


Outline of the talk 

l Introduction: Quantum Gravity.

l Short review of Dirac’s constraint analysis

l RG improved modified Einstein-Hilbert Action (Reuter-Weyer)

l Hamiltonian Analysis of Asymptotically Safe Quantum Gravity

l Hamiltonian Analysis of Brans-Dicke Theory

l Cosmology at Sub-Planckian Era: Bouncing and Emergent Universes. 

l Conclusions.



QUANTUM GRAVITY

l Einstein General Relativity works quite well for distances l≫lPl (=Planck
lenght). 

l Singularity problem and the quantum mechanical behavour of matter-energy
at small distance suggest a quantum mechanical behavour of the gravitational
field (Quantum Gravity) at small distances (High Energy). 

l Many different approaches to Quantum Gravity: String Theory, Loop
Quantum Gravity, Non-commutative Geometry, CDT, Asymptotic Safety
etc. 

l General Relativity is considered an effective theory. It is not pertubatively
renormalizable (the Newton constant G has a (lenght)-2 dimension)



REUTER-WEYER ACTION PROPOSAL
(Phys. Rev. D 69 2004) 

l The modified Einstein Hilbert action has external, non-geometrical fields G(x) 
and Λ " , determined by RG and assumed independent by the metric tensor
g. 

l Notice that if one sees           as the inverse of the Newton constant                       
the previous action is Brans-Dicke theory of gravity with an external Brans-
Dicke field

l Reuter-Weyer stress that one should find extra integrability condition on the 
modified Einstein equations, that puts constraints on           and            , or 
further constraints on the cut-off             identification (besides the symmetry 
of the systems etc).  

l In Homogeneous and Isotropic symmetrical cases                    and 



ADM FORMALISM WITH G AND ! VARIABLE

l Bonanno et al (CGQ 21 2004) proposed an Hamiltonian Analysis of the 
previous action using initially a York boundary term. Later the considered G and 
Λ as dynamical variables, modified the boundary term ending in a dynamic with 
first class constraints. 

l On the ADM decomposition M=ℛ×Σ the covariant metric tensor is

l The Einstein-Hilbert action with York boundary term is    

the York term, as it is well, know is added in order to have a “differentiable action”.



DIRAC′ S CONSTRAINT THEORY
l In general if one has a Lagrangian L, the conjugate momenta are defined 

; for “constrained systems” (gauge theories for example)

therefore  the Legendere map defines a relation between the p and q coordinates, 
which is called primary constraints                          (this relation defines the 
“constraint surface”Σ).  One uses the Dirac notation                      , to say that 
these functions are defined on all the space (q,p). 
l The canonical Hamiltonian Hc is defined on the primary constraint surface  

l The “effective Hamiltonian”     is defined on all space (q,p) as 



DIRAC′ S CONSTRAINT THEORY
l One needs to impose that the dynamic stays on the constraint surface

l In case previous equation is not identically zero, there exists secondary 
constraints 

l Therefore one has the total Hamiltonian HT    that is a linear combination of the 
primary and secondary constraints

l and so on…The procedure stops when, at certain stage, the constraints are 
identically preserved. Beside primary, secondary etc. the constraints are classified 
in first class constraints and second class. First class contraints have zero 
Poisson brackets with all other constraints. The remaining constraints are 
second class. First class constraints are generators of either gauge symmetries or 
diffeomorphisms



CONSTRAINT ANALYSIS OF EINSTEIN 
GENERAL RELATIVITY

l Einstein GR-action in ADM variable and York boundary term is

l The primary constraints are 

l The canonical Hamiltonian density Hc is 

where the Hamiltonian constraint     and the momentum constraints     are

is the DeWitt supermetric



CONSTRAINT ANALYSIS OF EINSTEIN 
GENERAL RELATIVITY

l The effective Hamiltonian density      is

l Preserving the primary constraints, one gets the secondary constraints 

l The previous Hamiltonian constraint and momentum constraints are first 
class and, then, generators of time diffeomorphism and space 
diffeomorphism on the three-surfaces Σ. In fact for the ”space” part 



ADM FORMALISM WITH G AND ! VARIABLE

l Assuming that Σ has no boundary, that is #Σ=0, the ADM action SADM
becomes

l The momentum densities         results quite complicated 

l Their form suggests that one can define a new momentum variable

l One can prove that the following transformation of variables is canonical



HAMILTONIAN FORMALISM

l This is a system with Dirac’s constraints, in fact the primary constraints are

l The total Hamiltonian           is then  

and aa being, following Dirac’s constraint theory, Lagrange multipliers. 

l The Hamiltonian density is defined as  



ADM FORMALISM WITH G AND ! VARIABLE

l Preserving primary constaints , one gets  the secondary 
constaints: the Hamiltonian constraint      and the and the momenta 
constraints        (HT  is the total Hamiltonian)

l Therefore one gets

l And the momenta constraints



HAMILTONIAN FORMALISM

l The expressions of the previous constraints look quite complicated.  One can 
start checking if the momentum constraints         are still  the generators of 
Space diffeomorphisms

l Repating the same calculation for the momenta 

The momentum constraints are still the generators of the diffeomorphism 
transformation on the three spatial surfaces if G(x) is not dependent by the 
spatial coordinates. Again G=G(t).   



HAMILTONIAN FORMALISM

l The previous results means that the ADM starting metric

is not working. One needs to start from the following ADM metric in 
Gausiian normal coordinates 

l The ADM Hamiltonian density                        reduces to 



HAMILTONIAN FORMALISM

l Therefore the associated Hamiltonian constaints is  

l There are not momentum constraints 

l The constraints algebra is closed without any requirement on G(x). This 
means that G(x) can be a generic function of the space-time coordinates.  



BRANS-DICKE THEORY

l Previous Hamiltonian analysis triggers the question why the constraint algebra 
looks so complicated and do not close.

l To answer this question one can consider a Brans-Dicke theory in which 
! " is a dynamical variable and a York boundary term

l The ADM decomposition of the previous action is 



ADM ANALYSIS OF BRANS-DICKE THEORY

l The definition of the momenta gives

l The first two momenta are primary constraints, an the total Hamiltonian HT
is 

being ! and !i are Lagrange multipliers. 



ADM ANALYSIS OF BRANS-DICKE THEORY

l As in Einstein General Relativity one has a momentum constraints      and 
Hamiltonian constraint 

l An interesting result is the momentum constraints are the generetars of the 
space diffeomeorphism on the three-dimensional spatial surfaces 

l From this relations, like in standard Hamiltonian General Relativity, follows



ADM ANALYSIS OF BRANS-DICKE THEORY

l The Poisson bracket Hamiltonian momentum constraints is

l While quite problematic (and under study…) is the Poisson bracket 
Hamiltonian-Hamiltonian constraint 

l Still ongoing calculations. A first attempt seems to show the constraint 
algebra does not close. More later…



COSMOLOGIES OF THE SUB-
PLANCK ERA

l Consider the previous E-H action with matter

l One starts from a FLRW metric, in which the shifts Ni  =0

l Perfect fluid, with density    and pressure      and equation of state               ,       is 
a constant. Imposing the conservation of matter stress energy tensor 
one get                                  with m an integration constant, and

l Following Manrique et al. ( ADM cut-off identification             ) 



COSMOLOGIES OF THE SUB-
PLANCK ERA

l From the Hamiltonian constraint, one gets the quantum-Friedman

in which

l This implies an equation of evolution for 

l Notice the allowed regions for the dynamical  evolution are                       . 

l Close to NGFP, using cut off           , the follwing approximate solution for  
RG-equation are deduced (Biemans et al. 2017)

NGFP,        
IR valule



BOUNCING AND EMERGENT UNIVERSES 

• In the radiation dominated era                                 has two solutions with non 
negative real part    

• The special condition of  the emergent universe holds    

• Condition for        positive is                              ,   in the classical case                  and 
K>0 is the only possible case, in AS with matter K=-1 and K=0 are allowed as well. 



EMERGENT UNIVERSES
l Around the minimal radius        , in the Emergent Universe case, one can 

linearize the first order differential equation in the following way  

l The general solution is then 

where      is an integration constant. 
l There is an exponential evolution and then no ad hoc inflation.  In particular it 

follows that the density parameter is 

l The number        of e-folds, then, is related to the time        of exit from 
inflation by 



CONCLUSIONS
l Hamiltonian (ADM) analysis of RG improved Einstein-Hilbert action with G and Λ as

external, non geometrical field, has been performed. The constraint algebra does not close
in the general case. In the particular case of an ADM metric in Gaussian Normal
coordinates,  the constraint algebra do close without any restriction on the functional
form of G=G(x) and Λ(#).

l The very fact the algebra does not close “seems to  be true also for Brans-Dicke theory”, 
although more careful checks seem needed. Maybe the Hamiltonian formalism, in cases a 
bit more complicated than Einstein General Relativity, becomes, with its ADM-3+1 
decomposition, too complicated.     

l FLRW metrics have been studies in the minisupersapce approach using Dirac’s constraint
theory as a Hamiltonian cosmological applicacion of the above analysis. They generate 
sub-Planckian cosmological models via Asymptotic Safety.  They exhibit Bouncing and  
Emergent Universes also in cases K=-1,0,1, that are impossible to draw from Classical
General Relativity. Singularity is absent in the quantum regime!

l Minisuperspace models are more interesting to study. Therefore a further analysis is the 
study of an ADM Black Hole in the sub-Planckian regime.  


