Towards Background Independent QG with Tensor models

Johannes Lumma

AS Seminar, 2018

In collaboration with A. Eichhorn, T. Koslowski and A. D. Pereira

arXiv: 1811.00814

Emmy Noether-Programm

> **DFG** Deutsche Forschungsgemeinschaft

UN HE ZUI SEI

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Goal: Make sense of

 $\sum_{ ext{topologies}} \int [\mathcal{D}g] [\mathcal{D}X] e^{-S_{ ext{EH}} - S_{ ext{SM}} - S_{ ext{other}}}$

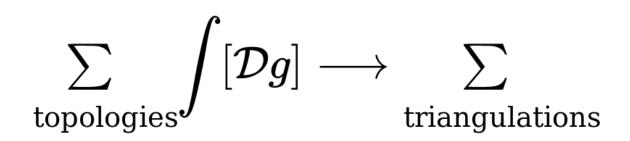
- Path integral over geometric d.o.f. & topologies
- Path integral over matter d.o.f

ill defined (above Planck scale)

Below Planck scale: Cosmological perturbation theory & EFT formulation of QG by Donoghue et al.²

A discrete strategy

Discretize the continuum Path integral



How to take the continuum limit?

Random Matrices

• Random Matrices are dual to triangulations in 2D

2D Euclidean QG

$$\mathcal{Z} = \sum_{h} \int \mathcal{D}g \, e^{-eta A + \gamma \chi}$$
 (1)

Sum over topologies = Sum over handles h

A=Area = $\int \sqrt{g} \chi = 2-2h$ is the Euler character

Random Matrices

$$e^{\mathcal{Z}}=\int\!dM\,e^{-rac{1}{2}trM^2+rac{g}{\sqrt{N}}trM^3}$$
 (2)

$$M o rac{M}{\sqrt{N}}: \ N = e^{\gamma}$$
 and $g = e^{-eta}$

 $M^i_{\iota} M^k_m M^m_i$

Picture from 2D Gravity and Random Matrices, Di Francesco, Ginsparg, Zinn-Justin

────→ Continuum Limit is 2D Eucl. QG

How to take the continuum limit?

Double-scaling limit

• Continuum limit from double-scaling limit

$$(g - g_c)^{\frac{1}{\theta}} N = N_0 \tag{1}$$

• Linearized "RG Flow" in matrix size N [Brezin, Zinn-Justin '92] [Eichhorn, Koslowski '13]

$$g = g_c + \left(\frac{N}{N_0}\right)^{-\theta}$$

(2)

The continuum limit from non-local coarse graining

• RG flows from many to few d.o.f [Eichhorn, Koslowski '13]

$$\partial_t \Gamma_N = rac{1}{2} {
m Tr} \left(\Gamma_N^{(2)} + R_N
ight)^{-1} \partial_t R_N$$

- Background Independent Coarse graining
 - No Notion of Canonical Dimension

 $\Gamma_N^{(2)} = rac{\delta^2 \Gamma_N}{\delta T_{a_1 a_2 a_3} \delta T_{b_1 b_2 b_3}}$ R_N IR-Regulator

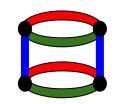
From Matrix to Tensor Models

• Tensor Models = # of indices ≥ 3

• Large-N limit exists for "colored" Tensor Models (indexed by Gurau degree)

[R. Gurau '10]

$$T_{a_1 a_2 a_3} T_{a_1 b_2 b_3} T_{b_1 a_2 a_3} T_{b_1 b_2 b_3}$$



Canonical Scaling Dimension in background-independent RG flow

Local Flows

- RG step: local averaging
- Notion of canonical dimensionality defined by • mass dimension

Background-independent flows

- RG step: Non-local averaging
- No units, no (a priori) scaling dimension
- Canonical Dimension from autonomous system of beta functions in large-N limit

$$\bar{g}_{4,1}^{2,1} = 2N^2 \left(\bar{g}_{4,1}^{2,1}\right)^2 + \dots$$

$$g_{4,1}^{2,1} = \bar{g}_{4,1}^{2,1}N^2$$

$$\beta_{g_{4,1}^{2,1}} = 2g_{4,1}^{2,1} + 2\left(g_{4,1}^{2,1}\right)^2$$

$$g_{4,1}^{2,1} = 2N^2 \left(\bar{g}_{4,1}^{2,1}
ight)^2 + \dots$$
 (1)
 $g_{4,1}^{2,1} = \bar{g}_{4,1}^{2,1} N^2$

(2)

So Far

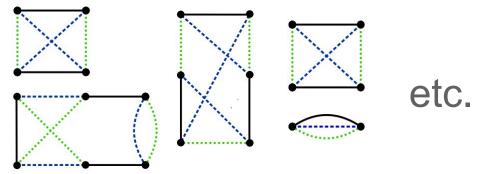
- Matrix Models discretize 2D QG
- Tensor Models generalize Matrix Models to higher D
- Setting-up the FRG
 - No Notion of Scaling Dimension

The Model

• Consider a real rank-3 Tensor model s.t.

$$T_{a_1 a_2 a_3} \to O^{(1)}_{a_1 b_1} O^{(2)}_{a_2 b_2} O^{(3)}_{a_3 b_3} T_{b_1 b_2 b_3}$$

• Enlarged Theory space compared to $U(N)^{\bigotimes 3}$



Applying the FRG

• Coarse-graining in *N* [Eichhorn, Koslowski, 2013]

$$\partial_t \Gamma_N = \frac{1}{2} \operatorname{Tr} \left(\Gamma_N^{(2)} + R_N \right)^{-1} \partial_t R_N$$

Flow of the Effective Action Γ_N

Alternative to path-integral formulation

How to cook with the FRG - A recipe

Ingredients:

- A truncation of the effective action
 - *Amount*: Already small truncations can yield viable results
- A regulator R_N
 - 1) $a_1 + a_2 + a_3 < N: R_N > 0$

2)
$$N < a_1 + a_2 + a_3:$$
 $R_N = 0$

3)
$$N o N' o \infty: \quad R_N o \infty$$

Instructions:

• Compute
$$\Gamma_N^{(2)}$$

• Specify R_N

- Cook β -fcts (or compute) using FRG
- Fix scaling of couplings

И

Ingredient I: Truncation

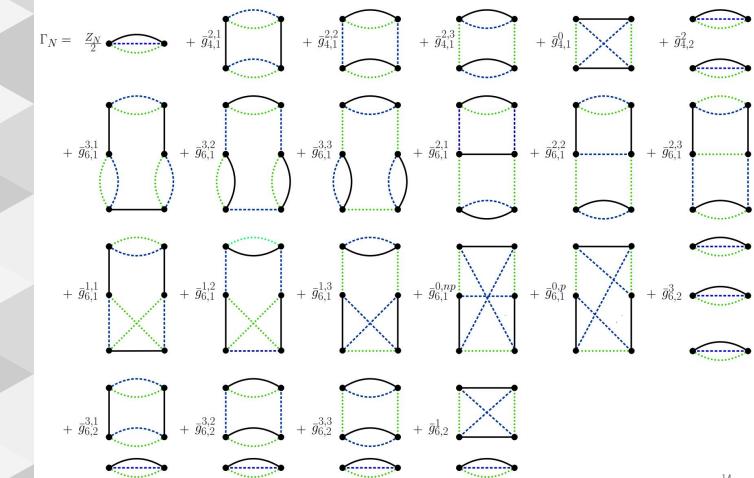
• FRGE cannot be solved exactly

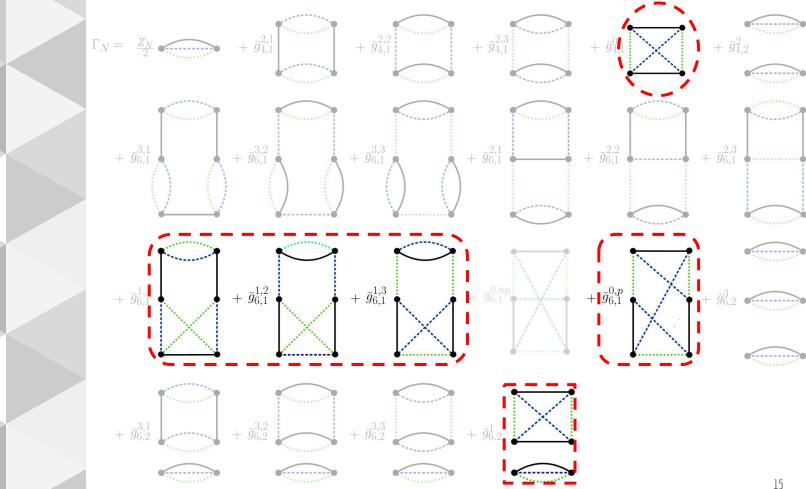
Need approximation/ truncation

• Include ALL interactions allowed by symmetry up to 6th order in *T*



• Dinstinguish interactions by prefered color





Ingredient II: Regulator

$$R_N(\{a_i\},\{b_i\}) = Z_N \, \delta_{a_1b_1} \delta_{a_2b_2} \delta_{a_3b_3} \left(rac{N^r}{a_1+a_2+a_3} - 1
ight) heta \left(rac{N^r}{a_1+a_2+a_3} - 1
ight)$$
 $a_1 + a_2 + a_3 < N : \quad R_N > 0$ $N < a_1 + a_2 + a_3 : \quad R_N = 0$

 $N o N' o \infty: \quad R_N o \infty$

 \implies All choices $r \geq 0$ seem to be allowed

Trusting the Fixed Point?

• Ensure stability of results by successively increasing truncation

1.	Starting Scheme: Quartic Order with	$-rac{N\partial_N Z_N}{Z_N}$	$\equiv \eta = 0$
----	-------------------------------------	-------------------------------	-------------------

- 2. Quartic Order with polynomial approximation for η
- 3. Quartic Order with full non-polynomial η

Sixth Order, same procedure for η

• Regulator bound $\eta < r$

4.

• Assumption: Canonical guiding principle

Regulator Bound($\eta < r$) [Meibohm, Pawlowski, Reichert, 2015]

Rewrite anomalous dimension *

$$\succ \ \eta = rac{-N \partial_N Z_N}{Z_N} \Longrightarrow Z_N \sim N^{-\eta}$$

Consider now our regulator *

$$> R_N(\left\{a_i
ight\}, \left\{b_i
ight\}) = Z_N \, \delta_{a_1b_1} \delta_{a_2b_2} \delta_{a_3b_3} \left(rac{N^r}{a_1 + a_2 + a_3} - 1
ight) heta \left(rac{N^r}{a_1 + a_2 + a_3} - 1
ight)$$

Consider $N \to N' \to \infty$ *

$$> \lim_{N o N' o \infty} R_N \sim Z_N \ N^r \sim N^{r-\eta} \; .$$

Regulator needs to diverge in that limit *

$$\eta < r$$
)

N: IR-cutoff

N': UV-cutoff

Canonical Guiding Principle

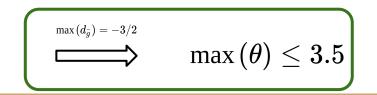
• Idea: Increasing truncation should not induce new relevant directions

$$egin{aligned} &\left[ar{g}_{4,1}^{0}
ight] = -3/2 & \left[ar{g}_{4,1}^{2,i}
ight] = -2 & \left[ar{g}_{4,2}^{2}
ight] = -3 \ &\left[ar{g}_{6,1}^{1,i}
ight] = -7/2 & \left[ar{g}_{6,1}^{2,i}
ight] = -4 & \left[ar{g}_{6,1}^{3,i}
ight] = -4 \ &\left[ar{g}_{6,1}^{0,p}
ight] = -3 & \left[ar{g}_{6,1}^{0,p}
ight] = -3 & \left[ar{g}_{6,2}^{3,i}
ight] = -5 \ &\left[ar{g}_{6,2}^{1}
ight] = -9/2 & \left[ar{g}_{6,3}^{3}
ight] = -6 \ \end{aligned}$$

$$\implies \max{(\theta)} - \max{(d_{\bar{g}})} \le 5$$

All couplings with scaling dimension >-5 are included

Next coupling with largest scaling dimension $[\bar{g}^0_{8,1}]=-5$



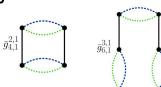
Results (r=1)

Dimensionally-reduced universality

classes

 $\bar{g}_{4,2}^2$

Cyclic Melonic singletrace FP



Multitrace **Bubble FP**

Cyclic Melonic Multitrace FP

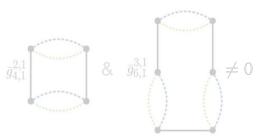
Cyclic Melons & Multi-Trace \neq (

Candidates for universality classes for 3d Quantum Gravity

Isocolored FP with tetrahhedr interaction

ral
$$\bar{g}_{4,1}^0$$

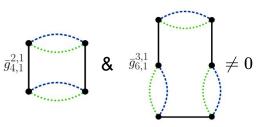
& No preferred color



• 1 relevant directions @ Quartic and @ Hexic order for all approx. of η (except @ All Orders, $\eta = 0$ — **Stable under extension of truncation** $g_{4,1}^{2,1^*} = -1$ $\theta_1 = 2$ $g_{4,1}^{2,1^*} = -0.46$ $\theta_1 =$ $g_{6,1}^{2,1^*} = -0.50$ $\theta_2 =$ **Regulator Bound** η $g_{4,1}^{2,1^*} = -0.43$ $\theta_1 = 2$ $g_{4,1}^{2,1^*} = -0.30$ $\theta_1 =$

 $g_{4,1}^{2,1^*} = -0.43$ $\theta_1 = 2$ $g_{4,1}^{2,1^*} = -0.30$ Canonical Guiding Principle^{1*} = -0.18

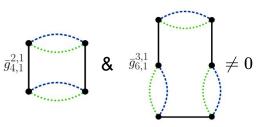
 $g_{4,1}^{2,1\,*} = -0.38 \qquad egin{array}{cccc} extsf{θ_1} = 2.27 & & g_{4,1}^{2,1\,*} = -0.28 & & heta_1 = 2.19 \ & & heta_2 = -0.16 & & g_{6,1}^{3,1\,*} = -0.15 & & heta_2 = -0.03 \end{array}$



• 1 relevant directions @ Quartic and @ Hexic order for all approx. of η

(except @ All Orders, $\eta = 0 \longrightarrow 2$ rel. dir.)

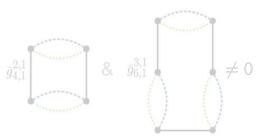
Starting Scheme: Quartic Order with $\eta = 0$ 4) Hexic Order with $\eta = 0$ $g_{4\,1}^{2,1\,*} = -1$ $g^{2,1\,*}_{4\,1}=-0.46$ $heta_1=2$ $heta_1=2$ $heta_2=0.53$ $g_{6\,1}^{3,1\,*}=-0.50$ $\theta_2 = 1$ 2) Quartic Order with polyn. η 5) Hexic Order with polyn. η $heta_1=2$ $g_{4.1}^{2,1\,*}=-0.30$ $g^{2,1\,*}_{4\,1}=-0.43$ $heta_1=2$ $heta_2=-0.03$ $heta_2 = -0.14$ $g_{6.1}^{3,1\,*}=-0.18$ 3) Quartic Order with full η 6) Hexic Order with full η $g_{4.1}^{2,1\,st}=-0.28$ $g_{4\,1}^{2,1\,*}=-0.38\qquad\qquad heta_1=2.27$ $heta_1=2.19$ $q_{6\,1}^{3,1\,*} = -0.15$ $heta_2=-0.03$ $\theta_2 = -0.16$



• 1 relevant directions @ Quartic and @ Hexic order for all approx. of η

(except @ All Orders, $\eta = 0 \longrightarrow 2$ rel. dir.)

Starting Scheme: Quartic Order with
$$\eta = 0$$
4)Hexic Order with $\eta = 0$ $g_{4,1}^{2,1*} = -1$ $\theta_1 = 2$
 $\theta_2 = 1$ $\eta \equiv 0 < 1$ $g_{4,1}^{2,1*} = -0.46$
 $g_{6,1}^{3,1*} = -0.50$ $\theta_1 = 2$
 $\theta_2 = 0.53$ $\eta \equiv 0 < 1$ 2)Quartic Order with polyn. η 5)Hexic Order with polyn. η $g_{4,1}^{2,1*} = -0.43$ $\theta_1 = 2$
 $\theta_2 = -0.14$ $\eta \equiv -0.57 < 1$
 $\theta_2 = -0.14$ $g_{4,1}^{2,1*} = -0.30$
 $g_{6,1}^{3,1*} = -0.18$ $\theta_1 = 2$
 $\theta_2 = -0.03$ 3)Quartic Order with full η
 $g_{4,1}^{2,1*} = -0.38$ $\theta_1 = 2.27$
 $\eta = -0.58 < 1$
 $\theta_2 = -0.16$ Hexic Order with full η
 $g_{4,1}^{3,1*} = -0.15$ 4) $\theta_2 = -0.16$ $\theta_2^{3,1*} = -0.15$ $\theta_2 = -0.03$

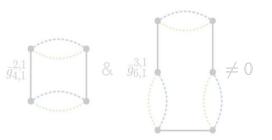


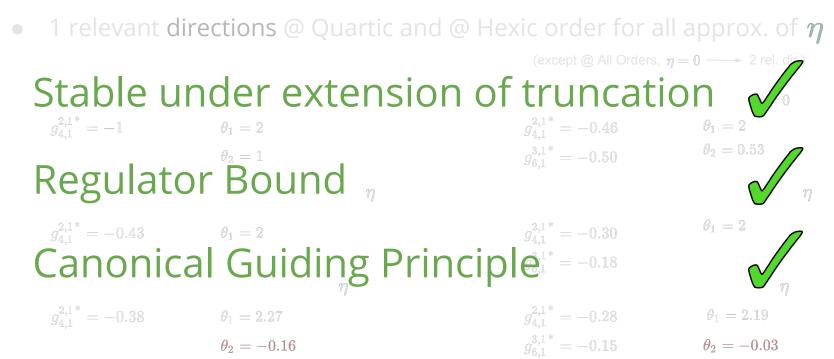
Cyclic-Melonic SingleRecall: $max(\theta) \le 3.5$

• 1 relevant directions @ Quartic and @ Hexic order for all approx. of η

(except @ All Orders, $\eta = 0 \longrightarrow 2$ rel. dir.)

Starting Scheme: Quartic Order with $\eta=0$		4)	Hexic Or	xic Order with $\eta=0$	
$g_{4,1}^{2,1*}=-1$	$ heta_1=2$	$g^{2,1*}_{4,1} =$	-0.46	$ heta_1=2$	
	$ heta_2=1$	$g^{3,1*}_{6,1}=$	-0.50	$ heta_2=0.53$	
2)	Quartic Order with polyn. η	5)	Hexic Or	der with polyn. η	
$g^{2,1*}_{4.1}=-0.43$	$ heta_1=2$	$g_{4.1}^{2,1*}=$	-0.30	$ heta_1=2$	
,	$ heta_2=-0.14$	$g_{6,1}^{3,1st}=0$	-0.18	$ heta_2=-0.03$	
3)	Quartic Order with full η	6)	Hexic Or	rder with full η	
$g^{2,1*}_{4,1}=-0.38$	$ heta_1=2.27$	$g^{2,1*}_{4,1}=$		$ heta_1=2.19$	
	$ heta_2=-0.16$	$g_{6,1}^{3,1st}=$	-0.15	$ heta_2=-0.03$	

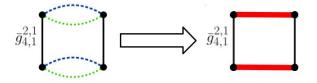


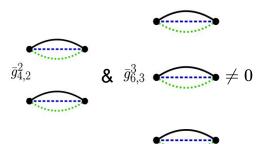




• Also found in complex model

• Distinguishing colours crucial in decoupling





Multitrace Bubble FP

Starting Scheme: Quartic Order with $\eta=0$			4)		Hexic Order with $\eta=0$	
${g^2_{4,2}}^* = -3.75$	$ heta_1=3$			${g_{4,2}^2}^{st} = -1.73$	$ heta_1=3$	
	$ heta_2=-1.5$			${g_{6,3}^3}^* = -7.45$	$ heta_2=-1.5$	
2)	Quartic Order with polyn.	η	5)		Hexic Order with polyn.	η
${g_{4,2}^2}^{st} = -1.67$	$egin{array}{l} heta_1=3\ heta_2=0.17 \end{array}$	$\eta=-0.83$		$g^2_{4,2}{}^* = -1.16 \ g^3_{6,3}{}^* = -2.82$	$egin{array}{l} heta_1=3\ heta_2=-0.34 \end{array}$	$\eta = -0.58$
3)	Quartic Order with full η		6)		Hexic Order with full η	
${g_{4,2}^2}^* = -1.44$	$ heta_1=3.47$	$\eta=-0.84$		${g^2_{4,2}}^* = -1.05$	$ heta_1=3.32$	$\eta=-0.59$
	$ heta_2=0.18$			${g_{6,3}^3}^* = -2.27$	$ heta_2=-0.33$	27

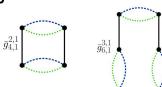
Results (r=1)

Dimensionally-reduced universality

classes

 $\bar{g}_{4,2}^2$

Cyclic Melonic singletrace FP



Cyclic Melons &

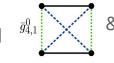
Multi-Trace \neq

......

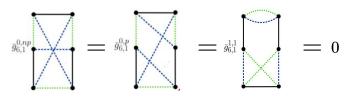
Cyclic Melonic Multitrace FP

Candidates for universality classes for 3d Quantum Gravity

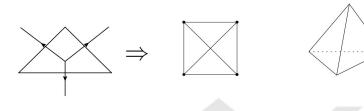
Isocolored FP with tetrahedral interaction



& No preferred color



Isocolored FP with tetrahedral interaction



NEW!!! Not featured in the complex model

Isocolored FP \Rightarrow with tetrahedral interaction

Starting Scheme: Quartic Order with $\eta = 0$ 4) Not present ($eta_{g_{4,1}^0} = (rac{3}{2} + 2\eta)g_{4,1}^0$) 2) Quartic Order with polyn. η 5) $\theta_1 = 2.98$ $\eta = -0.75$ $heta_{2.3} = -0.28\,\pm\,0.22\,i$ 3) Quartic Order with full η 6) $\theta_1 = 2.60$ $\eta = -0.75$ $heta_{2.3} = -0.27\,\pm\,0.21\,i$

 $= \bar{g}_{6,1}^{0,p}$

eq 0

 $= \bar{g}_{6,1}^{1,1}$

= 0

Hexic Order with $\eta = 0$ $heta_{1.2} = 1.95\,\pm\,0.69\,i$ $\theta_{3.4} = 0.38$ $heta_{5.6} = -0.03\,\pm\,5.96\,i$ Hexic Order with polyn. η $heta_{1,2} = 1.46\,\pm\,1.39\,i$ n = -0.32 $heta_{3.4}=0.15$ $heta_{5.6} = -0.11\,\pm\,4.83\,i$ Hexic Order with full η $heta_{1.2}=1.3\pm1.56\,i$ $\eta = -0.33$ $heta_{3.4}=0.13$ $heta_{5.6} = -0.02\,\pm\,5.10\,i$

Conclusions

- Indications for two types of universality classes
 - Dimensional Reduction
 - Candidate for 3d Quantum Gravity?
- New universality class not featured in the complex model $|a_{
 m a}
 angle imes$

- Asymptotic Safety and Dynamical Triangulations two sides of the same medal?
- What's Next? Rank-4 Real Tensor Model (A. Eichhorn, J.L., A. Pereira and A. Sikandar)