolation schemes comparison

deviation from the heat-kernel (Euler-MacLaurin summation):

! averaged interpolation \neq early-time expansion heat-kernel !

$$\dot{\varphi} + 4\varphi - 2r\varphi' = \mathcal{T}^{\mathrm{TT}} + \mathcal{T}^{\mathrm{ghost}} + \mathcal{T}^{\mathrm{sinv}} + \mathcal{T}^{\mathrm{scalar}} + \mathcal{T}^{\mathrm{Dirac}} + \mathcal{T}^{\mathrm{vector}}$$

gravitational sector:

$$\begin{aligned} \mathcal{T}^{\mathrm{TT}} &= \frac{5}{2(4\pi)^2} \frac{1}{1 + \left(\alpha_T^G + \frac{1}{6}\right)r} \left(1 + \left(\alpha_T^G - \frac{1}{6}\right)r\right) \left(1 + \left(\alpha_T^G - \frac{1}{12}\right)r\right) \\ &+ \frac{5}{12(4\pi)^2} \frac{\dot{\varphi}' + 2\varphi' - 2r\varphi''}{\varphi'} \left(1 + \left(\alpha_T^G - \frac{2}{3}\right)r\right) \left(1 + \left(\alpha_T^G - \frac{1}{6}\right)r\right) , \\ \mathcal{T}^{\mathrm{sinv}} &= \frac{1}{2(4\pi)^2} \frac{\varphi''}{\left(1 + \left(\alpha_S^G - \frac{1}{3}\right)r\right)\varphi'' + \frac{1}{3}\varphi'} \left(1 + \left(\alpha_S^G - \frac{1}{2}\right)r\right) \left(1 + \left(\alpha_S^G + \frac{11}{12}\right)r\right) \\ &+ \frac{1}{12(4\pi)^2} \frac{\dot{\varphi}'' - 2r\varphi'''}{\left(1 + \left(\alpha_S^G - \frac{1}{3}\right)r\right)\varphi'' + \frac{1}{3}\varphi'} \left(1 + \left(\alpha_S^G + \frac{3}{2}\right)r\right) \left(1 + \left(\alpha_S^G - \frac{1}{3}\right)r\right) \left(1 + \left(\alpha_S^G - \frac{5}{6}\right)r\right) \\ \mathcal{T}^{\mathrm{ghost}} &= -\frac{1}{48(4\pi)^2} \frac{1}{1 + \left(\alpha_V^G - \frac{1}{4}\right)r} \left(72 + 18r(1 + 8\alpha_V^G) - r^2(19 - 18\alpha_V^G - 72(\alpha_V^G)^2)\right) \end{aligned}$$

$$\dot{\varphi} + 4\varphi - 2r\varphi' = \mathcal{T}^{\mathrm{TT}} + \mathcal{T}^{\mathrm{ghost}} + \mathcal{T}^{\mathrm{sinv}} + \mathcal{T}^{\mathrm{scalar}} + \mathcal{T}^{\mathrm{Dirac}} + \mathcal{T}^{\mathrm{vector}}$$

gravitational sector:

[N. Ohta, R. Percacci, G.-P. Vacca, arXiv:1507.00968] [N. Ohta, R. Percacci, G.-P. Vacca, arXiv:1511.09393]

$$\mathcal{T}^{\mathrm{TT}} = \frac{5}{2(4\pi)^2} \frac{1}{1 + \left(\alpha_T^G + \frac{1}{6}\right)r} \left(1 + \left(\alpha_T^G - \frac{1}{6}\right)r\right) \left(1 + \left(\alpha_T^G - \frac{1}{12}\right)r\right) \\ + \frac{5}{12(4\pi)^2} \frac{\dot{\varphi}' + 2\varphi' - 2r\varphi''}{\varphi'} \left(1 + \left(\alpha_T^G - \frac{2}{3}\right)r\right) \left(1 + \left(\alpha_T^G - \frac{1}{6}\right)r\right) ,$$
$$\mathcal{T}^{\mathrm{sinv}} = \frac{1}{2(4\pi)^2} \frac{\varphi''}{\left(1 + \left(\alpha_S^G - \frac{1}{3}\right)r\right)\varphi'' + \frac{1}{3}\varphi'} \left(1 + \left(\alpha_S^G - \frac{1}{2}\right)r\right) \left(1 + \left(\alpha_S^G + \frac{11}{12}\right)r\right) \\ + \frac{1}{12(4\pi)^2} \frac{\dot{\varphi}'' - 2r\varphi'''}{\left(1 + \left(\alpha_S^G - \frac{1}{3}\right)r\right)\varphi'' + \frac{1}{3}\varphi'} \left(1 + \left(\alpha_S^G + \frac{3}{2}\right)r\right) \left(1 + \left(\alpha_S^G - \frac{1}{3}\right)r\right) \left(1 + \left(\alpha_S^G - \frac{5}{6}\right)r\right) \\ \mathcal{T}^{\mathrm{ghost}} = -\frac{1}{48(4\pi)^2} \frac{1}{1 + \left(\alpha_V^G - \frac{1}{4}\right)r} \left(72 + 18r(1 + 8\alpha_V^G) - r^2(19 - 18\alpha_V^G - 72(\alpha_V^G)^2)\right)$$

• partial differential equation of third order in r

$$\dot{\varphi} + 4\varphi - 2r\varphi' = \mathcal{T}^{\mathrm{TT}} + \mathcal{T}^{\mathrm{ghost}} + \mathcal{T}^{\mathrm{sinv}} + \mathcal{T}^{\mathrm{scalar}} + \mathcal{T}^{\mathrm{Dirac}} + \mathcal{T}^{\mathrm{vector}}$$

gravitational sector:

$$\begin{aligned} \mathcal{T}^{\mathrm{TT}} &= \frac{5}{2(4\pi)^2} \frac{1}{1 + \left(\alpha_T^G + \frac{1}{6}\right)r} \left(1 + \left(\alpha_T^G - \frac{1}{6}\right)r\right) \left(1 + \left(\alpha_T^G - \frac{1}{12}\right)r\right) \\ &+ \frac{5}{12(4\pi)^2} \frac{\dot{\varphi}' + 2\varphi' - 2r\varphi''}{\varphi'} \left(1 + \left(\alpha_T^G - \frac{2}{3}\right)r\right) \left(1 + \left(\alpha_T^G - \frac{1}{6}\right)r\right) , \\ \mathcal{T}^{\mathrm{sinv}} &= \frac{1}{2(4\pi)^2} \frac{\varphi''}{\left(1 + \left(\alpha_S^G - \frac{1}{3}\right)r\right)\varphi'' + \frac{1}{3}\varphi'} \left(1 + \left(\alpha_S^G - \frac{1}{2}\right)r\right) \left(1 + \left(\alpha_S^G + \frac{11}{12}\right)r\right) \\ &+ \frac{1}{12(4\pi)^2} \frac{\dot{\varphi}'' - 2r\varphi'''}{\left(1 + \left(\alpha_S^G - \frac{1}{3}\right)r\right)\varphi'' + \frac{1}{3}\varphi'} \left(1 + \left(\alpha_S^G + \frac{3}{2}\right)r\right) \left(1 + \left(\alpha_S^G - \frac{1}{3}\right)r\right) \left(1 + \left(\alpha_S^G - \frac{5}{6}\right)r\right) \\ \mathcal{T}^{\mathrm{ghost}} &= -\frac{1}{48(4\pi)^2} \frac{1}{1 + \left(\alpha_V^G - \frac{1}{4}\right)r} \left(72 + 18r(1 + 8\alpha_V^G) - r^2(19 - 18\alpha_V^G - 72(\alpha_V^G)^2)\right) \end{aligned}$$

- partial differential equation of third order in r
- only derivatives of $\varphi(r) \Longrightarrow$ rhs independent of cosmological constant

$$\dot{\varphi} + 4\varphi - 2r\varphi' = \mathcal{T}^{\mathrm{TT}} + \mathcal{T}^{\mathrm{ghost}} + \mathcal{T}^{\mathrm{sinv}} + \mathcal{T}^{\mathrm{scalar}} + \mathcal{T}^{\mathrm{Dirac}} + \mathcal{T}^{\mathrm{vector}}$$

gravitational sector:

$$\mathcal{T}^{\mathrm{TT}} = \frac{5}{2(4\pi)^2} \frac{1}{1 + \left(\alpha_T^G + \frac{1}{6}\right)r} \left(1 + \left(\alpha_T^G - \frac{1}{6}\right)r\right) \left(1 + \left(\alpha_T^G - \frac{1}{12}\right)r\right) \\ + \frac{5}{12(4\pi)^2} \frac{\dot{\varphi}' + 2\varphi' - 2r\varphi''}{\varphi'} \left(1 + \left(\alpha_T^G - \frac{2}{3}\right)r\right) \left(1 + \left(\alpha_T^G - \frac{1}{6}\right)r\right), \\ \mathcal{T}^{\mathrm{sinv}} = \frac{1}{2(4\pi)^2} \frac{\varphi''}{\left(1 + \left(\alpha_S^G - \frac{1}{3}\right)r\right)\varphi'' + \frac{1}{3}\varphi'} \left(1 + \left(\alpha_S^G - \frac{1}{2}\right)r\right) \left(1 + \left(\alpha_S^G + \frac{11}{12}\right)r\right) \\ + \frac{1}{12(4\pi)^2} \frac{\dot{\varphi}'' - 2r\varphi'''}{\left(1 + \left(\alpha_S^G - \frac{1}{3}\right)r\right)\varphi'' + \frac{1}{3}\varphi'} \left(1 + \left(\alpha_S^G + \frac{3}{2}\right)r\right) \left(1 + \left(\alpha_S^G - \frac{1}{3}\right)r\right) \left(1 + \left(\alpha_S^G - \frac{5}{6}\right)r\right) \\ \mathcal{T}^{\mathrm{ghost}} = -\frac{1}{48(4\pi)^2} \frac{1}{1 + \left(\alpha_V^G - \frac{1}{4}\right)r} \left(72 + 18r(1 + 8\alpha_V^G) - r^2(19 - 18\alpha_V^G - 72(\alpha_V^G)^2)\right)$$

- partial differential equation of third order in r
- only derivatives of $\varphi(r) \Longrightarrow$ rhs independent of cosmological constant
- moving singularity at $\varphi'(r) = 0$

$$\dot{\varphi} + 4\varphi - 2r\varphi' = \mathcal{T}^{\mathrm{TT}} + \mathcal{T}^{\mathrm{ghost}} + \mathcal{T}^{\mathrm{sinv}} + \mathcal{T}^{\mathrm{scalar}} + \mathcal{T}^{\mathrm{Dirac}} + \mathcal{T}^{\mathrm{vector}}$$

gravitational sector:

$$\begin{aligned} \mathcal{T}^{\mathrm{TT}} &= \frac{5}{2(4\pi)^2} \frac{1}{1 + \left(\alpha_T^G + \frac{1}{6}\right)r} \left(1 + \left(\alpha_T^G - \frac{1}{6}\right)r\right) \left(1 + \left(\alpha_T^G - \frac{1}{12}\right)r\right) \\ &+ \frac{5}{12(4\pi)^2} \frac{\dot{\varphi}' + 2\varphi' - 2r\varphi''}{\varphi'} \left(1 + \left(\alpha_T^G - \frac{2}{3}\right)r\right) \left(1 + \left(\alpha_T^G - \frac{1}{6}\right)r\right) , \\ \mathcal{T}^{\mathrm{sinv}} &= \frac{1}{2(4\pi)^2} \frac{\varphi''}{\left(1 + \left(\alpha_S^G - \frac{1}{3}\right)r\right)\varphi'' + \frac{1}{3}\varphi'} \left(1 + \left(\alpha_S^G - \frac{1}{2}\right)r\right) \left(1 + \left(\alpha_S^G + \frac{11}{12}\right)r\right) \\ &+ \frac{1}{12(4\pi)^2} \frac{\dot{\varphi}'' - 2r\varphi'''}{\left(1 + \left(\alpha_S^G - \frac{1}{3}\right)r\right)\varphi'' + \frac{1}{3}\varphi'} \left(1 + \left(\alpha_S^G + \frac{3}{2}\right)r\right) \left(1 + \left(\alpha_S^G - \frac{1}{3}\right)r\right) \left(1 + \left(\alpha_S^G - \frac{5}{6}\right)r\right) \\ \mathcal{T}^{\mathrm{ghost}} &= -\frac{1}{48(4\pi)^2} \frac{1}{1 + \left(\alpha_V^G - \frac{1}{4}\right)r} \left(72 + 18r(1 + 8\alpha_V^G) - r^2(19 - 18\alpha_V^G - 72(\alpha_V^G)^2)\right) \end{aligned}$$

- partial differential equation of third order in r
- only derivatives of $\varphi(r) \Longrightarrow$ rhs independent of cosmological constant
- moving singularity at $\varphi'(r) = 0$
- 3 endomorphism parameters

$$\dot{\varphi} + 4\varphi - 2r\varphi' = \mathcal{T}^{\mathrm{TT}} + \mathcal{T}^{\mathrm{ghost}} + \mathcal{T}^{\mathrm{sinv}} + \mathcal{T}^{\mathrm{scalar}} + \mathcal{T}^{\mathrm{Dirac}} + \mathcal{T}^{\mathrm{vector}}$$

matter sector

$$\begin{aligned} \mathcal{T}^{\text{scalar}} &= \frac{N_S}{2(4\pi)^2} \frac{1}{1+\alpha_S^M r} \left(1 + \left(\alpha_S^M + \frac{1}{4} \right) r \right) \left(1 + \left(\alpha_S^M + \frac{1}{6} \right) r \right) \,, \\ \mathcal{T}^{\text{Dirac}} &= -\frac{2N_D}{(4\pi)^2} \left(1 + \left(\alpha_D^M + \frac{1}{6} \right) r \right) \,, \\ \mathcal{T}^{\text{vector}} &= \frac{N_V}{2(4\pi)^2} \left(\frac{3}{1+\left(\alpha_{V_1}^M + \frac{1}{4} \right) r} \left(1 + \left(\alpha_{V_1}^M + \frac{1}{6} \right) r \right) \left(1 + \left(\alpha_{V_1}^M + \frac{1}{12} \right) r \right) \\ &- \frac{1}{1+\alpha_{V_2}^M r} \left(1 + \left(\alpha_{V_2}^M + \frac{1}{2} \right) r \right) \left(1 + \left(\alpha_{V_2}^M - \frac{1}{12} \right) r \right) \right) \end{aligned}$$

$$\dot{\varphi} + 4\varphi - 2r\varphi' = \mathcal{T}^{\mathrm{TT}} + \mathcal{T}^{\mathrm{ghost}} + \mathcal{T}^{\mathrm{sinv}} + \mathcal{T}^{\mathrm{scalar}} + \mathcal{T}^{\mathrm{Dirac}} + \mathcal{T}^{\mathrm{vector}}$$

matter sector

$$\begin{aligned} \mathcal{T}^{\text{scalar}} &= \frac{N_S}{2(4\pi)^2} \frac{1}{1+\alpha_S^M r} \left(1 + \left(\alpha_S^M + \frac{1}{4} \right) r \right) \left(1 + \left(\alpha_S^M + \frac{1}{6} \right) r \right) \,, \\ \mathcal{T}^{\text{Dirac}} &= -\frac{2N_D}{(4\pi)^2} \left(1 + \left(\alpha_D^M + \frac{1}{6} \right) r \right) \,, \\ \mathcal{T}^{\text{vector}} &= \frac{N_V}{2(4\pi)^2} \left(\frac{3}{1+\left(\alpha_{V_1}^M + \frac{1}{4} \right) r} \left(1 + \left(\alpha_{V_1}^M + \frac{1}{6} \right) r \right) \left(1 + \left(\alpha_{V_1}^M + \frac{1}{12} \right) r \right) \\ &- \frac{1}{1+\alpha_{V_2}^M r} \left(1 + \left(\alpha_{V_2}^M + \frac{1}{2} \right) r \right) \left(1 + \left(\alpha_{V_2}^M - \frac{1}{12} \right) r \right) \right) \end{aligned}$$

• independent of $\varphi(r)$

$$\dot{\varphi} + 4\varphi - 2r\varphi' = \mathcal{T}^{\mathrm{TT}} + \mathcal{T}^{\mathrm{ghost}} + \mathcal{T}^{\mathrm{sinv}} + \mathcal{T}^{\mathrm{scalar}} + \mathcal{T}^{\mathrm{Dirac}} + \mathcal{T}^{\mathrm{vector}}$$

matter sector:

$$\begin{split} \mathcal{T}^{\text{scalar}} &= \frac{N_S}{2(4\pi)^2} \, \frac{1}{1+\alpha_S^M r} \, \left(1 + \left(\alpha_S^M + \frac{1}{4}\right) r\right) \left(1 + \left(\alpha_S^M + \frac{1}{6}\right) r\right) \,, \\ \mathcal{T}^{\text{Dirac}} &= - \, \frac{2N_D}{(4\pi)^2} \, \left(1 + \left(\alpha_D^M + \frac{1}{6}\right) r\right) \,, \\ \mathcal{T}^{\text{vector}} &= \frac{N_V}{2(4\pi)^2} \left(\frac{3}{1 + \left(\alpha_{V_1}^M + \frac{1}{4}\right) r} \left(1 + \left(\alpha_{V_1}^M + \frac{1}{6}\right) r\right) \left(1 + \left(\alpha_{V_1}^M + \frac{1}{12}\right) r\right) \\ &- \frac{1}{1 + \alpha_{V_2}^M r} \left(1 + \left(\alpha_{V_2}^M + \frac{1}{2}\right) r\right) \left(1 + \left(\alpha_{V_2}^M - \frac{1}{12}\right) r\right) \right) \end{split}$$

- independent of $\varphi(r)$
- 4 endomorphism parameters

$$\dot{\varphi} + 4\varphi - 2r\varphi' = \mathcal{T}^{\mathrm{TT}} + \mathcal{T}^{\mathrm{ghost}} + \mathcal{T}^{\mathrm{sinv}} + \mathcal{T}^{\mathrm{scalar}} + \mathcal{T}^{\mathrm{Dirac}} + \mathcal{T}^{\mathrm{vector}}$$

matter sector

$$\begin{aligned} \mathcal{T}^{\text{scalar}} &= \frac{N_S}{2(4\pi)^2} \frac{1}{1+\alpha_S^M r} \left(1 + \left(\alpha_S^M + \frac{1}{4}\right) r \right) \left(1 + \left(\alpha_S^M + \frac{1}{6}\right) r \right) \,, \\ \mathcal{T}^{\text{Dirac}} &= -\frac{2N_D}{(4\pi)^2} \left(1 + \left(\alpha_D^M + \frac{1}{6}\right) r \right) \,, \\ \mathcal{T}^{\text{vector}} &= \frac{N_V}{2(4\pi)^2} \left(\frac{3}{1+\left(\alpha_{V_1}^M + \frac{1}{4}\right) r} \left(1 + \left(\alpha_{V_1}^M + \frac{1}{6}\right) r \right) \left(1 + \left(\alpha_{V_1}^M + \frac{1}{12}\right) r \right) \\ &- \frac{1}{1+\alpha_{V_2}^M r} \left(1 + \left(\alpha_{V_2}^M + \frac{1}{2}\right) r \right) \left(1 + \left(\alpha_{V_2}^M - \frac{1}{12}\right) r \right) \right) \end{aligned}$$

- independent of $\varphi(r)$
- 4 endomorphism parameters
- fermions contribute with a first order polynomial in r

$$\dot{\varphi} + 4\varphi - 2r\varphi' = \mathcal{T}^{\mathrm{TT}} + \mathcal{T}^{\mathrm{ghost}} + \mathcal{T}^{\mathrm{sinv}} + \mathcal{T}^{\mathrm{scalar}} + \mathcal{T}^{\mathrm{Dirac}} + \mathcal{T}^{\mathrm{vector}}$$

matter sector

$$\begin{aligned} \mathcal{T}^{\text{scalar}} &= \frac{N_S}{2(4\pi)^2} \frac{1}{1+\alpha_S^M r} \left(1 + \left(\alpha_S^M + \frac{1}{4}\right) r \right) \left(1 + \left(\alpha_S^M + \frac{1}{6}\right) r \right) \,, \\ \mathcal{T}^{\text{Dirac}} &= -\frac{2N_D}{(4\pi)^2} \left(1 + \left(\alpha_D^M + \frac{1}{6}\right) r \right) \,, \\ \mathcal{T}^{\text{vector}} &= \frac{N_V}{2(4\pi)^2} \left(\frac{3}{1+\left(\alpha_{V_1}^M + \frac{1}{4}\right) r} \left(1 + \left(\alpha_{V_1}^M + \frac{1}{6}\right) r \right) \left(1 + \left(\alpha_{V_1}^M + \frac{1}{12}\right) r \right) \\ &- \frac{1}{1+\alpha_{V_2}^M r} \left(1 + \left(\alpha_{V_2}^M + \frac{1}{2}\right) r \right) \left(1 + \left(\alpha_{V_2}^M - \frac{1}{12}\right) r \right) \right) \end{aligned}$$

- independent of $\varphi(r)$
- 4 endomorphism parameters
- fermions contribute with a first order polynomial in r

fixed functions: stationary (*r*-independent) solutions of partial differential equation

solutions I polynomial expansion

scanning for NGFPs: N = 1

 $d_{\lambda} = N_S + 2N_V - 4N_D$

scanning for NGFPs: N = 1

 $d_{\lambda} = N_S + 2N_V - 4N_D$

!!! upper bound on the number of scalars !!!

scanning for NGFPs: N = 2, Type I

deformation parameters in beta functions for g^1 , g^2 :

$$d_g = \frac{5}{4}N_S - \frac{5}{4}N_V - 2N_D, \qquad d_\beta = N_S + 2N_V$$

