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Abstract
This presentation aims at giving our new advance on the functional
renormalization group applied to tensorial group field theory. It is based on a serie
of our three papers [arXiv :1803.09902], [arXiv :1809.00247] and
[arXiv :1809.06081]. We consider the polynomial Abelian U(1)d models without
closure constraint, especially we discuss the case of quartic melonic interaction. By
using the effective vertex expansion method we studied the Wetterich flow
equation and the possible existence or not of the phase transition in the leading
order melonic sector. We provide the so called structure equations compactible
with the Ward identities. These equations allow a new constraint on the flow i.e.
on to the β-functions and the anomalous dimension η. We also show that, by
adding in the functional renormalization group program other leading order
contribution in the interaction, the physical conclusions such as the non-existence
of fixed points for quartic model are not modified.
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Introduction

Motivations
1 In the search of unify theory of modern physics, i.e. a well defined theory of

quantum gravity, a lot of efforts have been made. Despite the fact that today,
none of them may give entirely the complete definition on this issue, several
major advances are observed to tackle this very important problem. Among
which we can identify a very recent directions such as loop quantum gravity,
dynamical triangulation, noncommutative geometry, group field theories
(GFTs) and tensors models (TMs).

2 These approachs are considered as new background independent approaches
according to several theoreticians. GFTs are quantum field theories over the
group manifolds and are considered as the second quantization version of
loop quantum gravity. These theories are caracterized by the specific form of
non-locality in their interactions. TM, especially colored ones, allow one to
define probability measures on simplicial pseudo-manifolds such that the
tensor of rank d represents a (d − 1)-simplex.
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Introduction

Motivations
1 TMs admit the large N-limit dominated by the graphs called melons thanks

to the Gurau breakthrough. This limit behaviour is a powerful tool which
allows us to understand the continuous limit of these models through, for
instance, the study of critical exponents and phase transitions.

2 TM and GFT are merged to give birth to a new class of field theories called
tensorial group field theory. These class of field models enjoy renormalization
and asymptotic freedom. Using the functional renormalization group (FRG)
method, it is also possible to identify the equivalent of Wilson-Fisher fixed
point for some particular cases of models and to prove the asymptotically
freedom and safety.
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Introduction

Wilson and Polchinski
1 There are several way to introduce the FRG in field theories. The first

approach is the one pioneered by Wilson, which follows from simple and
intuitive and therefore yieds a powerful way to think about quantum field
theories. This method allows to interpolate smoothly between the known
microscopic laws IR-regime and the complicated macroscopic phenomena in
physical systems UV-regime and is constructed with the incomplete
integration as cutoff procedure.

2 Well after a new approach to address the same question inspired from the
Wilsonian method, called Wilson-Polchinski FRG equation is given. This very
practicable method, may be integrated with an arbitrary cutoff function and
expanded up to the next to leading order of the derivative expansion. Despite
the fact that all these approachs seem to be nonperturbatively, in practice,
the perturbative solution has appeared more attractive.
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Introduction

Wetterich equation
1 After Wilson-Polchinski, the so called Wetterich flow equation is proposed to

study the nonperturbative FRG and whose study requires approximations or
truncations and numerically analysis due to the nonlinearity form.

2 The FRG equation allows to determine the fixed points and probably the
phase transition. These phase transitions in the case of TGFT models may
help to identify the emergence of general relativity and quantum mechanics
through the geometrogenesis scenario.

3 In our recent and modest contributions the effective vertex expansion method
is used in the context of the FRG. This leads to the definition of new class of
equations called structure equations that help to solve the Wetterich flow
equation. Taking into account the leading order contribution in the symmetric
phase, the non-perturbative regime without truncation can be studied.
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Introduction

Our contribution and main goal of this presentation
1 The Ward-Takahashi (WT) identities is derived and become a constraint

along the flow. These identities are universal for all field theories having a
symmetry, and are not specific to TGFT. Therefore all the fixed points must
belong inside to the domain of this constraint line, before being considered as
an acceptable fixed points.

2 In the case of quartic melonic TGFT models we have showed that the fixed
point occurring from the solution of Wetterich equation violate this
constraint for any choices of regulator functions. This violation is also
independent of the method used to find this fixed point, whether it is the
truncation, or the EVE method.

3 We will discuss all this point in the following presentation
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The model

In the context of TGFT, we consider the pair of complex fields φ and φ̄ which
takes values of d-copies of arbitrary group G :

φ, φ̄ : G d → C (1)

The particular case is G = U(1) the Abelian compact Lie group. For the rest we
consider only the Fourier transform of the fields φ and φ̄ denoted respectively by
T~p and T̄~p, ~p ∈ Zd written as (for ~g ∈ U(1)d , gj = e iθj ) :

φ(~θ ) =
∑
~p∈Zd

T~p e
i
∑d

j=1 θjpj , φ̄(~θ ) =
∑
~p∈Zd

T̄~p e
−i

∑d
j=1 θjpj . (2)

The description of the statistical field theory is given by the partition function

Z[J, J̄] =

∫
dµC e−Sint+〈J,T̄〉+〈T ,J̄〉, (3)
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C is the covariance taking to be

C (~p ) =
1

~p 2 + m2
=

∫
dµC T~p T̄~p (4)

In order to prevent the UV divergences and supress the high momenta
contributions, the propagator (4) has to be regularized. Schwinger regularization :

CΛ(~p ) =
e−(~p 2+m2)/Λ2

~p 2 + m2
. (5)

In general case, Let ϑ(t) such that |1− ϑ(t)| ≤ Ce−κt for C , κ > 0 and t → +∞,
a Laplace transform yields :

CΛ(~p) =

∫ +∞

0

dt ϑ(tΛ2) e−t(~p 2+m2), [ϑ(t) = Θ(t − 1)⇒ Schwinger] (6)
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We introduce tensorial unitary invariants. An invariant is a polynomial P(T , T̄ ) in
the tensor entries T~p and T̄~p which is invariant under the following action of
U(N)⊗d as follows :

T~p →
∑
~q

U(1)
p1q1
· · ·U(d)

pdqdT~q, T̄~p →
∑
~q

Ū(1)
p1q1
· · · Ū(d)

pdqd T̄~q. (7)

The algebra of invariant polynomials is generated by a set of polynomials labeled
by bubbles :

Figure – The 4-vertex bubble from which the dots indicate multiple edges.
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The model

We consider the quartic melonic T 4
5 model which is proved to be renormalizable in

all orders in the perturbative theory. The interaction of this model taking into
account the leading order contributions : (melon and pseudo-melon) is written
graphically as :

S4
int = λ41

5∑
i=1

i

i

T~p1 T̄~p2

T~p3T̄~p4

+ λ42

5∑
i,j=1

T~p1 T̄~p2

T~p3T̄~p4

i

j + · · · (8)

S4
kin = T~p T̄~p (9)
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Wetterich flow equation

The Wetterich equation is a functional integro-differential equation for the
effective action Γ, now taking into account the quantum fluctuations caracterized
by the parameter s, and called average effective action denoted by Γs ,
−∞ < s < +∞. It is the Legendre transformation of the standard free energy
Ws = lnZs :

Γs [M, M̄] = 〈J̄,M〉+ 〈M̄, J〉 −Ws [J, J̄]− Rs [M, M̄] (10)

where Rs [M, M̄] := Tr(MrsM̄) and rs is called the IR regulator. The appearance of
this regulator rs is introduced as new parameter function, which controls the scale
fluctuation from IR to UV such that

lim
s→−∞

rs = 0, lim
s→+∞

rs =∞. (11)

This definition ensures that Γs satisfies the boundary conditions
Γs=ln Λ = S , Γs=−∞ = Γ, where Λ is the UV cutoff.
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Wetterich flow equation

The fields M and M̄ are the mean values of T and T̄ respectively and are given by

M =
∂W
∂J̄

, M̄ =
∂W
∂J

(12)

where W :=Ws=−∞. In general the regulator rs is chosen to be

rs = Z (s)k2f
(
~p 2

k2

)
, k = es , and such that the conditions (11) is well satified. Let

Γ
(2)
s is the second order partial derivative of Γs with respect to the mean fields M

and M̄, the Wetterich equation is then given by

∂sΓs = Tr ∂s rs(Γ(2)
s + rs)−1 (13)

The average effective action is chosen to be of the form

Γs = Z (s)
∑
~p∈Zd

T~p(~p 2 + e2sm̄2(s))T̄~p +
∑
n

Z (s)
n
2 λ̄nVn(T , T̄ ) (14)
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Wetterich flow equation

In the case of quartic melonic interaction and by taking the standard modified
Litim’s regulator :

rs(~p ) = Z (s)(e2s − ~p 2)Θ(e2s − ~p 2) (15)

the Wetterich equation can be solved analytically and the phase diagram may be
given. The flow equations are

ṁ2 = −2dλI2(0)

Ż (s) = −2λI ′2(q = 0)

λ̇41 = 4λ2
41I3(0)

In(q) =
∑

~p∈Z(d−1)

ṙs
(Z (s)~p 2 + Zq2 + m2 + rs)n

. (16)

with the renormalization condition

m2(s) = Γ(2)
s (~p = ~0), λ41(s) =

1

4
Γ(4)
s (~0,~0,~0,~0). (17)
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Wetterich flow equation

Explicitly using the integral representation of the above sum and with d = 5,
η = Ż/Z we get

In(0) =
π2e6s−2ns

6Z (s)n−1(m̄2 + 1)n
(η + 6), I ′n(0) = − π2e4s−2ns

2Z (s)n−1(m̄2 + 1)n
(η + 4). (18)

In term of dimensionless parameter λ41 = Z 2λ̄41, m2 = e2sZm̄2 the system (16)
becomes {

βm = −(2 + η)m̄2 − 2d λ̄ π2

(1+m̄2)2

(
1 + η

6

)
,

β41 = −2ηλ̄+ 4λ̄2 π2

(1+m̄2)3

(
1 + η

6

)
,

(19)

where βm := ˙̄m2, β41 := ˙̄λ and :

η :=
4λ̄π2

(1 + m̄2)2 − λ̄π2
. (20)
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Wetterich flow equation

The solutions of the system (19) is given analytically :

p± =
(
m̄2
± = −23∓

√
34

33
, λ̄41,± =

328∓ 8
√

34

11979π2

)
. (21)

Numerically

p+ = (−0.52, 0.0028), p− = (−0.87, 0.0036). (22)

Apart from the fact that we have a singularity line around the point m̄2 = −1 in
the flow equation (16), another second singularity arise from the anomalous
dimension denominator, and corresponds to a line of singularity, with equation :

Ω(m̄, λ̄) := (m̄2 + 1)2 − π2λ̄41 = 0 (23)

This line of singularity splits the two dimensional phase space of the truncated
theory into two connected regions characterized by the sign of the function Ω.
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Wetterich flow equation

The region I , connected to the Gaussian fixed point for Ω > 0 and the region II
for Ω < 0. For Ω = 0, the flow becomes ill defined. The existence of this
singularity is a common feature for expansions around vanishing means field, and
the region I may be viewed as the domain of validity of the expansion in the
symmetric phase. Note that to ensure the positivity of the effective action, the
melonic coupling must be positive as well. Therefore, we expect that the physical
region of the reduced phase space correspond to the region λ41 ≥ 0. From
definition of the connected region I and because of the explicit expression of
anomalous dimension, we deduce that :

η ≥ 0 , In the symmetric phase . (24)

Then, only the fixed point p+ much be taken into account.
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Phase diagram

The phase diagram is given :
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Ward-identities

Let U = (U1,U2, · · · ,Ud), where the Ui ∈ U∞ are infinite size unitary martices in
momentum representation. We define the transformation :

U [T ]~p =
∑
~q

U1 ,p1q1U2 ,p2q2 · · ·Ud ,pdqdT~q , (25)

such that the interaction term is invariant i.e. U [Sint ] = Sint . Then consider an
infinitesimal transformation :

U = I + ~ε, ~ε =
∑
i

I⊗(i−1) ⊗ εi ⊗ I⊗(d−i) , (26)

where I is the identity on U∞, I = I⊗d the identity on U ⊗d∞ , and εi denotes

skew-symmetric hermitian matrix such that εi = −ε†i and
~εi [T ]~p = εi piqiTp1,··· ,qi ,··· ,pd .
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Ward-identities

The invariance of the path integral (3) means ~ε [Zs [J, J̄]] = 0, i.e. :

~ε [Zs [J, J̄]] =

∫
dTdT̄

[
~ε [Skin] + ~ε [Sint ] + ~ε [Ssource ]

]
e−Ss [T ,T̄ ]+〈J̄,T〉+〈T̄ ,J〉 = 0.

(27)
Computing each term separately, we get successively using linearity of the
operator ~ε : ~ε [Sint ] = 0, ~ε [Ssource ] = −

∑d
i=1

∑
~p,~q

∏
j 6=i δpjqj [J̄~p T~q − T̄~pJ~q ]εi piqi ,

~ε [Skin] =
∑d

i=1

∑
~p,~q

∏
j 6=i δpjqj T̄~p

[
Cs(~p 2)− Cs(~q 2)

]
T~q εipiqi . where∏

j 6=i δpjqj := δ~p⊥i
~q⊥i

, p⊥i := ~p \ {pi}, C−1
s = C−1

−∞ + rs and

C−1
−∞ = Z−∞~p

2 + m2
−∞. Z−∞ is the renormalized wave function usualy denoted

by Z .
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Ward-identities

The ward identity gives relation between two and four point functions as :∑
~r⊥i

,~s⊥i

δ~r⊥i
~s⊥i

(C−1
s (~r)− C−1

s (~s))〈T~r T̄~sT~pT̄~q〉 = −δ~p⊥i
~q⊥i

(Gs(p)− Gs(q))δri si , (28)

where, defined by Γ
(4)
s , the 1PI four point function, we get

〈T~r T̄~sT~pT̄~q〉 = Γ
(4)
s,~r~s;~p~q

(
Gs(~p)Gs(~q) + δ~r~pδ~s~q

)
Gs(~r)Gs(~s) (29)
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Ward-identities

The formal invariance of the path integral implies that the variations of these
terms have to be compensate by a non trivial variation of the source terms.

d∑
i=1

∑
~p⊥i

,~q⊥i

δ~p⊥i
~q⊥i

[
∂

∂J~p

[
Cs(~p 2)− Cs(~q 2)

] ∂

∂J̄~q
− J̄~p

∂

∂J̄~q
+ J~q

∂

∂J~p

]
eWs [J,J̄] = 0 ,

(30)

Then after few simplification we come to∑
~r⊥1

G 2
s (~r )

dC−1
s

dr2
1

(~r )Γ
(4)
s,~r ,~r ,~p,~p =

d

dp2
1

(
C−1
∞ (~p )− Γ(2)

s (~p )
)
. (31)

or

Z−∞Ls :=
∑
~p∈Zd

(
Z−∞ +

∂rs
∂p2

1

(~p )

)
G 2
s (~p )δp10 . (32)
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Structure equations

The Structure equations is the relations between correlation function and allows
to establish a constraint between β-functions for mass, interactions couplings and
wave function renormalization. These relations are obtained in the deep UV limit
(i.e. in the domain 1� es � Λ) without any assumption about the β-functions
and without any truncation of the effective action Γs . The only assumption
concern the choice of the initial conditions, ensuring the perturbative consistency
of the full partition function. The first structure equation concern the self energy
(or 1PI 2-point functions). It takes place as the closed equation for self energy. 1

Let us summarize in the following proposition

1. The rank of the tensors is fixed to 5, and we denote it by d to clarify the proof(s).
24 / 41



Introduction : motivations
Truncation method and flow equations

Effective vertex expansion
Conclusion

Structure equations

In the melonic sector, the self energy Σs(~p ) is given by the closed equation which
takes into account the effective coupling λ41(s) as :

− Σs(~p ) = 2λr41Zλ
∑
~q

(
d∑

i=1

δpiqi

)
Gs(~q ) . (33)

In the same way, in the melonic sector, the perturbative zero-momenta 1PI

four-point contribution Γ
(4),i

s,~0~0;~0~0
is given by :

Γ
(4),i

s,~0~0;~0~0
= 2π00 =

4Zλλ
r
41

1 + 2λr41ZλAs
, (34)

where As is defined as :

As =
∑
~p⊥

[Gs(~p⊥)]2 , ~p⊥ := (0, p1, · · · , pd) , (35)

Gs(~p) being the effective propagator : G−1
s (~p ) = Z−∞~p

2 + m2 + rs(~p )−Σs(~p ) .
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Structure equations

In other words, we have an explicit expression for the effective coupling

λ41(s) := 1
4 Γ

(4),i

s,~0~0;~0~0
,

λ41(s) =
λr41

1 + 2λr41Ās

, (36)

from which we get

∂sλ41(s) = − 2(λr41)2Ȧs

(1 + 2λr41∆As)2
= −2λ2

41(s)Ȧs . (37)

In the above relation we introduce the dot notation Ȧs = ∂sAs

As =
∑
~p⊥

1

[Γ
(2)
s (~p⊥) + rs(~p⊥)]2

, Ȧs = −2
∑
~p⊥

Γ̇
(2)
s (~p⊥) + ṙs(~p⊥)

[Γ
(2)
s (~p⊥) + rs(~p⊥)]3

. (38)
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Constraint equation

The constraint providing from the Ward identity, which relies the β-functions and
the anomalous dimension is given by :

β41 = −ηλ̄41

(
1− λ̄41π

2

(1 + m̄2)2

)
+

2λ̄2
41π

2

(1 + m̄2)3
βm (39)

This relation need to be taking into account in the Wetterich flow equation and
therefore in the search of fixed point. To prove this relation, let us consider the
derivative of Z with respect to s using the structure equation

Ż = (Z−∞ − 2λ41Z−∞Ls)
λ̇41

λ41
− 2Z−∞∆̇s λ41. (40)

In the above relation we have used the decomposition of Ls = As + ∆s . Remark
that the Ward identity can be written as 2λ41Ls = 1− Z̄ where Z̄ = Z/Z−∞.
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Constraint equation

Then (40) becomes :

Ż

Z
=
λ̇41

λ41
− 2

Z−∞
Z

∆̇sλ41. (41)

We now use the dimensionless quantities m̄, λ̄41, B̄s such that ∆s = Z̄
Z 2 B̄s and

reexpressing (41) as :

β41 = −ηλ̄41 + 2λ̄41(−ηB̄s + ˙̄Bs) (42)

where B̄s and ˙̄Bs much be simply compute using the integral representation of the
sum. We come to :

B̄s = − π2

2(1 + m̄2)2
, ˙̄Bs =

π2βm
(1 + m̄2)3

, (43)
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Constraint equation

Let p is a arbitrary fixed point of the theory. We get βm(p) = 0 = β41(p) = 0.
Then the constraint (39) implies that a the point p

ηλ̄41

(
1− λ̄41π

2

(1 + m̄2)2

)
(p) = 0. (44)

The particular solution λ̄41 = 0 correspond to the Gaussian fixed point. For
λ̄41 6= 0 we have only

η = 0, or
λ̄41π

2

(1 + m̄2)2
= 1 (45)

It is clear that the fixed point p+ = (−0.55, 0.0025), η ≈ 0.7 violate these
constraints.
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Constraint equation

Remark that other way to prove the violation of the Ward identity, is to extract
the coupling λ41 in the constraint (39) and solve the flow of mass and coupling
taking into account the assumption that the coupling is determine by the
constraint equation. Now we get

λ̄3
41 = 0 or λ̄41 =

11(1 + m̄2)2

5π2
. (46)

By replacing this solution λ̄3
41 = 0 in the flow equations of mass and coupling (16)

we get

βm = −2m̄2, β41 = 0. (47)

Now setting βm = 0 = β41, only the Gaussian fixed point (m̄∗ = 0, λ̄∗41 = 0)
survives. Also the last solution leads to

βm =
4

9
(12m + 11), β41 =

484(m + 1)(15m + 13)

225π2
. (48)

Now setting βm = 0 = β41, no solution for the mass exist in this case.
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Flow equations using the EVE

Let us consider the flow equation for Γ̇(2), obtained from (13) deriving with
respect to M and M̄ :

Γ̇(2)(~p ) = −
∑
~q

Γ
(4)
~p,~p,~q,~q G

2
s (~q )ṙs(~q ) , (49)

where we discard all the odd contributions, vanishing in the symmetric phase.
Deriving on both sides with respect to p2

1 , and setting ~p = ~0, we get :

Ż = −
∑
~q

Γ
(4) ′
~0,~0,~q,~q

G 2
s (~q )ṙs(~q )− Γ

(4)
~0,~0,~q,~q

G 2
s (~q )ṙs(~q ) , (50)

where the ”prime” designates the partial derivative with respect to p2
1 . In the deep

UV (k � 1) the argument used in the T 4-truncation to discard non-melonic
contributions holds, and we keep only the melonic diagrams as well. Moreover, to

capture the momentum dependence of the effective melonic vertex Γ
(4)
melo and

compute the derivative Γ
(4) ′
melo ,~0,~0,~q,~q

, the knowledge of πpp is required. It can be

deduced from the same strategy as for the derivation of the structure equation, up
to the replacement :
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Flow equations using the EVE

As → As(p) :=
∑
~p∈Zd

G 2
s (~p )δp1p , (51)

from which we get :

πpp =
2λr

1 + 2λr Ās(p)
, Ās(p) := As(p)−A−∞(0) . (52)

The derivative with respect to p2
1 may be easily performed, and from the

renormalization condition (17), we obtain :

π′00 = −4λ2(s)A′s , (53)

and the leading order flow equation for Ż becomes :

Ż = 4λ2A′s(0) I2(0)− 2λI ′2(0) . (54)
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As announced, a new term appears with respect to the truncated version (16),
which contains a dependence on η and then move the critical line. The flow
equation for mass may be obtained from (49) setting ~p = ~0 on both sides. Finally,
the flow equation for the marginal coupling λ may be obtained from the equation
(13) deriving it twice with respect to each means fields M and M̄. As explained

before, it involves Γ
(6)
melo at leading order, and to close the hierarchy, we use the

marginal coupling as a driving parameter, and express it in terms of Γ
(4)
melo and Γ

(2)
melo

only. One again, Γ
(6)
melo have to be split into d monocolored components Γ

(6) ,i
melo :

Γ
(6)
melo =

d∑
i=1

Γ
(6) ,i
melo . (55)

The structure equation for Γ
(6) ,i
melo may be deduced following the same strategy as

for Γ
(4) ,i
melo
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Starting from a vacuum diagram, a leading order 4-point graph may be obtained
opening successively two internal tadpole edges, both on the boundary of a
common internal face. This internal face corresponds, for the resulting 4-point
diagram to the two external faces of the same colors running through the interior
of the diagram. In the same way, a leading order 6-point graph may be obtained
cutting another tadpole edge on this resulting graph, once again on the boundary
of one of these two external faces. From this construction, it is not hard to see
that the zero-momenta Γ

(6) ,i
melo vertex function must have the following structure :

Γ
(6) ,i
melo = (3!)2


G

G

G

π π

π

i
i

i


, (56)
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the combinatorial factor (3!)2 coming from permutation of external edges.
Translating the diagram into equation, and taking into account symmetry factors,
we get :

Γ
(6) ,i
melo = 24Z 3(s)λ̄3(s)e−2sĀ2s , (57)

with :
Ā2s := Z−3e2s

∑
~p∈Zd−1

G 3
s (~p ) . (58)

Note that this structure equation may be deduced directly from Ward identities.
The equation closing the hierarchy is then compatible with the constraint coming
from unitary invariance. The flow equations involve now some new contributions
depending on two sums, Ā2s and Ā′s , defined without regulation function ṙs .
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However, they are both power-counting convergent in the UV, and the
renormalizability theorem ensures their finitness for all orders in the perturbation
theory. For this reason, they becomes independent from the initial conditions at
scale Λ for Λ→∞ ; we get, using the Litim’s regulator :

Ā2s =
1

2

π2

1 + m̄2

[
1

(1 + m̄2)2
+

(
1 +

1

1 + m̄2

)]
, (59)

and

Ā′s =
1

2
π2 1

1 + m̄2

(
1 +

1

1 + m̄2

)
. (60)

The complete flow equation for zero-momenta 4-point coupling write explicitly as :

Γ̇(4) = −
∑
~p

ṙs(~p )G 2
s (~p )

[
Γ

(6)

~p,~0,~0,~p,~0,~0
− 2

∑
~p ′

Γ
(4)

~p,~0,~p ′,~0
Gs(~p ′)Γ

(4)

~p ′,~0,~p,~0

+2Gs(~p )[Γ
(4)

~p,~0,~p,~0
]2
]
. (61)
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Keeping only the melonic contributions, we get finally the following autonomous
system by using the Litim’s regulation : βm = −(2 + η)m̄2 − 2d λ̄ π2

(1+m̄2)2

(
1 + η

6

)
,

βλ = −2ηλ̄+ 4λ̄2 π2

(1+m̄2)3

(
1 + η

6

) [
1− 1

2π
2λ̄
(

1
(1+m̄2)2 +

(
1 + 1

1+m̄2

)) ]
.

(62)

where the anomalous dimension is then given by :

η = 4λ̄π2 (1 + m̄2)2 − 1
2 λ̄π

2(2 + m̄2)

(1 + m̄2)2Ω(λ̄, m̄2) + (2+m̄2)
3 λ̄2π4

. (63)
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The new anomalous dimension has two properties which distinguish him from its
truncation version. First of all, as announced, the singularity line Ω = 0 moves
toward the λ̄ axis, extending the symmetric phase domain. In fact, the
improvement is maximal, the critical line being deported under the singularity line
m̄2 = −1. In standard interpretations, the presence of the region II is generally
assumed to come from a bad expansion of the effective average action around
vanishing means field, becoming a spurious vacuum in this region. However, the
EVE method show that this singularity line is completely discarded taking into
account the momentum dependence of the effective vertex. The second
improvement come from the fact that the anomalous dimension may be negative,
and vanish on the line of equation L(λ̄, m̄2) = 0, with :

L(λ̄, m̄2) := (1 + m̄2)2 − 1

2
λ̄π2(2 + m̄2) . (64)

Interestingly, there are now two lines in the maximally extended region I ′ where
physical fixed points are expected. However, numerical integrations, show that the
improved flow equations admit a non-Gaussian fixed point, numerically very close
from the fixed point p+ obtained in the truncation method, and then unphysical.
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Violation of Ward-identity
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Figure – The relevant lines over the maximally extended region I ′, bounded at the
bottom with the singularity line m2 = −1 (in green). The blue and red curves correspond
respectively to the equations L = 0 and Ω = 0. Moreover, the black point correspond to
the numerical non-Gaussian fixed point, so far from the two previous physical curves.
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To sum up, in this work

• In this presentation we show that the IR fixed point obtained in the FRG
applications for TGFT lack an important constraint coming from Ward
identities. This constraint reduces the physical region of the phase space to a
one-dimensional subspace without fixed point, suggesting that the phase
transition scenario abundantly cited in the TGFT literature may be an
artifact of an incomplete method.

• This suggestion is improved with a more sophisticated method, taking into
account the momentum dependence of the effective vertex, and providing a
maximal extension of the symmetric region. Despite with this improvement,
the resulting numerical fixed point does not cross any of the physical lines
provided from the Ward constraint. In the literature, the quartic truncation
has been largely investigated, for various group manifold and dimensions.

• We expect from our analysis that none of these models modify our
conclusions, except possibly for TGFT including closure constraint as a
Gauge symmetry.
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Thank you for your attention
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