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Goal: Make sense of

z [Dg] [DX] e SEH_SSM_ Sother

topologies

e  Path integral over geometric d.o.f. & topologies

e  Pathintegral over matter d.o.f ‘ | I | d efl ne d \

(above Planck\s'cale)

Below Planck scale:
Cosmological perturbation theory &
EFT formulation of QG by Donoghue et al. ¢




A discrete strategy

Discretize the continuum Path integral

. Dg] — .

topologies triangulations

How to take the continuum limit ?



Random Matrices

e Random Matrices are dual to triangulations in 2D

2D Euclidean QG Random Matrices
—LtrM?+ L tr P
Z= Dge PATX e? = [dMe VN
; / g (1) (2) Picture from 2D Gravity and
Random Matrices, Di Francesco,
Sum over topologies = Sum over M N 3 Ginsparg, Zinn-Justin
handles h M- —: N=elandg =¢€
VN g
A=Area=/ Vg
X = 2 — 2h is the Euler character ————= Continuum Limit is 2D Eucl. QG

How to take the continuum limit ?



Double-scaling limit

e Continuum limit from double-scaling limit

(9 9)° N = Ny "

e Linearized “RG Flow” in matrix size N [Brezin, zinn-ustin ‘92]
[Eichhorn, Koslowski “13]
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e RG flows from many to few d.o.f (eichhorn, koslowski “13]
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e Background Independent Coarse graining
o No Notion of Canonical Dimension
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From Matrix to Tensor Models

e Tensor Models = # of indices > 3

e Large-N limit exists for “colored” Tensor Models (indexed by Gurau degree)

[R. Gurau “10]
®
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Canonical Scaling Dimension in
backeround-independent RG flow

Local Flows Background-independent flows
e RG step: local averaging e RG step: Non-local averaging
e Notion of canonical dimensionality defined by e No units, no (a priori) scaling dimension

mass dimension
e Canonical Dimension from autonomous

system of beta functions in large-N limit

2
2 (=2,
o B =2V (gl) 4 )



So Far

e Matrix Models discretize 2D QG

e Tensor Models generalize Matrix Models to
higher D

e Setting-up the FRG

o No Notion of Scaling Dimension




The Model

e Consider areal rank-3 Tensor model s.t.

M o® B

e Enlarged Theory space compared to U(N)®?
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Applying the FRG

o Coa rse'graining in N [Eichhorn, Koslowski, 2013]

1
8Ty = $Tr (T + By ) OB

- Flow of the Effective Action I' i

- Alternative to path-integral
formulation
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How to cook with the FRG - A recipe

Ingredients: Instructions:

e A truncation of the effective action Compute Fg\%)

o Amount: Already small truncations can yield viable results
e Aregulator Ry Specify Ry
1) a1 +as+a3 < N: Ry>0
Cook ,B-fcts (or compute)
2) N<aj+ay+az3: Ry=0 using FRG

3) NN —00: Ry— o Fix scaling of couplings




Ingredient I: Truncation

FRGE cannot be solved exactly

Need approximation/ truncation

Include ALL interactions allowed by
symmetry up to 6th orderin T

Dinstinguish interactions by prefered color

13
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Ingredient |l: Regulator

(R ({ai} (803) = 2 GBS (52 1) 0 (52— 1)

a; +ay+a3 <N: Ry>0

) ) ) ) N<a +ays+as3: Ry=0
No notion of mass dimensionality

NN - o00: Ry—

All choices 7 > ( seem to be allowed
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Trusting the Fixed Point?

Ensure stability of results by

1. Starting Scheme:
2.
3.

4,

Regulator bound n <r

increasing truncation

Order with — NazNZN =n=0

N

Order with imation for M
Order with full non-polynomial 1

Order, same procedure for

Assumption: Canonical guiding principle

17
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Regulator Bound( < 7) o s

Rewrite anomalous dimension

—NONZ _
> n= ZzN:ZNNN"

Consider now our regulator

> RN({ai} {b }) ZN bayb, Oazby Oasb, (a1+]c\z,2r+a3 N 1) 0 (al+]‘\1]2r+a3 B 1)

H !/
Consider N —- N’ — o0 N: IR-cutoff

lim Ry ~ZnyN"~ N'T
N—N'—o0 N

: UV-cutoff
Regulator needs to diverge in that limit

- > :




Canonical Guiding Principle

e |dea: Increasing truncation should not induce new relevant directions

_ . > max () — max(d;) <5
_gg,l] = —3/2 {94:1] = —2 [92,2] =3

géﬂ = —7/2 [ggi] — 4 [ggfl] — 4 All couplings with scaling dimension
- ’ ~ —§ areincluded

5| =8 |ar] =8 |as] =

—gé,z] Ry [92,3] _ 6 Next coupling with largest scaling

dimension [ggl] — _5

——> max(f) < 3.5




Results (r=1)

mimensionally—redmed universality\

Classes

e Cyclic Melonic
singletrace FP

e Multitrace
Bubble FP

Cyclic Melons &

Cyclic Melonic
Multi-Trace = Q

Multitrace FP

/(andidates for universality classesm

3d Quantum Gravity

’. 0. d
H o

e |[socolored FP %, ot
~~ i & No preferred
with tetrahhedral A P color

interaction o

\_ N




Stable under extension of truncation

Regulator Bound

Canonical Guiding Principle
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U Cyclic Melonic

- ~

=V Singletrace FP

e 1 relevant directions @ Quartic and @ Hexic order for all approx. of 7)

(except @ All Orders, n =0 —— 2 rel. dir.)

Starting Scheme: Quartic Order with =10 4) Hexic Order with n =10
gi:}* =-1 6, =2 QZ}* — —0.46 0, =2
b2 =1 gey = —0.50 6, = 0.53
2) Quartic Order with polyn. 7 5) Hexic Order with polyn. n
g = —0.43 0, =2 g = -0.30 O =2
_ * 0, = —0.03
0, = —0.14 92:1 — _0.18 2
3) Quartic Order with full 6) Hexic Order with fullm
gy1 =—0.38 6, = 2.27 gy1 = —0.28 61 = 2.19
6, = —0.16 gyy =—0.15 6, = —0.03

22
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o1, LydicMelonic
=V Singletrace FP

e 1 relevant directions @ Quartic and @ Hexic order for all approx. of 7)

(except @ All Orders, n =0 —— 2 rel. dir.)

Starting Scheme: Quartic Order with =10 4) Hexic Order with n =10
gy =1 =2 p=0<1 gy1 = —0.46 6, =2 n=0<1
6, =1 g1 = 050 02 = 0.53
2) Quartic Order with polyn. 7 5) Hexic Order with polyn. n
gl = 043 o-=2 n=—057<1 gt = —0.30 6-2 1 =—040
gyy =—0.18
3) Quartic Order with full 6) Hexic Order with fullm
gy1 =—0.38 o=221m = —0.58 <1 gl = —0.28 o, —210 1 = —0.41
gyy =—0.15

23



Recall: max (6) < 3.5

directions n
@rting Scheme: Quartic Order with n =10 4) Hexic Order with n =10 \
gij* =1 6, =2 gii* = —0.46 0, =2
6, =1 gg1 = —0.50 6y = 0.53
2) Quartic Order with polyn. 7 5) Hexic Order with polyn. n
6, = —0.14 31% 6, = —0.03
2 9s1 = —0.18
3) Quartic Order with full 6) Hexic Order with fulln
g1 =—0.38 6, = 2.27 g1 =—0.28 61 = 2.19
\ 0, = —0.16 gy1 =—0.15 02 = —0.03 /

24
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directions n

Stable under extension of truncation /

Regulator Bound /

Canonical Guiding Principle /

0, = —0.16 0, = —0.03
25




== Cyclic Melonic

- ~

=V Singletrace FP

e Also found in complex model

- .
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wsae==s  Multitrace Bubble FP

Starting Scheme: Quartic Order with =10 4) Hexic Order with n =10
gi?* =-3.75 0, =3 gi; =—-1.73 0, =3
6, = —1.5 Goy = —T45 6, = —1.5
2) Quartic Order with polyn. 7 5) Hexic Order with polyn. n
2. " = —1.67 _ 2 " =-1.16 0 =3
942 0, =3 n= —0.83 94’2* 01 _ _034 n= —0.58
0, = 0.17 gy = —2.82 9 = .
3) Quartic Order with full 6) Hexic Order with fullm
gi, =—1.44 0, = 3.47 n=—0.84 gi, =-1.05 61 =332 p=—0.59
6, = 0.18 oy = —2.27 0, = —0.33

27



Results (r=1)

mimensionally—redmed universality\

Classes

e Cyclic Melonic
singletrace FP

e Multitrace
Bubble FP

Cyclic Melons &

Cyclic Melonic
Multi-Trace = Q

Multitrace FP

/(andidates for universality classesm

3d Quantum Gravity

o 0. d
G o

o . R
Ispcolored kP d:: i &No preferred
with tetrahedral e color

interaction pe—

\_ Y
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Isocolor
with tetrahedral interaction

X- P

LNEW!!! Not featured in the complex model}
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Starting Scheme: Quartic Order with n =10

Not present ( By, = (3 +2m)9d3, )

2) Quartic Order with polyn. 7
0]_ — 2.98 n= _0.75
fy3 = —0.28 + 0.227

3) Quartic Order with full
6; = 2.60 n=—0.75

023 = —0.27 + 0.214

Isocolored FP
e with tetrahedral

e
Interaction

4) Hexic Order with n =0
012 =195 + 0.694
034 = 0.38
056 = —0.03 = 5.96+¢
5) Hexic Order with polyn. 5
010 =1.46 + 1.39%
’ n=—0.32
054 = 0.15
056 = —0.11 + 4.834
0) Hexic Order with full n
610 =13+£156i . _ 33
034 = 0.13

056 = —0.02 + 5.104 0



Conclusions

Indications for two types of universality classes

o Dimensional Reduction

o Candidate for 3d Quantum Gravity ?

ot

New universality class not featured in the complex model # <

*~—e

Asymptotic Safety and Dynamical Triangulations two sides of the same
medal?

What's Next? Rank-4 Real Tensor Model
(A. Eichhorn, J.L., A. Pereira and A. Sikandar)
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