SEARCHING FOR ASYMPTOTICALLY SAFE EXTENSIONS OF THE STANDARD MODEL.

Carlos Nieto^{1,2,3}

¹ Scuola Internazionale di Studi Superiori Avanzati - SISSA
² Istituto Nazionale di Fisica Nucleare - INFN
³ International Centre for Theoretical Physics - ICTP

Based on arxiv.1807.05584 with D. Barducci, M. Fabbrichesi, R. Percacci & V. Skrinjar.

> Asymptotic Safety Seminar Trieste, Italy 2018

< A 1

Generation of the fixed points

• General form of the gauge and Yukawa beta functions [Sannino & Litim, 2014].

$$\beta_g = \frac{d\alpha_g}{dln\mu} = (-B + C\alpha_g - D\alpha_y)\alpha_g^2$$

$$\beta_y = \frac{d\alpha_y}{dln\mu} = (E\alpha_y - F\alpha_g)\alpha_y$$

- Cancellation between 1 and 2 loop terms produces a non-trivial FP.
- Perturbative control large N_f , N_c .
- Presumably FP also exist for finite N_f , N_c .
- Conditions on SU(2) and SU(3) representations in [Bond, Hiller, Kowalska & Litim, 2017].

< A I

A class of model

- Group: $SU_c(3) \times SU_L(2) \times U_Y(1)$.
- Add N_f families of vector-like fermions ψ_i minimally coupled to SM and Yukawa interactions with a new scalar S.
- Studies on large N_f have been performed in the past where resummation of corrections at leading order in $1/N_f$ were included [Mann, Meffe, Sannino, Steele, Wang & Zhang, 2017].
- No phenomenological model with satisfactory g_1 or λ behavior [Pelaggi, Plascencia, Salvio, Sannino, Smirnov & Strumi, 2017].
- $\mathcal{L} = \mathcal{L}_{SM} + \operatorname{Tr}(\bar{\psi}i\not\!\!\!D\psi) + \operatorname{Tr}(\partial_{\mu}S^{\dagger}\partial_{\mu}S) y\operatorname{Tr}(\bar{\psi}_{L}S\psi_{R} + \bar{\psi}_{R}S^{\dagger}\psi_{L}).$
- Representation labels $(p,q), \ell, Y$ and N_f .

• Couplings: $(\alpha_1, \alpha_2, \alpha_3, \alpha_t, \alpha_y, \alpha_\lambda)$, where $\alpha_i \equiv \left(\frac{g_i}{4\pi}\right)^2$. and $\alpha_\lambda \equiv \frac{\lambda}{(4\pi)^2}$.

Carlos Nieto

< A >

A promising model

$$\begin{split} N_f &= 3, \ \ell = 1/2, \ Y = 3/2, \ p = q = 0 \\ \alpha_1^* &= 0.188, \ \alpha_2^* = 0, \ \alpha_3^* = 0, \ \alpha_t^* = 0, \ \alpha_y^* = 0.778 \\ \vartheta_1 &= 33.2, \ \vartheta_2 = -3.36, \ \vartheta_3 = -0.817, \ \vartheta_4 = 0, \ \vartheta_5 = 0. \end{split}$$

< @ ►

Another promising model

$$\begin{split} N_{f1} &= 3, \ \ell_1 = 1/2, \ Y_1 = 3/2, \ p_1 = q_1 = 0. \\ N_{f2} &= 8, \ \ell_2 = 2, \ Y_2 = 0, \ p_2 = q_2 = 0. \\ \alpha_1^* &= 0.226, \ \alpha_2^* = 0.193, \ \alpha_3^* = 0, \ \alpha_t^* = 0, \ \alpha_y^* = 0.778, \ \alpha_z^* = 0.534. \\ \vartheta_1 &= 241, \ \vartheta_2 = 24.2, \ \vartheta_3 = -2.85, \ \vartheta_4 = -2.28, \ \vartheta_5 = -1.51, \ \vartheta_6 = 0. \end{split}$$

 ψ_2 contains a DM candidate [Cirelli, Fornengo & Strumia, 2006].

Carlos Nieto

Large critical exponents make the results questionable.

Check models in the 321 approximation scheme.

3-loop beta functions from ([Pickering, Gracey & Jones, 2001], [Mihaila, 2013]).

FP changes dramatically.

Requirements

• Small couplings

$$\alpha_i^* \equiv \left(\frac{g_i^*}{4\pi}\right)^2 < 1.$$

• Small critical exponents

$$\beta_i = -d_i g_i + \beta_i^q(g_j), \ M_{ij} = -d_i \delta_{ij} + \frac{\partial \beta_i^q}{\partial g_j}, \ \text{demand} \ |\vartheta_i| < O(1).$$

- Hierarchy in the loop contributions At the FP $0 = \beta_i = A_*^{(i)} + B_*^{(i)} + C_*^{(i)}$, demand $\rho_i < \sigma_i < 1$ where $\rho_i = |C_*^{(i)}/A_*^{(i)}|$ and $\sigma_i = |B_*^{(i)}/A_*^{(i)}|$.
- CFT data [Dondi, Sannino & Prochazka, 2017] $\langle T^{\mu}_{\mu} \rangle = cW^2 - aE_4 + \cdots$, where $a = a_{free} + a_q$ and $c = c_{free} + c_q$. We demand $|a_q/a_{free}| < 1$ and $|c_q/c_{free}| < 1$.

< 47 >

Theory space

Figure : Theory space of couplings g_i where only 3 axes are shown for simplicity. For a given FP we show the UV safe surface (blue region), the approximated UV critical surface around the FP (white plane), the new set of coordinates z_i , a small region of possible initial points for the flow (red circle) and two UV safe trajectories ending at a given matching scale \mathcal{M} (green and orange dashed lines, the former going to the SM, the latter going to a different IR physics A).

< 69 >

Standard Model matching

- For realistic models, the running to low energies has to match with the SM.
- We start the flow down to the SM at values of the couplings near the FP.
- We define the initial conditions for the couplings as

$$g_i^0 = g_i^* + S_{ij} z_j^0$$
.

• This equation puts strong constraints on the models.

< A

The procedure

Carlos Nieto

October 2018

< @ ►

General FP in 210

	α_1^*	α_2^*	α_3^*	α_t^*	$lpha_y^*$
P_1	0	0	0	0	0
P_2	0	$\alpha_2^*(p,q,\ell)$	$\alpha_3^*(p,q,\ell)$	0	$\alpha_{u}^{*}(p,q,\ell)$
P_3	0	$\alpha_2^{\overline{*}}(p,q,\ell)$	$\alpha_3^{*}(p,q,\ell)$	$\alpha_t^*(p,q,\ell)$	$\alpha_{u}^{*}(p,q,\ell)$
P_4	0	$\alpha_2^{\overline{*}}(p,q,\ell)$	$\alpha_{2}^{\check{*}}(p,q,\ell)$	0	<i>3</i> 0
P_5	0	$\alpha_2^{\sharp}(p,q,\ell)$	$\alpha_3^{\texttt{*}}(p,q,\ell)$	$\alpha_t^*(p, q, \ell)$	0
P_6	$\alpha_1^*(p, q, \ell, Y)$	$\alpha_2^*(p, q, \ell, Y)$	$\alpha_3^*(p, q, \ell, Y)$	0	$\alpha_{u}^{*}(p, q, \ell, Y)$
P_7	$\alpha_1^*(p,q,\ell,Y)$	$\alpha_2^{\overline{*}}(p,q,\ell,Y)$	$\alpha_3^{*}(p,q,\ell,Y)$	$\alpha_t^*(p, q, \ell, Y)$	$\alpha_{y}^{g}(p,q,\ell,Y)$
P_8	0	0	$\alpha_3^*(p,q,\ell)$	$\alpha_t^*(p,q,\ell)$	$\alpha_{u}^{*}(p,q,\ell)$
P_9	0	0	$\alpha^*_3(p,q,\ell)$	0	$\alpha_{y}^{\ddot{*}}(p,q,\ell)$
P_{10}	0	0	$\alpha_3^{*}(p,q,\ell)$	$\alpha_t^*(p,q,\ell)$	0
P_{11}	0	0	$\alpha_3^*(p,q,\ell)$	0	0
P_{12}	$\alpha_1^*(p, q, \ell, Y)$	0	$\alpha_3^*(p, q, \ell, Y)$	0	$\alpha_y^*(p, q, \ell, Y)$
P_{13}	$\alpha_1^*(p, q, \ell, Y)$	0	$\alpha_3^*(p, q, \ell, Y)$	$\alpha_t^*(p, q, \ell, Y)$	$\alpha_{u}^{*}(p, q, \ell, Y)$
P_{14}	$\alpha_1^*(p, q, \ell, Y)$	0	$\alpha_3^*(p, q, \ell, Y)$	0	0
P_{15}	$\alpha_1^*(p,q,\ell,Y)$	0	$\alpha_3^*(p,q,\ell,Y)$	$\alpha_t^*(p, q, \ell, Y)$	0
P_{16}	0	$\alpha_2^*(p,q,\ell)$	0	0	$\alpha_y^*(p,q,\ell)$
P_{17}	0	$\alpha_2^*(p,q,\ell)$	0	$\alpha_t^*(p,q,\ell)$	$\alpha_y^*(p,q,\ell)$
P_{18}	0	$\alpha_2^*(p,q,\ell)$	0	0	0
P_{19}	0	$\alpha_2^*(p,q,\ell)$	0	$\alpha^*_t(p,q,\ell)$	0
P_{21}	$\alpha_1^*(p, q, \ell, Y)$	0	0	0	0
P_{22}	$\alpha_1^{\uparrow}(p,q,\ell,Y)$	0	0	$\alpha_t^{\star}(p,q,\ell,Y)$	0
P_{23}	$\alpha_1^*(p,q,\ell,Y)$	0	0	$\alpha_t^{\uparrow}(p,q,\ell,Y)$	$\alpha_y^*(p,q,\ell,Y)$
P_{24}	$\alpha_1^*(p,q,\ell,Y)$	0	0	0	$\alpha_y^*(p, q, \ell, Y)$
P_{25}	$\alpha_1^*(p, q, \ell, Y)$	$\alpha_2^*(p,q,\ell,Y)$	0	0	$\alpha_y^*(p, q, \ell, Y)$
P_{26}	$\alpha_1^*(p, q, \ell, Y)$	$\alpha_2^*(p, q, \ell, Y)$	0	$\alpha_t^*(p, q, \ell, Y)$	$\alpha_y^*(p, q, \ell, Y)$
P_{28}	$\alpha_1^*(p, q, \ell, Y)$	$\alpha_2^*(p,q,\ell,Y)$	0	0	- 0
P_{29}	$\alpha_1^*(p, q, \ell, Y)$	$\alpha_2^*(p,q,\ell,Y)$	0	$\alpha_t^*(p,q,\ell,Y)$	0
P_{30}	$\alpha_1^*(p, q, \ell, Y)$	$\alpha_2^*(p, q, \ell, Y)$	$\alpha_3^*(p, q, \ell, Y)$	0	0
P_{31}	$\alpha_1(p,q,\ell,Y)$	$\alpha_2(p, q, \ell, Y)$	$\alpha_3(p, q, \ell, Y)$	$\alpha_{t}^{\uparrow}(p,q,\ell,Y)$	0

< @ ►

Singlet of SU(3)

Figure : Distribution of the largest eigenvalues ϑ_{\max} of the stability matrix of the FPs of the colorless models. Blue dots: eigenvalues for the Y-independent solutions: there is a gap between 2.21 and 62.6. Red dots: eigenvalues for the Y-dependent solutions: there is no gap, the eigenvalues start around 10.

Behavior of eigenvalues

Figure : Behaviour of a given eigenvalue $|\vartheta|$ as a function of N_f for several values of ℓ in the colorless case. The scaling dimension increases very fast with N_f , and only small values of N_f , ℓ produce $|\vartheta| < O(1)$.

< 69 >

FP in 210 for the singlet case

(N_f, ℓ)	α_1^*	$lpha_2^*$	α_3^*	$lpha_t^*$	$lpha_y^*$	ϑ_1		ρ_2
$(1, \frac{1}{2})$	0	0.200	0	0	0.300	2.04	P_{16}	3.97
-	0	0.213	0	0.106	0.319	2.21	P_{17}	4.33
	0	0.179	0	0	0	-1.61	P_{18}	3.28
	0	0.189	0	0.0943	0	-1.70	P_{19}	3.53
(1, 1)	0	0.0137	0	0	0.0411	0.333	P_{16}	0.194
	0	0.0140	0	0.0070	0.0420	0.341	P_{17}	0.198
	0	0.0103	0	0	0	-0.247	P_{18}	0.0963
	0	0.0105	0	0.0052	0	-0.251	P_{19}	0.0973
$(2, \frac{1}{2})$	0	0.104	0	0	0.117	1.0833	P_{16}	1.71
-	0	0.108	0	0.0542	0.122	1.14	P_{17}	1.81
	0	0.0827	0	0	0	-0.744	P_{18}	1.19
	0	0.0856	0	0.0428	0	-0.770	P_{19}	1.23
$(3, \frac{1}{2})$	0	0.0525	0	0	0.0472	0.530	P_{16}	0.763
-	0	0.0543	0	0.0272	0.0489	0.552	P_{17}	0.794
	0	0.0385	0	0	0	-0.346	P_{18}	0.471
	0	0.0394	0	0.0197	0	-0.355	P_{19}	0.483
$(4, \frac{1}{2})$	0	0.0189	0	0	0.0141	0.179	P_{16}	0.246
_	0	0.0194	0	0.0097	0.0146	0.185	P_{17}	0.253
	0	0.0130	0	0	0	-0.117	P_{18}	0.141
	0	0.0132	0	0.0066	0	-0.119	P_{19}	0.143

Table : Set of FPs and eigenvalues for colorless vector-like fermions in the 210 approximation scheme. We highlight in green the FPs that appear also in the 321 approximation. We show in the last column the ratio ρ_2 knowing that in 210 $A_*^{(2)} = B_*^{(2)}$.

FP in 321 for the singlet case

(N_f, l)	α_1^*	$lpha_2^*$	α_3^*	α_t^*	α_y^*	$lpha^*_\lambda$	ϑ_1	σ_2	ρ_2
(1, 1)	0	0.0096	0	0.0048	0	0.0039	-0.244	0.918	0.0821
	0	0.0119	0	0.0060	0.0343	0.0048	0.301	0.8601	0.140
$(2, \frac{1}{2})$	0	0.0498	0	0.0259	0	0.0211	-0.592	0.581	0.418
-	0	0.0567	0	0.0296	0.0734	0.0242	0.696	0.5012	0.499
$(3, \frac{1}{2})$	0	0.0291	0	0.0148	0	0.0120	-0.306	0.737	0.263
	0	0.0362	0	0.0184	0.0353	0.0150	0.403	0.645	0.354
$(4, \frac{1}{2})$	0	0.0117	0	0.0059	0	0.0048	-0.112	0.887	0.113
	0	0.0162	0	0.0081	0.0125	0.0066	0.161	0.823	0.177

Table : Fixed points and eigenvalues for colorless vector-like fermions in the 321 approximation scheme. The last two columns give the values of the ratios σ_2 and ρ_2 .

Fundamental representation of SU(3)

Figure : Distribution of the largest eigenvalues ϑ_{\max} of the stability matrix of the FPs of the SU(3) fundamental representation. Blue dots: eigenvalues for the Y-independent solutions: there is a gap between 10.8 and 372. Red dots: eigenvalues for the Y-dependent solutions: there is no gap, the eigenvalues start at 52.1.

FP in 210 for the fundamental representation

(N_f, l)	α_1^*	α_2^*	$lpha_3^*$	$lpha_t^*$	α_y^*	ϑ_1		ρ
$(1, \frac{1}{2})$	0	0.0411	0	0	0.0264	0.378	P_{16}	0.522
-	0	0.0422	0	0.0211	0.0271	0.389	P_{17}	0.537
	0	0.0385	0	0	0	-0.346	P_{18}	0.471
	0	0.0394	0	0.0197	0	-0.355	P_{19}	0.483
(1, 1)	0	0	0.417	0	0	-6.67	P_{11}	20.9
	0	0	0.521	0	0.417	10.8	P_9	31.8
$(1, \frac{3}{2})$	0	0	0.176	0	0	-2.81	P_{11}	5.45
-	0	0	0.205	0.365	0	3.84	P_{10}	7.21
	0	0	0.195	0	0.120	3.49	P_9	6.60
	0	0	0.232	0.413	0.143	4.83	P_8	9.06
(1, 2)	0	0	0.0982	0	0	-1.57	P_{11}	2.42
	0	0	0.108	0.193	0	1.88	P_{10}	2.88
	0	0	0.105	0	0.0526	1.78	P_9	2.73
	0	0	0.117	0.208	0.0586	2.15	P_8	3.30
$(1, \frac{5}{2})$	0	0	0.0600	0	0	-0.960	P_{11}	1.27
_	0	0	0.0646	0.115	0	1.08	P_{10}	1.44
	0	0	0.0632	0	0.0266	1.04	P_9	1.39
	0	0	0.0683	0.121	0.0288	1.18	P_8	1.59
(1, 3)	0	0	0.0412	0.0733	0.0150	0.689	P_8	0.839
	0	0	0.0388	0	0.0141	0.632	P_9	0.758
	0	0	0.0395	0.0702	0	0.647	P_{10}	0.778
	0	0	0.0372	0	0	-0.596	P_{11}	0.707

Table : Fixed points and eigenvalues for vector-like fermions in the fundamental representation of $SU_c(3)$, in the 210 approximation scheme, with $N_f = 1$. We highlight in green the FPs that appear also in the 321 approximation scheme. The last column gives the values of the ratio ρ for α_2 or α_3 depending on the case.

FP in 210 for the fundamental representation

(N_f, l)	α_1^*	α_2^*	α_3^*	$lpha_t^*$	$lpha_y^*$	ϑ_1		ρ
$(1, \frac{7}{2})$	0	0	0.0221	0	0	-0.354	P_{11}	0.384
~~	0	0	0.0232	0.0413	0	0.376	P_{10}	0.415
	0	0	0.0229	0	0.0073	0.370	P_9	0.406
	0	0	0.0241	0.0428	0.0077	0.394	P_8	0.441
(1, 4)	0	0	0.0114	0	0	-0.182	P_{11}	0.182
	0	0	0.0118	0.0210	0	0.191	P_{10}	0.195
	0	0	0.0117	0	0.0033	0.188	P_9	0.191
	0	0	0.0122	0.0217	0.0035	0.197	P_8	0.205
$(1, \frac{9}{2})$	0	0	0.0033	0	0	-0.0530	P_{11}	0.0495
Ĩ	0	0	0.0034	0.0061	0	0.0550	P_{10}	0.0523
	0	0	0.0034	0	0.0009	0.0544	P_9	0.0516
	0	0	0.0035	0.0063	0.0009	0.0566	P_8	0.0547
$(2, \frac{1}{2})$	0	0	0.176	0	0	-2.81	P_{11}	5.45
-	0	0	0.205	0.365	0	3.84	P_{10}	7.21
	0	0	0.260	0	0.260	5.91	P_9	11.1
	0	0	0.330	0.588	0.330	8.99	P_8	17.4
(2, 1)	0	0	0.0600	0	0	-0.960	P_{11}	1.27
	0	0	0.0646	0.115	0	1.08	P_{10}	1.44
	0	0	0.0727	0	0.0529	1.30	P_9	1.77
	0	0	0.0795	0.141	0.0578	1.50	P_8	2.07

Table : Fixed points and eigenvalues for vector-like fermions in the fundamental representation of $SU_c(3)$, in the 210 approximation scheme. We highlight in green the FPs that appear also in the 321 approximation scheme. The last column gives the values of the ratio ρ_3 .

FP in 210 for the fundamental representation

(N_f, l)	α_1^*	α_2^*	α_3^*	α_t^*	α_y^*	ϑ_1		ρ
$(2, \frac{3}{2})$	0	0	0.0221	0	0	-0.354	P_{11}	0.384
-	0	0	0.0232	0.0413	0	0.376	P_{10}	0.415
	0	0	0.0252	0	0.0144	0.417	P_9	0.475
	0	0	0.0266	0.0473	0.0152	0.448	P_8	0.520
(2, 2)	0	0	0.0033	0	0	-0.0530	P_{11}	0.0495
	0	0	0.0034	0.0061	0	0.0550	P_{10}	0.0523
	0	0	0.0036	0	0.0017	0.0587	P_9	0.0579
	0	0	0.0038	0.0068	0.0018	0.0612	P_8	0.0616
$(3, \frac{1}{2})$	0	0	0.0600	0	0	-0.960	P_{11}	1.27
-	0	0	0.0646	0.115	0	1.08	P_{10}	1.44
	0	0	0.0882	0	0.0784	1.77	P_9	2.47
	0	0	0.0985	0.175	0.0876	2.10	P_8	3.01
(3, 1)	0	0	0.0114	0	0	-0.182	P_{11}	0.182
	0	0	0.0118	0.0210	0	0.191	P_{10}	0.195
	0	0	0.0143	0	0.0095	0.237	P_9	0.264
	0	0	0.0150	0.0267	0.0100	0.252	P_8	0.288
$(4, \frac{1}{2})$	0	0	0.0221	0	0	-0.354	P_{11}	0.384
-	0	0	0.0232	0.0413	0	0.376	P_{10}	0.415
	0	0	0.0335	0	0.0268	0.607	P_9	0.763
	0	0	0.0361	0.0642	0.0289	0.670	P_8	0.866
$(5, \frac{1}{2})$	0	0	0.0033	0	0	-0.0530	P_{11}	0.0495
2	0	0	0.0343	0.0061	0	0.0550	P_{10}	0.0523
	0	0	0.0052	0	0.0038	0.0850	P_9	0.1010
	0	0	0.0055	0.0097	0.0040	0.0903	P_8	0.111

Table : Fixed points and eigenvalues for vector-like fermions in the fundamental representation of $SU_c(3)$, in the 210 approximation scheme. We highlight in green the FPs that appear also in the 321 approximation scheme. The last column gives the values of the ratio ρ_3 .

< 69 >

FP in 321 for the fundamental representation

(N_f, l)	α_1^*	$lpha_2^*$	$lpha_3^*$	$lpha_t^*$	α_y^*	$lpha^*_\lambda$	ϑ_1	σ	ρ
$(1, \frac{1}{2})$	0	0.0291	0	0.0148	0	0.0120	-0.306	0.737	0.263
-	0	0.0305	0	0.0155	0.0209	0.0126	0.322	0.719	0.281
$(1, \frac{5}{2})$	0	0	0.0346	0	0	0	-0.748	0.577	0.423
	0	0	0.0355	0	0.0167	0	-0.774	0.559	0.441
(1, 3)	0	0	0.0252	0	0	0	-0.501	0.676	0.323
	0	0	0.0258	0	0.0101	0	-0.516	0.664	0.336
$(1, \frac{7}{2})$	0	0	0.0171	0	0	0	-0.315	0.771	0.228
-	0	0	0.0177	0.0358	0	0.0221	0.969	0.758	0.242
	0	0	0.0175	0	0.0058	0	-0.324	0.763	0.237
	0	0	0.0182	0.0368	0.0061	0.0227	0.998	0.748	0.252
(1, 4)	0	0	0.098	0	0	0	-0.170	0.864	0.136
	0	0	0.0102	0.0193	0	0.0119	0.521	0.856	0.144
	0	0	0.0101	0	0.0029	0	-0.175	0.859	0.141
	0	0	0.0104	0.0198	0.0030	0.0123	0.536	0.8505	0.149
$(1, \frac{9}{2})$	0	0	0.0032	0	0	0	-0.0519	0.955	0.0451
	0	0	0.0033	0.0059	0	0.0037	0.159	0.952	0.0476
	0	0	0.0032	0	0.0008	0	-0.0532	0.953	0.0469
	0	0	0.0033	0.0061	0.0009	0.00038	0.1635	0.9505	0.0495

Table : Fixed points and eigenvalues for vector-like fermions in the fundamental representation of $SU_c(3)$, in the 321 approximation scheme. The last two columns give the values of the ratio σ and ρ for α_2 or α_3 depending on the case.

FP in 321 for the fundamental representation

(N_f, l)	α_1^*	α_2^*	$lpha_3^*$	α_t^*	α_y^*	α^*_λ	ϑ_1	σ	ρ
(2, 1)	0	0	0.346	0	0	0	-0.748	0.577	0.423
	0	0	0.0381	0	0.0319	0	-0.846	0.5077	0.492
$(2, \frac{3}{2})$	0	0	0.0171	0	0	0	-0.315	0.771	0.228
-	0	0	0.0177	0.0358	0	0.0221	0.969	0.758	0.242
	0	0	0.0187	0	0.0113	0	-0.350	0.737	0.263
(2, 2)	0	0	0.0032	0	0	0	-0.0519	0.955	0.0451
	0	0	0.0033	0.0059	0	0.0037	0.159	0.952	0.0476
	0	0	0.0035	0	0.0016	0	-0.0570	0.948	0.0521
	0	0	0.0036	0.0065	0.0017	0.0040	0.1756	0.945	0.552
$(3, \frac{1}{2})$	0	0	0.0346	0	0	0	-0.748	0.577	0.423
	0	0	0.0417	0	0.0440	0	-0.950	0.431	0.569
(3, 1)	0	0	0.0098	0	0	0	-0.170	0.864	0.136
	0	0	0.0102	0.0193	0	0.119	0.521	0.856	0.144
	0	0	0.0118	0	0.0081	0	0.208	0.819	0.181
	0	0	0.0123	0.0237	0.0085	0.0147	0.641	0.8062	0.194
$(4, \frac{1}{2})$	0	0	0.0171	0	0	0	-0.315	0.771	0.228
_	0	0	0.0177	0.0358	0	0.0221	0.969	0.758	0.242
	0	0	0.0226	0	0.0196	0	0.439	0.647	0.353
$(5, \frac{1}{2})$	0	0	0.0033	0	0	0	-0.0519	0.955	0.0451
-	0	0	0.0033	0.0059	0	0.0037	0.159	0.952	0.0476
	0	0	0.0048	0	0.0035	0	0.0798	0.914	0.0859
	0	0	0.0050	0.0092	0.0037	0.0057	0.248	0.9066	0.0934

Table : Fixed points and eigenvalues for vector-like fermions in the fundamental representation of $SU_c(3)$, in the 321 approximation scheme. The last two columns give the values of the ratio σ_3 and ρ_3 .

< 🗇 >

Adjoint representation of SU(3)

Figure : Distribution of the largest eigenvalue ϑ_{\max} of the stability matrix of the FPs of the SU(3) adjoint representation. Blue: eigenvalues for the Y-independent solutions. Red: eigenvalues for the Y-dependent solutions. In both cases, there is no gap and the eigenvalues start at very large values.

- A systematic scan of possible extensions of the SM based on vector-like fermions shows that there are no UV perturbative FPs that can be connected to the *TeV* physics.
- Most of the FPs that appear in the 210 approximation scheme are difficult to identify when probed in the 321 approximation scheme. Those that seem to be present in both schemes are affected by the triviality problem.
- The same applies to other models appearing in the literature.
- Either use non-perturbative tools, or consider other models (e.g., GUT, gravity+matter).

< A 1