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The concordance model of (late-time) cosmology 

✦ assuming validity of General Relativity plus homogeneity and isotropy, the background 

evolution is governed by the Friedmann equations 

these can be solved once the energy content is defined: 
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By combining the GR field equation (Equation (15)) and the definition of the metric (Equation (31)),
we obtain two independent Einstein equations, known as the Friedmann equations:
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The Friedmann equations relate the total density r of the universe, including all contributions,
to its global geometry. There exists a critical density rc for which k = 0. By rearranging the Friedmann
equation and using the definition of the Hubble parameter we then obtain

rc(t) =
3H2(t)

8pG
. (36)

A universe whose density is above this value will have a positive curvature, that is, it will be
spatially closed (k = +1); one whose density is less than or equal to this value will be spatially open
(k = 0 or k = �1).

A dimensionless density parameter for any fluid component of the universe (i.e., a component
for whose gravitational field is produced entirely by the mass, momentum, and stress density) can be
defined by

W(t) =
r(t)
rc(t)

=
8pGr(t)
3H2(t)

. (37)

The current value of the density parameter is denoted W0.
Subtracting Equation (34) from Equation (35) yields the acceleration equation:
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The geodesic Equation (12) allows us to compute the evolution in time of the energy and
momentum of the various components particles which make up the universe. From this evolution,
we can construct the fluid equation, or continuity equation, which describes the relation between the
density and pressure:
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ȧ
a

⇣
r +

p
c2

⌘
= 0 . (39)

This is valid for any fluid component of the universe, such as baryonic and nonbaryonic matter,
or radiation.

The foundations of the Concordance Model of cosmology depend on General Relativity.
Any modification to the theory that changes the Einstein equations will have solutions that differ
from the Friedmann equations.

The FLRW universe contains different mass-energy components which are assumed to evolve
independently. This is physically valid at late cosmological times, when the components are decoupled,
so the density evolutions are distinct. In Table 2, we give the equation of state and the evolution of
the density and scale factor for different components of the universe. The quantities in this table are
explained in detail in the following sections.
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The geodesic Equation (12) allows us to compute the evolution in time of the energy and
momentum of the various components particles which make up the universe. From this evolution,
we can construct the fluid equation, or continuity equation, which describes the relation between the
density and pressure:
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This is valid for any fluid component of the universe, such as baryonic and nonbaryonic matter,
or radiation.

The foundations of the Concordance Model of cosmology depend on General Relativity.
Any modification to the theory that changes the Einstein equations will have solutions that differ
from the Friedmann equations.

The FLRW universe contains different mass-energy components which are assumed to evolve
independently. This is physically valid at late cosmological times, when the components are decoupled,
so the density evolutions are distinct. In Table 2, we give the equation of state and the evolution of
the density and scale factor for different components of the universe. The quantities in this table are
explained in detail in the following sections.
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6. The Components and Geometry of the Universe and Cosmic Expansion

How do we relate the expansion of the universe to its contents? The total density of the universe
in terms of its constituent components can be written as the sum of the densities of these components
at any given time or scale factor:

r = rm + rrad + rDE , (46)

where the subscript “DE” denotes another component of the universe, called Dark Energy.

Figure 2. The density evolution of the main components of the universe. The early universe was
radiation-dominated, until the temperature dropped enough for matter density to being to dominate.
The energy density of dark energy is constant if its equation of state parameter w = 1. Because the
matter energy density drops as the scale factor increased, dark energy began to dominate in the recent
past. At the present time (a(t) = 1), we live in a universe dominated by dark energy. For dark
energy, the green band represents an equation of state parameter w = �1 ± 0.2, showing how a small
change in the value of this parameter can give very different evolution histories for dark energy. If the
Concordance Model is correct, the universe will be completely dominated by dark energy in future
epochs (shown by the dashed lines). The matter density will keep decreasing as the universe expands.
Our Milky Way will merge with the Andromeda Galaxy, and eventually, the entire Local Group will
coalesce into one galaxy. The luminosities of galaxies will begin to decrease as the stars run out of
fuel and the supply of gas for star formation is exhausted. In the very far future, this galaxy will be in
the only one in our Hubble patch, as all the other galaxies will pass behind the cosmological horizon.
The night sky, save for the stars in the Local Group, will be very dark indeed. Stellar remnants will
either escape galaxies or fall into the central supermassive black hole. Eventually, baryonic matter
may disappear altogether as all nucleons including protons decay, or all matter may decay into iron.
In either scenario, the universe will end up being dominated by black holes, which will evaporate
by Hawking radiation. The end result is a Dark Era with an almost empty universe, and the entire
universe in an extremely low energy state, with a possible heat death as entropy production ceases
(see, e.g., [149,150]) What happens after that is speculative.
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The geodesic Equation (12) allows us to compute the evolution in time of the energy and
momentum of the various components particles which make up the universe. From this evolution,
we can construct the fluid equation, or continuity equation, which describes the relation between the
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ṙ + 3
ȧ
a

⇣
r +

p
c2

⌘
= 0 . (39)

This is valid for any fluid component of the universe, such as baryonic and nonbaryonic matter,
or radiation.

The foundations of the Concordance Model of cosmology depend on General Relativity.
Any modification to the theory that changes the Einstein equations will have solutions that differ
from the Friedmann equations.

The FLRW universe contains different mass-energy components which are assumed to evolve
independently. This is physically valid at late cosmological times, when the components are decoupled,
so the density evolutions are distinct. In Table 2, we give the equation of state and the evolution of
the density and scale factor for different components of the universe. The quantities in this table are
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Observational evidence for the vacuum energy density 

✦ the amount of vacuum energy density was originally inferred 

from the distance-luminosity relation of supernovae 

✦ nowadays we combine also measurements of the 

cosmic microwave background and large scale galaxy 

correlations (baryon acoustic oscillations) 

  

   

0.0 0.5 1.0 1.5 2.0 2.5
ΩM

-1

0

1

2

3

Ω
Λ

68.3%

95
.4%

95.4%

99
.7%

99
.7%

99
.7%

No B
ig 

Ban
g

Ω
tot =1

Expands to Infinity

Recollapses ΩΛ=0
Open

Closed

Accelerating

Decelerating

q0=0

q0=-0.5

q0=0.5

^

 

 

 

 

 

 

 

 

 

 

 

 

∆m15(B)

FIGURE 3. Left panel (a): Discovery data: Hubble diagram of SNe Ia measured by the SCP and HZT.
Bottom panel shows residuals in distance modulus relative to an open universe with Ω0 = Ωm = 0.3.
Figure adapted from [30, 31], based on [1, 2]. Right panel (b): constraints on Ωm and ΩΛ from the HZT
data [1].

FIGURE 4. CMB temperature anisotropy angular power spectrum measurements from WMAP, Acbar,
Boomerang, and CBI. From Dunkley et al. [32].

•see e.g. review by Frieman - arXiv:0904.1833
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FIGURE 6. Left panel (a): recent constraints from SNe, CMB anisotropy (WMAP5), and large-scale
galaxy correlations (SDSS BAO) upon the cosmological parameters w,Ωm (for a flat Universe with
constant w); Right panel (b): constraints uponΩm andΩΛ for the cosmological constant model (w= −1).
Statistical errors only are shown. From Kowalski et al. [40].

CONTINUING EVIDENCE FOR COSMIC ACCELERATION

While CMB and LSS measurements independently strengthened the evidence for an
accelerating Universe, subsequent supernova observations have reinforced the original
results, and new evidence has accrued from other observational probes. Here we briefly
review these recent developments and discuss the current status of our knowledge of
dark energy.

Recent Supernova Observations

A number of concerns were raised about the robustness of the first SN evidence for
acceleration, e.g., it was suggested that distant SNe could appear fainter due to extinction
by hypothetical grey dust rather than acceleration [41, 42]. Over the intervening decade,
the supernova evidence for acceleration has been strengthened by results from a series
of SN surveys. Observations with the Hubble Space Telescope (HST) have provided
high-quality light curves [43] and have extended SN measurements to redshift z ≃ 1.8,
providing evidence for the expected earlier epoch of deceleration and disfavoring dust
extinction as an alternative explanation to acceleration [44, 45, 46].
Two large ground-based surveys, the Supernova Legacy Survey (SNLS) [47] and the
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The absolute and apparent magnitudes are logarithmic measures of luminosity
and flux: Mj = −2.5log(Lj) + c1, mi = −2.5log( fi) + c2, where i( j) denotes the
observed(rest-frame) passband. Luminosity distance measurements are then conve-
niently given in terms of the distance modulus,

µ ≡ mi−Mj = 2.5log(Lj/ fi) = 5log[H0dL(z;Ωm,ΩDE ,w(z))]−5logH0+Ki j(z) ,
(20)

where Ki j is the redshift-dependent K-correction that accounts for the redshifting be-
tween the observed and emitted passbands and depends upon the spectral energy distri-
bution of the source. For a population of standard candles (fixedMj) with known spectra
(Ki j), measurements of µ vs. z, the Hubble diagram, constrain cosmological parameters.
The parameter dependence of the distance vs. redshift is shown in the left panel of Fig.
2. The right panel shows the comoving volume element, d2V/dzdΩ= r2(z)/H(z).
If Mj is known, then from measurement of mi and knowledge of the spectrum we

can infer the absolute distance to an object at redshift z; we can thereby determine
H0, since dL ≃ cz/H0 for z ≪ 1. If Mj is unknown, then from measurement of mi
we can infer the distance to an object at redshift z1 relative to an object at redshift
z2, m1−m2 = 5log(d1/d2) +K1−K2. For supernovae, we typically measure relative
distances, using low-redshift supernovae to vertically anchor the Hubble diagram, i.e.,
to approximately determine the quantityM−5logH0.

SN Discovery

The recognition in the 1990’s that supernovae are standardizable candles, together
with the availability of large mosaic CCD cameras on 4-meter class telescopes, stim-
ulated two teams, the Supernova Cosmology Project (SCP) and the High-z SN Search
Team (HZT), to measure the SN Ia Hubble diagram to much larger distances than was
previously possible. Based on samples of tens of objects, both teams found that distant
SNe are ∼ 0.25 mag dimmer than they would be in a decelerating Universe, indicat-
ing that the expansion has been speeding up for the past 5 Gyr [1, 2]; a compilation of
the discovery data from the two teams is shown in Fig. 3a. Initially, these results were
interpreted in terms of the cosmological constant model, Fig. 3b, using Eqn. 17. The
constraint region delineates the values of the parameters Ωm,ΩΛ which combine to give
similar luminosity distance estimates to z∼ 0.5. The results are also often interpreted in
terms of the flat, constant w model of Eqn. 19, as shown in Fig. 6 below.

Cosmic Microwave Background Anisotropy

The second important piece of evidence in favor of cosmic acceleration came from
the CMB anisotropy. As noted above, the CMB carries the imprint of processes in the
photon-baryon fluid around the time of recombination, when the photons last scattered
with baryons, at zls = 1089. CMBmaps, such as those made most recently by theWilkin-
sonMicrowave Anisotropy Probe (WMAP), show the strongest temperature fluctuations
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FIGURE 2. Left: Distance vs. redshift in a flat Universe with different values of the cosmological
parameters Ωm and w. Right: volume element vs. redshift for same models. From Frieman et al. [13].

where Ωk = 1−Ω0 = 1−Ωm−ΩDE . For a general dark energy model with equation of
state parameter w(z), the Hubble expansion rate can be written as

H2(z)
H2

0
=Ωm(1+ z)3 +ΩDE exp

[

3
∫

(1+w(z))d ln(1+ z)
]

+Ωk(1+ z)2 . (15)

For the case of the cosmological constant, w= −1, this can be rewritten as
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and the luminosity distance becomes
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)

.

(17)
Another important special case is a flat Universe (Ωk = k= 0) and dark energy with w=
constant, independent of redshift. In this case,

H2(z)
H2

0
= (1−ΩDE)(1+ z)3 +ΩDE(1+ z)3(1+w) , (18)

and the luminosity distance is given by

dL(z;ΩDE ,w) = χ(1+ z) =
1+ z
H0

∫ 1+ΩDE [(1+ z)3w−1]−1/2

(1+ z)3/2 dz . (19)

Note that the product H0dL is independent of the Hubble parameter H0.

picture from the 1998 discovery of accelerated expansion  (Nobel prize 2011) 

The Supernova Cosmology Project and The High-z Supernova Search Team

in flat universe:
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Gravitational action of very-late-time cosmology 

✦ observations are compatible with a universe whose expansion was accelerating during the last 

5 Gyrs (i.e. since redshift z~0.5) 

✦ the recent history of the universe can thus be encoded in the gravitational action including a 

cosmological constant (matter is sub-dominant) 

✦ the parameter Λ is deduced from the observational constraints: 
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Cosmology of very early times - inflation 
✦ observations of the Cosmic Microwave Background are consistent* with another epoch 

of accelerated expansion at early times (inflation) 

    

   

✦ the simplest (and oldest) model adds higher-order curvature terms to the Einstein-Hilbert 

action  (Starobinsky inflation - 1980) 

   this can also be written as the Higgs inflation model 

to have a mechanisms that drives this acceleration and 

then switches off to leave room for standard cosmological 

evolution requires to go beyond GR 
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Energy scale (eV) RG constraint

k � MP = 2.4⇥ 1027 NGFP

k ' kinfl = 1022 Bk ' Binfl = �6.7⇥ 10�39 eV�2

k ' klab = 10�5 Gk ' G = 6.7⇥ 10�57 eV�2

k ' kHub = 10�33 ⇤k ' ⇤ = 4⇥ 10�66 eV2

Table 2: Constraints on the f(R) action parameters in the RG framework at various scales.
The observational constraints are the same as in table 1. Moreover, we require that beyond
the (reduced) Planck scale MP ⌘ (8⇡G)�1/2, the RG flows towards a non-Gaussian fixed
point (NGFP).

phase diagram of the R2-model. In section 4 we impose the observational constraints on
the RG flow, and show that there indeed exists a RG trajectory satisfying all of them. The
main body of the paper concludes with a discussion of the implications of these results.
Technical details on converting f(R)-type Lagrangians to the Einstein frame and the �-
functions underlying the analysis obtained in [38] have been relegated to appendix A and
appendix B, respectively.

2 Observational constraints on gravity

The overall goal of this work is the construction of an RG trajectory passing through all
points listed in table 2. In this section we start by deriving the values of the couplings at the
corresponding energy scales based on cosmological observations made over di↵erent distance
scales.

At this stage the following introductory remark is in order. Table 2 may suggest that
only one parameter is constrained at each given energy scale. The derivation of these val-
ues assumes that the other parameters take “reasonable values” at the specified scale (the
meaning of this will be made precise below when discussing the individual constraints). In
particular, it is assumed that Newton’s coupling Gk does not run significantly between in-
flationary scales and the laboratory scales where it is currently measured. Denoting the
laboratory value of Newton’s constant by G, we introduce the reduced Planck mass MP by
the standard relation

MP = (8⇡G)�1/2 = 2.4⇥ 1027 eV . (2.1)

At this stage we adopt these properties as a working hypothesis. Once a viable RG trajectory
is found, we can check a posteriori that these working assumptions are indeed met.

2.1 Observational constraints from primordial cosmology

Assuming that the inflationary phase in the early universe originates from the R2-term
(Starobinsky inflation), the parameter B can be constrained by early time cosmological
observations. In the context of primordial cosmology, it is generally assumed that the en-
ergy density of matter and of the cosmological constant are negligible, meaning that these
components do not influence the background dynamics significantly. We take as a working
assumption that the RG flow of the cosmological constant is such that it does not spoil this
approximation and the contribution of ⇤kinfl to the early universe dynamics can be considered
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Inflation - observational constraints 

✦ Starobinsky inflation is currently one of the best-fitting inflationary models when compared 
to observations of the CMB 

✦ this is quite remarkable given that this is a ‘zero parameter’ model:  

   the only free parameter B is determined by the amplitude of the primordial power spectrum 

  the other observables are only linked to the properties of the subsequent reheating phase  

A&A 594, A20 (2016)

Fig. 12. Marginalized joint 68% and 95% CL regions for ns and r at k = 0.002 Mpc�1 from Planck compared to the theoretical predictions of
selected inflationary models. Note that the marginalized joint 68% and 95% CL regions have been obtained by assuming dns/dln k = 0.

(Starobinsky 1980). No-scale supergravity (Ellis et al. 2013a),
the large-field regime of superconformal D-term inflation
(Buchmüller et al. 2013), or recent developments in minimal su-
pergravity (Farakos et al. 2013; Ferrara et al. 2013b) can lead
to a generalization of the potential in Eq. (55) (see Ketov &
Starobinsky 2011 for a previous embedding of R2 inflation in
F(R) supergravity). The potential in Eq. (55) can also be gener-
ated by spontaneous breaking of conformal symmetry (Kallosh
& Linde 2013b). This inflationary model has ��2 ⇡ 0.8 (0.3)
larger than the base ⇤CDM model with no tensors for wint = 0
(for wint allowed to vary). We obtain 54 < N⇤ < 62 (53 < N⇤ <
64) at 95% CL for wint = 0 (for wint allowed to vary), compati-
ble with the theoretical prediction, N⇤ = 54 (Starobinsky 1980;
Vilenkin 1985; Gorbunov & Panin 2011).

↵ attractors

We now study two classes of inflationary models motivated by
recent developments in conformal symmetry and supergravity
(Kallosh et al. 2013). The first class has been motivated by con-
sidering a vector rather than a chiral multiplet for the inflaton in
supergravity (Ferrara et al. 2013a) and corresponds to the poten-
tial (Kallosh et al. 2013)
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To lowest order in the slow-roll approximation, these models
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3↵ � p6↵x)/4. The relation between N and �
can be inverted through the use of the Lambert functions, as car-
ried out for other potentials (Martin et al. 2014). By sampling

log10(↵2) with a flat prior over [0, 4], we obtain log10(↵2) < 1.7
(2.0) at 95% CL and a Bayes factor of �1.8 (�2) for wint = 0 (for
wint allowed to vary).

The second class of models has been called super-conformal
↵ attractors (Kallosh et al. 2013) and can be understood as orig-
inating from a di↵erent generating function with respect to the
first class. This second class is described by the following poten-
tial (Kallosh et al. 2013):
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This is the simplest class of models with spontaneous breaking
of conformal symmetry, and for ↵ = m = 1 reduces to the origi-
nal model introduced by Kallosh & Linde (2013b). The potential
in Eq. (57) leads to the following slow-roll predictions (Kallosh
et al. 2013):

r ⇡ 48↵m
4mN2 + 2Ng(↵,m) + 3↵m

, (58)

ns � 1 ⇡ � 8mN + 6↵m + 2g(↵,m)
4mN2 + 2Ng(↵,m) + 3↵m

, (59)

where g(↵,m) =
p

3↵(4m2 + 3↵). The predictions of this second
class of models interpolate between those of a large-field chaotic
model, V(�) / �2m, for ↵ � 1 and the R2 model for ↵ ⌧ 1.

For ↵ we adopt the same priors as for the previous class in
Eq. (56). By fixing m = 1, we obtain log10(↵2) < 2.3 (2.5) at
95% CL and a Bayes factor of �2.3 (�2.2) for wint = 0 (when
wint is allowed to vary). When m is allowed to vary as well with
a flat prior in the range [0, 2], we obtain 0.02 < m < 1 (m < 1)
at 95% CL for wint = 0 (when wint is allowed to vary).
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We discuss hybrid inflationary models predicting ns < 1 sep-
arately. As an example, the spontaneously broken SUSY model
(Dvali et al., 1994)

U(�) = ↵h⇤
4 ln

 

�

µ

!

(42)

predicts ns � 1 ⇡ �(1 + 3↵h/2)/N⇤ and r ⇡ 8↵h/N⇤. For ↵h ⌧ 1
and N⇤ ⇡ 50, ns ⇡ 0.98 is disfavoured by Planck+WP+BAO
data at more than 95% CL. However, more permissive entropy
generation priors allowing N⇤ < 50 or a non-negligible ↵h give
models consistent with the Planck data.

R2 inflation

Inflationary models can also be accommodated within extended
theories of gravity. These theories can be analysed either in the
original (Jordan) frame or in the conformally-related Einstein
frame with a Klein-Gordon scalar field. Due to the invariance of
curvature and tensor perturbation power spectra with respect to
this conformal transformation, we can use the same methodol-
ogy described earlier.

The first inflationary model proposed was of this type and
was based on higher order gravitational terms in the action
(Starobinsky, 1980)

S =
Z

d4x
p�g

M2
pl

2

 

R +
R2

6M2

!

, (43)

with the motivation to include semi-classical quantum effects.
The predictions for R2 inflation were first studied in Mukhanov
& Chibisov (1981) and Starobinsky (1983), and can be summa-
rized as ns�1 ⇡ �8(4N⇤+9)/(4N⇤+3)2 and r ⇡ 192/(4N⇤+3)2.
Since r is suppressed by another 1/N⇤ with respect to the scalar
tilt, this model predicts a tiny amount of gravitational waves.
This model predicts ns = 0.963 for N⇤ = 55 and is fully consis-
tent with the Planck constraints.

Non-minimally coupled inflaton

A non-minimal coupling of the inflaton to gravity with the action

S =
Z

d4x
p�g

2
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6

6

6
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pl + ⇠�

2

2
R � 1

2
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⇣

�2 � �2
0

⌘2
3

7

7

7

7

7
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(44)
leads to several interesting consequences, such as a lowering of
the tensor-to-scalar ratio.

The case of a massless self-interacting inflaton (�0 = 0)
agrees with the Planck+WP data for ⇠ , 0. Within the range
50 < N⇤ < 60, this model is within the Planck+WP joint
95% CL region for ⇠ > 0.0019, improving on previous bounds
(Tsujikawa & Gumjudpai, 2004; Okada et al., 2010).

The amplitude of scalar perturbations is proportional to �/⇠2
for ⇠ � 1, and therefore the problem of tiny values for the infla-
ton self-coupling � can be alleviated (Spokoiny, 1984; Lucchin
et al., 1986; Salopek et al., 1989; Fakir & Unruh, 1990). The
regime �0 ⌧ Mpl is allowed and � could be the Standard
Model Higgs as proposed in Bezrukov & Shaposhnikov (2008)
at the tree level (see Barvinsky et al. (2008); Bezrukov &
Shaposhnikov (2009) for the inclusion of loop corrections). The
Higgs case with ⇠ � 1 has the same predictions as the R2 model
in terms of ns and r as a function of N⇤. The entropy generation
mechanism in the Higgs case can be more efficient than in the
R2 case and therefore predicts a slightly larger ns (Bezrukov &

Gorbunov, 2012). This model is fully consistent with the Planck
constraints.

The case with ⇠ < 0 and |⇠|�2
0/M

2
pl ⇠ 1 was also recently

emphasized in Linde et al. (2011). With the symmetry breaking
potential in Eq. 44, the large field case with � > �0 is disfavoured
by Planck data, whereas the small field case � < �0 is in agree-
ment with the data.

4.3. Running spectral index

We have shown that the single parameter Harrison-Zeldovich
spectrum does not fit the data and that at least the first two
terms As and ns in the expansion of the primordial power spec-
trum in powers of ln(k) given in Eq. 10 are needed. Here we
consider whether the data require the next term known as the
running of the spectral index (Kosowsky & Turner, 1995), de-
fined as the derivative of the spectral index with respect to ln k,
dns ,t/d ln k for scalar or tensor fluctuations. If the slow-roll ap-
proximation holds and the inflaton has reached its attractor so-
lution, dns/d ln k and dnt/d ln k are related to the potential slow-
roll parameters, as in Eqs. 17 and 18. In slow-roll single-field
inflation, the running is second order in the Hubble slow-roll
parameters, for scalar and for tensor perturbations (Kosowsky
& Turner, 1995; Leach et al., 2002), and thus is typically sup-
pressed with respect to ns � 1 and nt, which are first order. Given
the tight constraints on the first two slow-roll parameters ✏V and
⌘V (✏1 and ✏2) from the present data, typical values of the running
to which Planck is sensitive (Pahud et al., 2007) would generi-
cally be dominated by the contribution from the third derivative
of the potential, encoded in ⇠2V (or ✏3).

While it is easy to see that the running is invariant under a
change in pivot scale, the same does not hold for the spectral
index and the amplitude of the primordial power spectrum. It is
convenient to choose k⇤ such that dns/d ln k and ns are uncorre-
lated (Cortês et al., 2007). This approach minimizes the inferred
variance of ns and facilitates comparison with constraints on ns
in the power law models. Note, however, that the decorrelation
pivot scale kdec⇤ depends on both the model and the data set used.

We consider a model parameterizing the power spectrum us-
ing As(k⇤) , ns(k⇤), and dns/d ln k, where k⇤ = 0.05 Mpc�1. The
joint constraints on ns and dns/d ln k at the decorrelation scale of
kdec⇤ = 0.038 Mpc�1 are shown in Fig. 2. The Planck+WP con-
straints on the running do not change significantly when com-
plementary data sets such as Planck lensing, CMB high-`, and
BAO data are included. We find

dns/d ln k = �0.013 ± 0.009 (68% CL, Planck+WP) , (45)

which is negative at the 1.5� level. This reduces the uncertainty
compared to previous CMB results. Error bars are reduced by
60% compared to the WMAP 9-year results (Hinshaw et al.,
2013), and by 20–30% compared to WMAP supplemented by
SPT and ACT data (Hou et al., 2012; Sievers et al., 2013). Planck
finds a smaller scalar running than SPT + WMAP7 (Hou et al.,
2012), and larger than ACT + WMAP7 (Sievers et al., 2013). The
best fit likelihood improves by only ��2

e↵ ⇡ 1.5 (3 when high-`
data are included) with respect to the minimal case in which ns is
scale independent, indicating that the deviation from scale inde-
pendence is not very significant. The constraint for the spectral
index in this case is 0.9630 ± 0.0065 at 68% CL at the decor-
relation pivot scale k⇤ = 0.038 Mpc�1. This result implies that
the third derivative of the potential is small, i.e., |⇠2V | ⇠ 0.007,
but compatible with zero at 95% CL, for inflation at low energy
(i.e., with ✏V ⇡ 0).
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We discuss hybrid inflationary models predicting ns < 1 sep-
arately. As an example, the spontaneously broken SUSY model
(Dvali et al., 1994)
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4 ln

 

�

µ

!

(42)

predicts ns � 1 ⇡ �(1 + 3↵h/2)/N⇤ and r ⇡ 8↵h/N⇤. For ↵h ⌧ 1
and N⇤ ⇡ 50, ns ⇡ 0.98 is disfavoured by Planck+WP+BAO
data at more than 95% CL. However, more permissive entropy
generation priors allowing N⇤ < 50 or a non-negligible ↵h give
models consistent with the Planck data.

R2 inflation

Inflationary models can also be accommodated within extended
theories of gravity. These theories can be analysed either in the
original (Jordan) frame or in the conformally-related Einstein
frame with a Klein-Gordon scalar field. Due to the invariance of
curvature and tensor perturbation power spectra with respect to
this conformal transformation, we can use the same methodol-
ogy described earlier.

The first inflationary model proposed was of this type and
was based on higher order gravitational terms in the action
(Starobinsky, 1980)

S =
Z

d4x
p�g

M2
pl

2

 

R +
R2

6M2

!

, (43)

with the motivation to include semi-classical quantum effects.
The predictions for R2 inflation were first studied in Mukhanov
& Chibisov (1981) and Starobinsky (1983), and can be summa-
rized as ns�1 ⇡ �8(4N⇤+9)/(4N⇤+3)2 and r ⇡ 192/(4N⇤+3)2.
Since r is suppressed by another 1/N⇤ with respect to the scalar
tilt, this model predicts a tiny amount of gravitational waves.
This model predicts ns = 0.963 for N⇤ = 55 and is fully consis-
tent with the Planck constraints.
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(44)
leads to several interesting consequences, such as a lowering of
the tensor-to-scalar ratio.

The case of a massless self-interacting inflaton (�0 = 0)
agrees with the Planck+WP data for ⇠ , 0. Within the range
50 < N⇤ < 60, this model is within the Planck+WP joint
95% CL region for ⇠ > 0.0019, improving on previous bounds
(Tsujikawa & Gumjudpai, 2004; Okada et al., 2010).

The amplitude of scalar perturbations is proportional to �/⇠2
for ⇠ � 1, and therefore the problem of tiny values for the infla-
ton self-coupling � can be alleviated (Spokoiny, 1984; Lucchin
et al., 1986; Salopek et al., 1989; Fakir & Unruh, 1990). The
regime �0 ⌧ Mpl is allowed and � could be the Standard
Model Higgs as proposed in Bezrukov & Shaposhnikov (2008)
at the tree level (see Barvinsky et al. (2008); Bezrukov &
Shaposhnikov (2009) for the inclusion of loop corrections). The
Higgs case with ⇠ � 1 has the same predictions as the R2 model
in terms of ns and r as a function of N⇤. The entropy generation
mechanism in the Higgs case can be more efficient than in the
R2 case and therefore predicts a slightly larger ns (Bezrukov &

Gorbunov, 2012). This model is fully consistent with the Planck
constraints.

The case with ⇠ < 0 and |⇠|�2
0/M

2
pl ⇠ 1 was also recently

emphasized in Linde et al. (2011). With the symmetry breaking
potential in Eq. 44, the large field case with � > �0 is disfavoured
by Planck data, whereas the small field case � < �0 is in agree-
ment with the data.

4.3. Running spectral index

We have shown that the single parameter Harrison-Zeldovich
spectrum does not fit the data and that at least the first two
terms As and ns in the expansion of the primordial power spec-
trum in powers of ln(k) given in Eq. 10 are needed. Here we
consider whether the data require the next term known as the
running of the spectral index (Kosowsky & Turner, 1995), de-
fined as the derivative of the spectral index with respect to ln k,
dns ,t/d ln k for scalar or tensor fluctuations. If the slow-roll ap-
proximation holds and the inflaton has reached its attractor so-
lution, dns/d ln k and dnt/d ln k are related to the potential slow-
roll parameters, as in Eqs. 17 and 18. In slow-roll single-field
inflation, the running is second order in the Hubble slow-roll
parameters, for scalar and for tensor perturbations (Kosowsky
& Turner, 1995; Leach et al., 2002), and thus is typically sup-
pressed with respect to ns � 1 and nt, which are first order. Given
the tight constraints on the first two slow-roll parameters ✏V and
⌘V (✏1 and ✏2) from the present data, typical values of the running
to which Planck is sensitive (Pahud et al., 2007) would generi-
cally be dominated by the contribution from the third derivative
of the potential, encoded in ⇠2V (or ✏3).

While it is easy to see that the running is invariant under a
change in pivot scale, the same does not hold for the spectral
index and the amplitude of the primordial power spectrum. It is
convenient to choose k⇤ such that dns/d ln k and ns are uncorre-
lated (Cortês et al., 2007). This approach minimizes the inferred
variance of ns and facilitates comparison with constraints on ns
in the power law models. Note, however, that the decorrelation
pivot scale kdec⇤ depends on both the model and the data set used.

We consider a model parameterizing the power spectrum us-
ing As(k⇤) , ns(k⇤), and dns/d ln k, where k⇤ = 0.05 Mpc�1. The
joint constraints on ns and dns/d ln k at the decorrelation scale of
kdec⇤ = 0.038 Mpc�1 are shown in Fig. 2. The Planck+WP con-
straints on the running do not change significantly when com-
plementary data sets such as Planck lensing, CMB high-`, and
BAO data are included. We find

dns/d ln k = �0.013 ± 0.009 (68% CL, Planck+WP) , (45)

which is negative at the 1.5� level. This reduces the uncertainty
compared to previous CMB results. Error bars are reduced by
60% compared to the WMAP 9-year results (Hinshaw et al.,
2013), and by 20–30% compared to WMAP supplemented by
SPT and ACT data (Hou et al., 2012; Sievers et al., 2013). Planck
finds a smaller scalar running than SPT + WMAP7 (Hou et al.,
2012), and larger than ACT + WMAP7 (Sievers et al., 2013). The
best fit likelihood improves by only ��2

e↵ ⇡ 1.5 (3 when high-`
data are included) with respect to the minimal case in which ns is
scale independent, indicating that the deviation from scale inde-
pendence is not very significant. The constraint for the spectral
index in this case is 0.9630 ± 0.0065 at 68% CL at the decor-
relation pivot scale k⇤ = 0.038 Mpc�1. This result implies that
the third derivative of the potential is small, i.e., |⇠2V | ⇠ 0.007,
but compatible with zero at 95% CL, for inflation at low energy
(i.e., with ✏V ⇡ 0).
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8B . When written in terms of the parameters (1.2) this constraint implies

M2
P Bk ' �1⇥ 109 , (2.5)

with k taken at horizon crossing, k = kinfl.

2.2 Late time cosmology

In the previous subsection we showed that early time cosmology provides a constraint on the
R2 coupling at high energy scales, kinfl. In contrast, late time cosmology is sensitive to the
value of the cosmological constant at very low energy scales corresponding roughly to the
current value of the Hubble parameter. Thus measurements of the cosmological constant are
done at an energy scale

kHub = 10�33 eV . (2.6)

While the constraint on B derived in the previous section relies on the assumption that
the R2 term dominates the universe dynamics at early times, here we make the complemen-
tary assumption that late-time dynamics is only sensitive to the standard Einstein-Hilbert
term R and the cosmological constant ⇤ (i.e. we rely on the standard ⇤CDM cosmological
model). Because the curvature is very small, the R2 term can be considered negligible, as
long as the RG flow does not drive the coupling B to extremely large values.

Current late-time cosmological observations are fully compatible with a universe dy-
namics governed at late times by a R�2⇤ action [46]. Specifically, the cosmological constant
density parameter takes the value

⌦⇤ ' 0.7 . (2.7)

Together with the current value of the Hubble parameter [47],

H0 ' 70 km s�1Mpc�1 , (2.8)

this allows to estimate the cosmological constant as follows:6

⌦⇤ ⌘ ⇢vac
⇢c

=
⇤

8⇡G

8⇡G

3H2
0

(2.9)

) ⇤ = ⌦⇤ · 3H2
0 ' 4⇥ 10�66 eV2 . (2.10)

2.3 Newton’s gravitational constant

Current estimates of Newton’s gravitational constant are based on laboratory experiments,
made on scales of about 10�2 � 100 m [47], corresponding to energies of 10�4 � 10�6 eV. We
use as reference scale the intermediate value:

klab ' 10�5 eV . (2.11)

The most up-to-date value of the Newton coupling is provided in [47]:

G = 6.7⇥ 10�57 eV�2. (2.12)

Since this value is obtained from a local measurement where the laws of gravity are captured
by Newtonian gravity, the result (2.12) is not sensitive to the value of the cosmological
constant or to the R2 coupling.

6Note that the main uncertainty on the value of the cosmological constant comes from the tension in
competing estimates of the Hubble constant, from the CMB [46] and from astrophysical observations (e.g.
[48]). However, this uncertainty is not significant for the purposes of our analysis.
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Towards a unified framework for late time and early time cosmology 

✦ two different gravitational theories seem to govern late time and early time cosmology 

✦ these two actions actually correspond to two very different regimes of gravity 

✦ we can posit that the complete cosmic history is indeed described by the full action  

   with the cosmological constant term only being relevant on very small energy scales and  

   the higher curvature term being dominant on large energy scales 

✦ shall we regard this just as a phenomenological model or does it have a deeper origin?

S

inflation

=
1
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Z
d

4

x

p
�g

�
�R+BR

2

�

Slate times =
1

16⇡G

Z
d

4
x

p
�g (2⇤�R)

as subdominant. Then, once a viable RG trajectory is selected, we can check a posteriori
that this approximation is indeed met.

Neglecting the contribution of ⇤, the action (1.1) reduces to the so-called Starobinsky
model [4–6] for inflation. Inflationary models can be constrained by using observations of
the cosmic microwave background, as done most recently by the Planck collaboration [3].
Because these constraints rely on the inferred properties of primordial perturbations when
they left the Hubble horizon, we take the Hubble parameter at that time as the relevant
energy scale:3

kinfl = Hinfl ' 1022 eV. (2.2)

Constraints on inflationary models usually refer to parameters of the inflaton field po-
tential V (') [3, 39]. We can apply these results to the R2-model we are interested in, since at
the classical level f(R)-gravity can be rewritten using the equations of motion into an action
for gravity coupled to a scalar field ', with a potential V ('). Following the derivation of
appendix A, the action (1.1) with ⇤ = 0 leads to a scalar potential

V (') =
M2

P

8B

h
1� e�

p
2/3'/MP

i2
, (2.3)

which characterizes the Higgs inflation model [40, 41]. Recent constraints on this model are
reported in [39]:4

M ' 4⇥ 10�5MP , (2.4)

where M4 = �MP
2

8B . When written in terms of the parameters (1.2) this constraint implies

M2
P Bk ' �4⇥ 1016 , (2.5)

with k taken at horizon crossing, k = kinfl.

2.2 Late time cosmology

In the previous subsection we showed that early time cosmology provides a constraint on the
R2 coupling at high energy scales, kinfl. In contrast, late time cosmology is sensitive to the
value of the cosmological constant at very low energy scales corresponding roughly to the
current value of the Hubble parameter. Thus measurements of the cosmological constant are
done at an energy scale

kHub = 10�33 eV . (2.6)

While the constraint on B derived in the previous section relies on the assumption that
the R2 term dominates the universe dynamics at early times, here we make the complemen-
tary assumption that late-time dynamics is only sensitive to the standard Einstein-Hilbert
term R and the cosmological constant ⇤ (i.e. we rely on the standard ⇤CDM cosmological
model). Because the curvature is very small, the R2 term can be considered negligible, as
long as the RG flow does not drive the coupling B to extremely large values.

3What observations actually provide is an upper bound on the value of the Hubble parameter, Hinfl <
3.6⇥ 10�5MP . The fact that this is an upper bound rather than an estimate is because Hinfl /

p
r
0.1 , and we

only have upper bounds on the tensor-to-scalar ratio r [3]. The order of magnitude estimate that we give in
eq. (2.2) is based on the general expectation that r should not be much smaller than its current upper bound.

4As explained in appendix A, we are using an action with opposite overall sign with respect to the one
conventionally used in cosmology.
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1 Introduction

Observations of supernova explosions [1, 2] suggest that the universe is currently undergoing
a phase of accelerated expansion. Moreover, there are strong indications that the universe
also went through an early period of accelerated expansion [3] called inflation. This dynamics
may be recovered by introducing an inflaton field driving the dynamics of the early universe
and a positive cosmological constant triggering the accelerated expansion at late times. In
this paper, we explore the possibility that physics at trans-Planckian energies may set the
seed for the observed e↵ective dynamics of gravity below the Planck scale.

Our starting point is power-law f(R)-gravity, truncated at the second order in the Ricci
scalar R,

S[g] =
1

16⇡G

Z
d4 x

p�g
�
2⇤�R+BR2

�
. (1.1)

At early cosmological times, the higher-order curvature term gives rise to inflation through
the classical equations of motion [4–6]. Therefore, inflation can be seen as a purely gravi-
tational e↵ect, where the inflaton field is simply the additional gravitational scalar degree
of freedom described by the f(R) action. The (constant) lowest-order term plays the role
of the cosmological constant, and drives the late-time accelerated expansion. The action is
parameterized by three couplings, the cosmological constant ⇤, Newton coupling G, and the
R2-coupling B. Cosmological observations impose restrictions on these parameters. Each
of them is measured over a di↵erent distance scale, as explained in detail in section 2 and
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Towards a unified framework for late time and early time cosmology 

✦ this motivates us to search for a underlying mechanism that can produce the full action 
describing the complete cosmic history, interpolate between the two limiting regimes 
and explain the observed values of the coupling constants at the relevant scales 

In this context, in principle the Newton’s constant is also one of the free parameters of the 
action, whose value we measure at ‘human’ (laboratory) scales 

Energy scale (eV) Constraint

kinfl = 1022 B = �1.7⇥ 10�46 eV�2

klab = 10�5 G = 6.7⇥ 10�57 eV�2

kHub = 10�33 ⇤ = 4⇥ 10�66 eV2

Table 1: Observational constraints on the parameters of the action (1.1). For each parameter
we indicate the energy scale corresponding to the distance over which the measurement is
performed. These are the scale of inflation kinfl, the laboratory scale klab, and the Hubble
scale kHub.

summarized in table 1. In this paper we investigate whether the measured values of the
parameters are consistent with the asymptotic safety scenario of quantum gravity [7–13].1

The key idea of our analysis is that couplings like the ones appearing in the action (1.1)
acquire an energy dependence if gravity is promoted to a quantum field theory. This energy
dependence is encoded in the renormalization group (RG) flow of the theory and captured by
its �-functions. A consistent description of gravity valid on all scales may then be obtained
along Weinberg’s asymptotic safety conjecture [34]. In this scenario the gravitational inter-
actions at trans-Planckian energy are controlled by a non-Gaussian fixed point (NGFP) of
the gravitational RG flow. Solutions of the RG equations which are dragged into this fixed
point for increasing energy are termed asymptotically safe. The asymptotic safety condition
then places restrictions on the admissible values of the couplings and equips the construction
with predictive power. Starting from the seminal work by Reuter [35], there is substantial
evidence that such a UV fixed point for gravity exists [7–13]. In particular, this fixed point
persists in the presence of the Goro↵-Sagnotti two-loop counterterm [36].

Contact to the constraints listed in table 1 is then made by following the RG flow
emanating from the NGFP towards low energies. In this work this flow is constructed based
on the (Euclidean) action2

Sk[g] =
1

16⇡Gk

Z
d4 x

p
g
�
2⇤k �R+BkR

2
�
, (1.2)

where the subscript k implies that the couplings depend on the energy scale k. Within
this setting, an asymptotically safe RG trajectory describing Nature (including a quantum
gravity induced inflationary phase) should then meet the requirements summarized in table 2.
The existence of a RG trajectory that meets all these constraints is highly nontrivial and
constitutes the main result of this work.

1Cosmological implications of Asymptotic Safety have received considerable attention [14–32], also see
[33] for an up-to-date review. These works incorporate the leading quantum gravity e↵ects by a so-called
renormalization group improvement procedure which identifies the energy scale k with a physical quantity. In
this work, we pioneer a di↵erent path: instead of generating an e↵ective dynamics via renormalization group
improvement, we construct the e↵ective action of the theory valid at the corresponding energy scale by solving
the underlying renormalization group equations.

2The relation between gravitational RG flows obtained from an Euclidean and Lorentzian setting has been
studied in [37] and it was shown that the two settings lead to qualitatively identical phase diagrams. In the
sequel we assume that this result also holds at the level of the R2-type actions (1.1) and (1.2).
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PART II: COSMOLOGY FROM RG 
FLOWS 

2 Gubitosi, Ripken - Consistent early and late 
time cosmology from the RG flow of gravity 



Lightning review of Asymptotic Safety 

• Idea: integrate out quantum fluctuations shell-
by-shell in path integral 

• RG flow governed by FRGE 

𝜕𝑡Γ𝑘 ℎ𝜇𝜈; 𝑔 𝜇𝜈 =
1
2
Tr Γ 2 + 𝑅𝑘

−1
𝜕𝑡𝑅𝑘  

• Γ𝑘 describes effective dynamics with quantum 
corrections at scale 𝑘 

3 Gubitosi, Ripken - Consistent early and late 
time cosmology from the RG flow of gravity 



RG flow of Quantum Gravity 

• Basis in curvature invariants: 
• 𝑓 𝑅 : 1, 𝑅, 𝑅2, 𝑅3, 𝑅4,… 
• Curvature2: 𝑅𝜇𝜈2 , 𝐶2 
• Curvature3 
• ⋮ 
• Cosmology constrains these operators! 
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𝑓(𝑅)-gravity 
• RG equations (polynomial expansion) 

– Machado, Saueressig [2008] 
• Truncation: 

𝑓𝑘 𝑅 =
1

16𝜋 𝐺𝑘
2Λ𝑘 − 𝑅 + 𝐵𝑘𝑅2  

• Dimensionless couplings: 
𝐺𝑘 = 𝑘−2𝑔𝑘; Λ𝑘 = 𝑘2𝜆𝑘; 𝐵𝑘 = 𝑘2𝑏𝑘  

• Fixed point: 
 

• Critical exponents: 
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𝜆∗ = 0.133 𝑔∗ = 1.59 𝑏∗ = 0.119 

𝜃1,2 = 1.26 ± 2.45i 𝜃3 = 27.0 
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Phase diagram: global structures 

• Singularities in 𝛽-
functions: 
– Singularity in 𝜂𝑁 (A) 
– Singularity in 𝑅2 (B) 

• GFP: 0,0,0  
• NGFP 

6 Gubitosi, Ripken - Consistent early and late 
time cosmology from the RG flow of gravity 



Phase diagram: trajectories 

• Classification: 
– Type Ia 
– Type IIa 
– Type IIIa 

 
• …but which trajectory 

satisfies Planck 
constraints? 
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Physical trajectory 
Energy Constraint 
𝑘 ≃ 𝑘infl 𝐵𝑘 ≃ −1.7 × 10−46 eV−2  
𝑘 ≃ 𝑘lab 𝐺𝑘 ≃ 6.7 × 10−57 eV−2 
𝑘 ≃ 𝑘Hub Λ𝑘 ≃ 4 × 10−66 eV−2 
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• Take 𝑘0 = 𝑘lab ⇒ 𝑔𝑘0 ≪ 1: 
classical regime 

• Initial conditions: 
𝑔𝑘0 = 6.71 × 10−67 
𝜆𝑘0 = 3.99 × 10−56 
𝑏𝑘0 = −1.7 × 10−56 
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Physical trajectory 
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Λ starts to run at 𝑘 ≃ 10−2 eV ≃ 10−4 m 
⇒ observable? 
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Conclusions and outlook 

• Inflation: testing ground for QG 
• EH+𝑅2-gravity: 

– Asymptotically safe 
– Consistent with inflation/late time cosmology 

 
• Outlook: 

– Proper predictions from irrelevant operators: e.g. 
𝑅𝑛, 𝐶2 

– Cosmological constant problem: matter effects? 
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