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QUANTUM GRAVITY

Einstein General Relativity works quite well for distances [>>1,; (=Planck
lenght).

Singularity problem and the quantum mechanical behavour of matter-energy
at small distance suggest a quantum mechanical behavour of the gravitational

field (Quantum Gravity) at small distances (High Energy).

Many different approaches to Quantum Gravity: String Theory, Loop
Quantum Gravity, Non-commutative Geometry, CDT, Asymptotic Safety
etc.

General Relativity is considered an effective theory. It is not pertubatively
renormalizable (the Newton constant G has a (lenght)? dimension)



REUTER-WEYER ACTION PROPOSAL
(Phys. Rev. D 69 2004)

The modified Einstein Hilbert action has external, non-geometrical fields G(x)
and A(x), determined by RG and assumed independent by the metric tensor

g.

Notice that if one sees ¢(T ) as the inverse of the Newton constant ¢(z) = 1)

the previous action is Brans-Dicke theory of gravity with an external Brans-
Dicke field

Reuter-Weyer stress that one should find extra integrability condition on the
modified Einstein equations, that puts constraints on (§(z) and A( Qj) , Of
further constraints on the cut-off k(x) identification (besides the symmetry
of the systems etc).

In Homogeneous and Isotropic symmetrical cases G = G (t) and = A(t)



ADM FORMALISM WITH G AND A VARIABLE

Bonanno et al (CGQ 21 2004) proposed an Hamiltonian Analysis of the
previous action using initially a York boundary term. Later the considered G and
A as dynamical variables, modified the boundary term ending in a dynamic with
first class constraints.

On the ADM decomposition M=RXZX the covariant metric tensor is

g=—(N?— N;N")dt ® dt + N;(dz' ® dt + dt @ dz*) + h;;dz" @ dx’
The Einstein-Hilbert action with York boundary term is

/ 1 KVh
Sapmlhij, N, N*| = L/ dtd®*xvVhN 1 (4R - 2A(t,x)) op s vh
RxX

d
67 G(t,x) 81 Jorr G(t, ) !

the York term, as it is well, know is added in order to have a “differentiable action”.



DIRAC’ S CONSTRAINT THEORY

In general if one has a Lagrangian L, the conjugate momenta are defined

OL
= o ; for “constrained systems” (gauge theories for example) det

0*L
94'04)

Di

therefore the Legendere map defines a relation between the p and q coordinates,

which is called primary constraints ¢; (g, p) = O (this relation defines the
“constraint surface”X). One uses the Dirac notation ¢;(q, p) = 0, to say that
these functions are defined on all the space (q,p).

The canonical Hamiltonian H_ is defined on the primary constraint surface
H.(q,p) = piq" — Ll

The “effective Hamiltonian” i is defined on all space (q,p) as

H = H.+ \¢;(q,p)

=0



DIRAC’' S CONSTRAINT THEORY

One needs to impose that the dynamic stays on the constraint surface
L Z. Z. ~
¢' =10, H} =0

In case previous equation is not identically zero, there exists secondary
constraints X% T (g,p)

X:?[.[ :{¢J7IZI}%O

Therefore one has the total Hamiltonian H.. that 1s a linear combination of the
primary and secondary constraints

and so on...The procedure stops when, at certain stage, the constraints are
identically preserved. Beside primary, secondary etc. the constraints are classified
in first class constraints and second class. First class contraints have zero
Poisson brackets with all other constraints. The remaining constraints are
second class. First class constraints are generators of either gauge symmetries or
diffeomorphisms



CONSTRAINT ANALYSIS OF EINSTEIN

GENERAL RELATIVITY
Einstein GR-action in ADM variable and York boundary term is
: 1 1
Sapmlhij, N, N'| = dtd’zvVhN (*R—2A)+— | Kd°
ADM[ Jr+V ] 167G /M:RXE CI?\F ( )+ 816 SM X

The primary constraints are

_ O0Lapwm _ O0Lapm
T = : ~0 m= — =~ 0
ON ON*

The canonical Hamiltonian density H_ is

H. = NH + H;N*

where the Hamiltonian constraint?{ and the momentum constraints?{,are

aj \/E J
H = (167TG)Gajk;l7T '77Tkl - m (3R - 2A) H’L — _QVJT‘-Z
1 .
Gabcb — (hachbd + hadhbc — habhcd) 1s the DeWitt supermetric

2v/h



CONSTRAINT ANALYSIS OF EINSTEIN
GENERAL RELATIVITY

The effective Hamiltonian density7:[ 1s
H=Ar+ N7+ NH+ NH

Preserving the primary constraints, one gets the secondary constraints

T = {w,/d%?—l} =—-H=0, ;= {m,/d%?—l} =—-H;=0

The previous Hamiltonian constraint and momentum constraints are first
class and, then, generators of time diffeomorphism and space
diffeomorphism on the three-surfaces 2. In fact for the ”space” part

{n% (z), / FYN'HY = Ene (@) (hia), [N} = Exchig)



ADM FORMALISM WITH G AND A VARIABLE

Assuming that ¥ has no boundary, that is 0X=0, the ADM action S,py

becomes
Sapulhi;, N, Ni] = i/ N\/_(K K4 — K2+<3>R—2A)—2@Kf+2 il gt
ADM [Tbigs LV, 167 s G 1 G
ﬁAD]\J
The momentum densities 7135 results quite complicated
Ye N VA hil
gl = 24P (K — W K) + - (G0 — GiN¥)
Oh;j 167G 167 NG
Their form suggests that one can define 2 new momentum variable 7, j
g g Vh h¥ Vh g g
7 =gt — Go—GipN*) =— K" — K
=1~ fgange (G0~ GV =~ ( )

One can prove that the following transformation of variables 1s canonical

(N,Ni,hij,ﬂ',ﬂ'z',ﬂ'ij) — (N,Ni,hz‘j,ﬂ',ﬂ'i,ﬁ'ij)



HAMILTONIAN FORMALISM

This 1s a system with Dirac’s constraints, in fact the primary constraints are

~ 0LaDMm - 0LapMm
i — - ~ () Ty = ;

0N ON®

The total Hamiltonian J{ 4 is then

5 e ()\71' = /\iﬂ'z‘ + HAD]\J) d>x
)

A and \; being, following Dirac’s constraint theotry, Lagrange multipliers.

~ 0

The Hamiltonian density is defined as

b}
Hapym =7Thay — LaDM



ADM FORMALISM WITH G AND A VARIABLE

Presetving primaty constaints 1 &~ () 71, /& () ,one gets the secondary
constaints: the Hamiltonian constraint 7} and the and the momenta
constraints H; (Hy is the total Hamiltonian)

ﬁZ{ﬂ,HT}:H%O ﬁi:{ﬂi,HT}:’Hz’%O

Therefore one gets

vVR(BR-2A) Vh(Go—GiNF)V,N° G Vhh"
. ~ab~cd . ,0 kK a IRva ,2
H = (167G)G gpeq’7 6mC STC2N? Vi 372

And the momenta constraints

e S NS a B - k
H:= —Qvaﬁ_ai Kk \/E( G,Z)VCLN B \/Evz (G,() GkN )

STG?N 8TG2N



HAMILTONIAN FORMALISM

The expressions of the previous constraints look quite complicated. One can
start checking if the momentum constraints 7 . are still the generators of
Space diffeomorphisms

{hij, / BrNH;} = Lghi

Repating the same calculation for the momenta

N ( G y
’S aipt]
2 (871’G2N> Noh \/E]

{ﬁzj,fdstsz} - /dBCIJﬁNsz'j-Fva

The momentum constraints are still the generators of the diffeomorphism
transformation on the three spatial surfaces if G(x) is not dependent by the
spatial coordinates. Again G=G(t).



HAMILTONIAN FORMALISM

The previous results means that the ADM starting metric

is not working. One needs to start from the following ADM metric in
Gausiian normal coordinates

g=—N?*(t)dt ® dt + h;;dx* ® dx’

The ADM Hamiltonian density 7—[ ADM reduces to

cd \/ﬁ((fS)R o 2A)
167G

Hapy = N | (167G)Gapea™’7



HAMILTONIAN FORMALISM
Therefore the associated Hamiltonian constaints H 1s

Vh(®R — 24)
167G

H = (167G)Gaped Fobged
There are not momentum constraints ’]—[Z

The constraints algebra is closed without any requirement on G(x). This
means that G(x) can be a generic function of the space-time coordinates.



BRANS-DICKE THEORY

Previous Hamiltonian analysis triggers the question why the constraint algebra
looks so complicated and do not close.

To answer this question one can consider a Brans-Dicke theory in which
¢ (x) is a dynamical variable and a York boundary term

S = LQ [/ diz\/—g (¢2 WR+ 49"7 0,00, ¢ — U(qb)) -+ 2/ d?’:c\/ﬁqﬁzl(]
4q M OM
The ADM decomposition of the previous action is
1 )
Sapu = 15 d3zdtNVh ((;52 BR + ¢2Kin” — $*K? — —(80¢) +
q° Jyxt
8 NZNJ

7 ) 4 1
3 N B080i6 + 40,60'¢ — 4~ 0id; b + 00 K St f - U©))

N
fi= x/ﬁ (KN*—h¥N,;)



ADM ANALYSIS OF BRANS-DICKE THEORY

The definition of the momenta gives

oL
W:aEAPM ~ 0 T = A.D_M ~ 0
ON ON*
_ OLapm _ 2Vh ; N ij _ OLADM . _\/E 2 1.-1j 1 ij
™= s~ 1N ((%cb—Naicb—Ech) T = i, A K" + S ¢mgh

The first two momenta are primary constraints, an the total Hamiltonian Hy
is

Hp = /d% (A + XNmy + NH + N*H,;)

being A and A! are Lagrange multipliers.



ADM ANALYSIS OF BRANS-DICKE THEORY

As in Einstein General Relativity one has 2 momentum constraints7{; and
Hamiltonian constraintH{

H,; = —2Vj7'('g + 7T¢87;¢

B 4q%2 .. B 2q° Vh 2 (3) 3¢2 £ i \/_ vh
= \/_TQSQ’]T ‘77sz — \/_—h¢7T7T¢ — —2¢ R + mﬂ-(ﬁ - q 0 ¢82¢ q (¢¢7’L) q U(¢)

An interesting result 1s the momentum constraints are the generetars of the
space diffeomeorphism on the three-dimensional spatial surfaces

{hij(z), /d3le7-ll} Lnhij(x) {Wij(x),/d?’leHl}:ENWij(x)

From this relations, like in standard Hamiltonian General Relativity, follows

{Hi(z), H;(2)} = Hi(2")0;0(z, ") — H;(x)0;6(x, ')



ADM ANALYSIS OF BRANS-DICKE THEORY

The Poisson bracket Hamiltonian momentum constraints is
{H(z), Hi(z)} = —H(2")0;6(2", )

While quite problematic (and under study...) 1s the Poisson bracket
Hamiltonian-Hamiltonian constraint

{N(z)H(x), N(z')H(z")} =7

Still ongoing calculations. A first attempt seems to show the constraint
algebra does not close. More later. ..



COSMOLOGIES OF THE SUB-
PLLANCK ERA

Consider the previous E-H action with matter
S_/ . __Q{R—zA(k) ﬁm} 1 _K_\/Ed3
M

167G (k) 87
One starts from a FLRW metric, in which the shifts N' =0

h

87 Jom G(k)

t 2
L)2dr2 + a(t)*(r*df* + r* sin d¢p?)

ds® = —N(t)%dt?
’ () +1—K7°

Perfect fluid, with density p and pressure p and equation of statep = wp , w is
a constant. Imposing the conservation of matter stress energy tensor ~ THY = ()

—3—-3w

one get  p(a) =ma with m an integration constant, and £,, = —mNa ¥

1
Following Manrique et al. ( ADM cut-off identification k ~ —)
a

3 aa? 3a%2a°G'(a) 3aNK a’NA(a) ~ 2Nm

T 8TN()G(a)  87NG2(a) | 87G(a)  87G(a)  av

Ly



COSMOLOGIES OF THE SUB-
PLLANCK ERA

From the Hamiltonian constraint, one gets the quantum-Friedman

K 87G(a) p+ A(a) -
ZH? 3H? =ik =0
0log G(a)

0log a

in which n(a) = —

This implies an equation of evolution for a(t)

K+ V(a) a’
BV v = & se6() o+ AW)

Notice the allowed regions for the dynamical evolution are VK (@) <0 .

d2 = —VK(Q) =

Close to NGFP, using cut off & ~ %, the follwing approximate solution for
RG-equation are deduced (Biemans et al. 2017)

G(a) ~ Go (1+ Go/gea™2) " (\,g.) NGFP,
Ala) =~ da™2 + Ao (Ng, Go) IR valule



BOUNCING AND EMERGENT UNIVERSES

Vk(a)
01¢
0.0 : - : - - X -
1 2 30 40 50 60 FIG. 1. The effective potential Vi (a) for a bouncing universe
(black), emergent universe (red), singular universe (blue), for
-0.1¢ K=0,w=1/3, g. =01, A\ = —0.5, £ =1 and m = 3.
Black, red and blue correspond to Mg = 2 x 10™%, \o = 8.3 x
—0.2¢ 10~* and Ao = 1.5 x 1072 respectively.
-0.3}

e In the radiation dominated eraw = = V5 (q) = (0 has two solutions with non
. 3 'K
negative real part

> _ _Gohot+g. (M —3K) | (GOAO — (P, — 3K)>2 ~ 87m Gy
’ 29+Ao 29+ Mo Ao

a

* The special condition of the emergent universe holds
ap =ap =0

~ Golg

* Condition for a’b positive 1s A« — 3K < , in the classical case Ay = () and
K>0 1s the only possible case, in AS with matter K=-1 and K=0 are allowed as well.



EMERGENT UNIVERSES

Around the minimal radius (1 ), in the Emergent Universe case, one can
linearize the first order differential equation in the following way

4q aQAO

w9 * W 2
a° = a — ap

3 (g*ag — GO)( )

The general solution 1s then

4g.a2 A
a(t) = ap —|—eexp{\/3 (gga2b— (C)?o) t}
*j

where € 1s an integration constant.

There is an exponential evolution and then no ad hoc inflation. In particular it
follows that the density parameter is

3 (9xai — Go) K —2N,
e
4G CLZIAO
The number [\/ e of e-folds, then, is related to the time { e of exit from

inflation by ) —
Ne >~ log | —exp 9*2 b20 be
ap 3 (Q*Clb == Go)

N—-1=




CONCLUSIONS

Hamiltonian (ADM) analysis of RG improved Einstein-Hilbert action with G and A as
external, non geometrical field, has been performed. The constraint algebra does not close
in the general case. In the particular case of an ADM metric in Gaussian Normal
coordinates, the constraint algebra do close without any restriction on the functional

form of G=G(x) and A(x).

The very fact the algebra does not close “seems to be true also for Brans-Dicke theory”,
although more careful checks seem needed. Maybe the Hamiltonian formalism, in cases a
bit more complicated than Einstein General Relativity, becomes, with its ADM-3+1
decomposition, too complicated.

FLRW metrics have been studies in the minisupersapce approach using Dirac’s constraint
theory as a Hamiltonian cosmological applicacion of the above analysis. They generate
sub-Planckian cosmological models via Asymptotic Safety. They exhibit Bouncing and
Emergent Universes also in cases K=-1,0,1, that are impossible to draw from Classical
General Relativity. Singularity is absent in the quantum regimel

Minisuperspace models are more interesting to study. Therefore a further analysis is the
study of an ADM Black Hole in the sub-Planckian regime.



