RG flow with a covariant foliation
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Foliating spacetimes |

© Ingredients for foliation structure:

~ normalised timelike vector ny, gﬂ’/nuny — 1
- spatial metric orthogonal to vector o g“”n’ugw} — ()
~ dictionary 4-metric to foliation variables Juv — Opp + T, Ty

© note: quadratic relationship as opposed to non-polynomial relationship if lapse
and shift are used:

(N2 4+ 39N;N; N,
Juv = N; 235
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Foliating spacetimes Il - curvature

© curvature tensors can be decomposed into temporal and spatial parts:

~ Intrinsic Riemann tensor
(3)
R0 |0]
o extrinsic curvature

K,, =—-n"Dyoy, +Dyn, + Dyny,)

1

| 2

~ acceleration vector
. (8%

A, =n"Dyn,,

- Gauss-Codazzi relation:

R=®R - K"K, + K*-2D,(n"K)
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Constructing an RG flow with foliation |

- aim: construct FRG flow for metric with foliation structure

. 1 1

~ background field formalism, metric language:
Juv — g,u,y =+ h,UJ/
~ one-loop structure of FRG relies on quadratic regulator, want to preserve that
Ny = Ny + Ny

© quadratic parameterisation of spatial metric yields linear relation between
metric and foliated language:
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Intermezzo: foliation gauge fixing

© going from metric language to foliation language, we added degrees of freedom:
10 (symmetric matrix) vs. 14 (matrix+vector)

~ however: full quantum fields have to satisfy their constraints:
g"'n,n, =1
g"’'nyo,, =0
© easiest solution:
31/ — 'ﬁlua-,uz/ — ﬁ'ufl,uﬁy = ()

~ implement this with Lagrange multiplier, similar to gauge fixing
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Constructing an RG flow with foliation II

© recipe to construct the flow:

© calculate second variation of effective average action in metric language
(including standard gauge fixing and regulator)

© use linear map to express metric fluctuation in terms of foliation fluctuations
© add foliation gauge fixing

© use standard heat kernel techniques to calculate the trace

© result: flow on background with foliation structure which preserves
background diffeomorphism invariance
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Horava-Lifshitz gravity
Horava, 0901.3775

© I1dea: break Lorentz symmetry to allow perturbative quantisation, similar to many
condensed matter systems

~ anisotropic scaling with dynamical critical exponent z:

r—ar, t— o't
© propagator structure:

1
w2 — k2 — g (k2)?

~ consequence: improved UV behaviour, recently proven to be perturbatively
renormalisable (for some concrete model)

Barvinsky, Blas, Herrero-Valea, Sibiryakov, Steinwachs, 1512.02250
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Horava-Lifshitz gravity - action
Horava, 0901.3775

~ allow for second order temporal and higher order spatial derivatives

© “kinetic” part:
S = 167T1GN / d®TVz/| det g| (K" K, — NK?)
- “potential” part:
Sy = 16W1GN / A3 z\/| det g| Vo]

© potential includes terms like

BR3 BRGAGCR OR,, GAGRw
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Horava-Lifshitz gravity - mechanism
Horava, 0901.3775

- UV: cubic terms in potential dominate, anisotropic scaling, perturbative
renormalisation

~ IR: cubic terms negligible, reduces to standard GR?

study RG flow!
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Flow of breaking terms

~ with foliation structure at hand, can calculate flow of background diffeomorphism
breaking terms

~ consider flow of Einstein-Hilbert plus all other second order derivative terms:

1
| T d* ko K2 + koK, KM H
break 167TGN/ X \g| [ 0 + K2 L —|-CL1AMA ]

© use harmonic gauge and single metric approximation to simplify calculations
© restrict to linear order in breaking couplings

~ calculation of flows: xAct
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Flow equations

© beta functions of Newton's&cosmological constant: Reuter flow + corrections
from breaking terms

~ flow of breaking couplings (to linear order in all couplings):

if() — Ziﬂ‘ (22&1 -+ 1916() — Skg)

].62 — %(22&1 — Sk() — 49k2)

a1 = — 2 (25a; + 6ko + 12ky)
O

© are the breaking terms relevant?
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Relevance of Lorentz symmetry |

© consider inner product of beta functions with coordinate vector:

g [23 13 15 85

(k’o,kg,al) . (iﬂ‘o,iﬁg,dl) = —247'(' 5 (2&1 + k0)2 -+ ?(Qal -+ ]{‘2)2 -+ 28&% + ?kg + 71%% <0

© points towards center, i.e. Lorentz breaking increases towards the IR

© Is this the death of Lorentz symmetry breaking quantum gravity theories?
Competing effects:

© relevance enhances couplings

© prefactor g goes to zero quickly, flow dies out in IR
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Relevance of Lorentz symmetry I

~ diagonalise flow of breaking couplings:
dl ~ —0219 dl
dg)g ~ (—1.01 + 0.

© can be solved analytically:

dl,k ~ d1,A CXP

d2 3 ) ~ d2 3 A €Xp

o
dk
0.21 B
/k k7

111)9 dz’g
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Relevance of Lorentz symmetry Il

~ assumption: IR is governed by GR, Newton’s constant runs classically up to
Planck scale
k2

~ 32
M5,

~ corresponding magnification of breaking couplings:

g

d170 ~ 1-11d1,Mp1 ] dg)g)() ~ 1.66d2,3,MP1

koo 1.15  0.01 0.22 \ [ko.rr,
koo | = 001 135  —0.24 | | k2o,
a1.0 0.24 0.52 1.92 a1 Mp
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Conclusion&Outlook

-~ first background diffeomorphism invariant flow equation with access to foliation
structure

© FRG Asymptotic Safety = CDT? ("Euclidean QG is good enough, if done
right?”)

© Lorentz symmetry is technically relevant, but practically marginal: not enough to
rule out Horava-Lifshitz quantum gravity

~ obvious points of extensions:
© non-perturbative dependence on breaking couplings
© higher order terms
~ matter couplings
© bimetric
© arbitrary gauge fixing

Radboud University § %“
%/ﬂme-‘e’e




