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Introduction

What we want: A systematic way of dealing with non-perturbative phenomena in
quantum field theory.

What we got: The quantum effective action (in various forms).
[R. Jackiw '74; J. M. Cornwall, R. Jackiw & E. Tomboulis '74; H. Ver-
schelde & M. Coppens '92; M. E. Carrington '04; A. Pilaftsis & D. Teresi
'13; J. Ellis, N. E. Mavromatos & D. P. Skliros '16]

What it’s good for: Non-equilibrium phenomena
[J. S. Schwinger '61; G. Baym & L. P. Kadanoff '61; L. V. Keldysh '64;
R. D. Jordan '86; E. Calzetta & B. L. Hu '88; J. P. Blaizot & E. lancu
'02; J. Berges '04; PM & A. Pilaftsis '13]
Symmetry breaking
[S. R. Coleman & E. J. Weinberg '73; J. Alexandre '12; J. Alexandre &
A. Tsapalis '12]
Instantons/Solitons/Vacuum decay
[B. Garbrecht & PM '15; A. D. Plascencia & C. Tamarit '16]
Functional renormalisation group
[C. Wetterich '91 & '93; T. R. Morris '94; U. Ellwanger '94; M. Reuter
'98; J. Berges, N. Tetradis & C. Wetterich '02; J. Pawlowski '07; H. Gies
'12; O. J. Rosten '12]
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The 2Pl effective action

For illustration, let’s work with a zero-dimensional quantum field theory:
[PM & P. M. Saffin "19]

2
A
S(®) = ’"7¢2 + o

and write down the partition function
+o0o 1 1 )
Z(J,K):/\// do exp [_7 (5(¢)—J¢—7K¢ )]
oo h 2
in the presence of external sources J and K.
The Schwinger function
W(J,K)=—hInZ(J,K)

is concave.

Its gradients with respect to —J and —K/2 are (®), , and <¢2>J,K' respectively, i.e.
the “one-" and “two-point functions”.
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The 2PI effective action

W(J,K) = —hInZ(J, K) for m*> = —1 and A = 6, i.e. non-convex classical potential:
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[PM & P. M. Saffin '19]

Introduce a function

16, 8) = W, K) + o+ S K[ + hA]

The variables ¢ and A determine the value of the maximum of this function and its
position in the (J, K) plane ...
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The 2PI effective action

Ik(1,2) Ik(2,2)

I,,x(0,0) I,k(1,0) I,k(2,0)
[PM & P. M. Saffin '19]
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The 2PI effective action

The (double) Legendre transform

M(¢, A) = maxy kT k(d,A)

corresponds to the value of these maxima as a function of ¢ and A.

The locations of the maxima correspond to extremal sources 7 and K, defined by

oryk(¢,4) —0 oryk(¢,4) —0
oJ J=J K=K oK J=J K=K
The extremisation yields
1
M(6,8) = W(J.K) + T+ SK[¢* + h]

with

1o} 1o} 5

¢=h—InZ(J,K) hA = 2h— InZ(J, K) — ¢
oJ J=T,K=K oK J=T,K=K

Millington, Asymptotic Safety Seminar, 21/10/2019



The 2Pl effective action

Importantly, since the location of the maxima of I'; (¢, A) depend on ¢ and A

T =J(¢, D) K=K(¢,4)
10
20
0
0
-10 |
-20
1 ek
05 : 0 2 0.5 0 2
A 0 -2 " A 0 -2
[PM & P. M. Saffin "19]
In corollary,
¢ =¢(J,K) A=A(T,K)

and they are related to the tangents to the Schwinger function.
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The 2Pl effective action

The extremal sources J and K are related to the tangents to (¢, A):

D) — 706.8) + Ko, )0
or(6,8) _ b
“an = p&A)

The right-hand sides are source terms, and the gradients of ['(¢, A) are the equations
of motion for the one- and two-point functions ¢ and A.

Since these are correct to all orders in 1, we are justified in calling (¢, A) a quantum
effective action.
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The 2PI effective action: convexity

By definition of the Legendre transform, I'(¢, A) should be convex.

But for the non-convex classical potential with m?> = —2 and A = 6, we find

[PM & P. M. Saffin '19]

This doesn't look convex; what gives?
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The 2PI effective action: convexity

Convenient to work with the variables ¢/ = ¢ and A’ = ¢? + RA and the rescaled
sources J' = J and K/ = K/2:
[PM & P. M. Saffin "19]

M(¢,A)=W(J,K)+T'¢' +K'Af
ar(e¢,A) 7 ar(¢,A)

Z\5) — i
o¢' onr ~

g WK s OWILK)
PXE oK

We consider the product
[cf. the 1Pl case in J. Alexandre & A. Tsapalis '12]

—Hess(MN)(¢’, A") - Hess(W)(J',K') =1

—Hess(W)(J’,K') is a covariance matrix, i.e. positive definite. Thus, Hess(I")(¢’, A’)
is positive definite, and (¢, A) is therefore convex, but with respect to ¢ and A’.
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The 2PI effective action: convexity

Plotting (¢, A) as a function of ¢ and A’ = ¢? + LA, we see that it is convex:

4 25
3 2
Az‘ 1.5

1
L 0.5
0

[PM & P. M. Saffin '19]

Note that this is for a non-convex classical potential, with m? = —2 and A\ = 6.

But for fixed A = (A’ — ¢?)/h, ['(¢, A) neet not be convex in the ¢ direction.
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The 2Pl effective action: single saddle point

Stationarity/saddle-point condition:

aS(®)

Do | = T(08) K6, 8)p =0

P=p
Define the two-point function

2
6= 0 -K,0) " )= T o

oA
=m + —¢
=¢ 2

and expand ® = ¢ + VR to obtain
r(¢7 A) = 5(90) + hrl(‘)o? g) + h2r2(% g) + h2r1PR(507 g)

+T (6= 9)+ K& — @ + 1A~ 1G)

1
M(p,G) = % [In (671G(0)) + KG] = 5 [In(G71G(0)) + G~1G —1]
1 1 1
M2, G) = gAQQ - E/\Zsozg3 M1pr(p, 9) = —§A2¢2g3

But ¢ = ¢(¢, A), and we can expand the right-hand side around ¢ — ¢ = O(h):
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The 2PI effective action: multiple saddle points and the Maxwell construction

More generally, we have a set of saddle points {p;} = {p;}(¢p, A), where both the
type and number depend on (¢, A).

For m®> = —1 and A = 6, we have 1 to 3 saddles, depending on (¢, A):

[PM & P. M. Saffin '19]

Don't mix up your ¢'s and ¢'s!

If the saddle points are “reasonably well separated”

Z2(J,K)~ > Zi(T,K)
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The 2Pl effective action: multiple saddle points and the Maxwell construction

Suppose there are two contributing saddle points, ¢+ (¢, A) = @+ + hdp+ (¢, A):
[PM & P. M. Saffin "19]

rio,a) = Bt 2 I P )0 - 60)

$r—¢ b—p_

¢*95—> PP (95+ *¢)¢’+*¢— h
—nl L +"ka
" (¢+—¢ HVErS 2

In the limit £ — 0, we recover the 1PI result:
[J. Alexandre & A. Tsapalis '12]

M(e) = (@ ¢)r + (-6 )I—Jrfhln (?_¢_>W+(m)ﬁ

Gy — P Pt — @

giving the Maxwell construction in the limit 7 — 0O:

For how this works in higher dimensions, see [R. J. Rivers '84; PM & P. M. Saffin '19].
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The 2Pl effective action: multiple saddle points and the Maxwell construction

> T(¢) is monotonic only for g_ < ¢ < @4.

> We hit branch points at ¢ = @+ when we no longer have multiple saddles.

> For ¢ > @t or g <@, T(¢) = V().

V(@)

/ +3//27

/ +2/3/27
/ +1/ \/f
t t t i
/Q— ©0 Y+
—2/VE

// VT

The values on the right-hand side are 7 = J[¢], with K = 0.
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The 2P effective action: method of external sources [B. Garbrecht & PM '16]

Folklore: The physical limit corresponds to vanishing external sources.

Reality: Setting J (¢, A) and K(¢, A) to zero constrains ¢ = ¢(J, ) and
A = A(J,K), yielding the CJT effective action with an important difference:
[J. M. Cornwall, R. Jackiw & E. Tomboulis '74]

We can choose the sources J(¢, A) and K(¢, A), such that the saddle point of the
partition function coincides with the quantum trajectory by demanding

5S[®] e, A
—_— - A) — K(¢,D)p = —— =0
50 o, T(¢, ) = K(e, D)y 56 |ypnco

This requires

T(e,G) + K(p,G)p =0

and it can be proven that this is the case.
[B. Garbrecht & PM '16; PM & P. M. Saffin '19]

This is important when the quantum trajectory is non-perturbatively far away from the
classical trajectory, e.g., as in tunnelling problems in radiatively generated potentials.
[E. J. Weinberg '93; B. Garbrecht & PM '15 & '16]
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The 2Pl effective action: method of external sources

But we can do more:
[B. Garbrecht & PM '16]

> Setting J to zero and choosing K to be local yields the 2PPI effective action of
Verschelde and Coppens.
[H. Verschelde & M. Coppens '92]

» Constraining the sources by, e.g., the Ward identities, yields results in the spirit of
the symmetry-improved effective action of Pilaftsis and Teresi.
[A. Pilaftsis & D. Teresi '13]

» Choosing KC to be the regulator of the renormalisation group evolution yields ...
[E. Alexander, PM, J. Nursey & P. M. Saffin '19]
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Interlude: the 1Pl average effective action

The average 1PI effective action is (Warning: non-standard sign convention on R.)
[C. Wetterich '91]

OWI[T, Rk]

1
1PI R R —
rav [¢» ‘ak] = W[J, k] x7x¢x 2¢x k,xy(,by d)x 6\7X

where Ry, is the inverse FT of the regulator (kills fluctuations with g2 > k?2).
Requiring

5WL7 Rl
0 Jx

O = — =0
implies J[¢] = Jk[#] and
1
W [Tk, Ri] = —dxOk Tk,x — 5 (RAg 5y + IxPy) Ok R xy

2W[Tk, Ri]

Dy = —
il 6Jk,x6jk,y

The Wetterich-Morris-Ellwanger equation:
[C. Wetterich '93; T. R. Morris '94; U. Ellwanger '94]

W6, Ry = Jz Tr (A * O Ry)
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The regulator-sourced 2P| effective action and exact flow equations

Instead, starting from the 2P| effective action,
[E. Alexander, PM, J. Nursey & P. M. Saffin '19]

2P| _ 5r2PI [(z)v A] 6r2PI [¢7 A]
o[, A] = e Opx + Dy OkDxy
o — 0, WK _

6T«
h
hT*'[¢, A] = 5 oo [0, Al0kAsy

Now choose Kxy[¢, A] = Ry , to be the inverse FT of the regulator:

O MP'[p, A] = g Tr (R * O D)

h
HWPp, Ayl = +5STr(Ride )

h
W6, Ri] = — ESTF (AkOkR)
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The regulator-sourced 2P| effective action and exact flow equations

Boundary conditions:

> As k — 0, Rx — 0, and both the regulator-sourced 2P| and average 1Pl effective
actions, coincide with the 1Pl effective action I'P![¢] = W[T] + Txéx.

> As k — o0, all fluctuations are killed, and both the regulator-sourced 2P| and
average 1Pl effective actions, coincide with the bare action S.

Closure: It follows from the convexity of the 2Pl effective action that

_ PG A PWITi K] 8T Akl P W[Ti K _

1
xSy 0Tk x0Tk,y 0x0A Tk k0K ,
3227, A 2Pl Al b6x
Spxdy T T Seen, oK,
But 6¢x/dK) , = 0 and therefore
22Pl A 2
-1 _ g [4)7 k] _ g S[¢] _Rk,xy +O(7’LI/)

T 8gx0dy  S9xOdy

So we have two closed systems with the same boundary conditions but different
evolution equations, and therefore different RG flows!
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The regulator-sourced 2P| effective action: convexity

For the non-convex classical potential with m? = —2 and A = 6, we had
31/ [
251ff 6
a2
151 N
1 2
0.5
0

[PM & P. M. Saffin '19]

» For k = oo, A — 0: TPl 5 5.

» For k - 0, K =Ry — 0: MP' 1P,

Millington, Asymptotic Safety Seminar, 21/10/2019
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The regulator-sourced 2P| effective action: quick example

Employing the derivative expansion, we make the Ansatz (p = ¢?/2)
1
r2P e, A = / dx [Uk(p) + 5 2k(p: (96)*)9, 60,6 + O(3")

1 _
Us(p) = 58 (p = k) + Ak
and introduce dimensionless variables
Rk = Zkk27dﬁk )\k = Z;de74gk
with Z, = Zi(px, k?), giving
1 5 o
Uk(p) = Ekd/\k(zkk2 Ip—r)? + Ay

The Ansatz for the two-point function is
_ 1
Zi(p, a*)a* — Ri(a?) + Up(p) + 20U} (p)

and we take the Litim regulator
[D. F. Litim '02]

Ak(p7 q2)

Ri(a®) = Zi (¢° = k) © (K* = ¢%)
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The regulator-sourced 2P| effective action: quick example

Regulator-sourced 2PI: (neglecting the anomalous dimension)
[E. Alexander, PM, J. Nursey & P. M. Saffin '19]

1 8vgkd 1
3:Uk(p) = += | Ri(g®)o:Aa 2 AN =
tUk(p) +2/q k(a7)0:Ax(p, %) NS Jd52) AT 2mme)?
48vy 1
Ok =02—d
ik = (2= dre+ G T ame)?
432vy A2

Ot = (d — 4))\1( +

d(d + 2) (1 —+ 2"5k>\k)4

Wetterich-Morris-Ellwanger: (neglecting the anomalous dimension)
[C. Wetterich '93; T. R. Morris '94; U. Ellwanger '94]

1 4y k9 1
0t Uy (p) = *5 / A(p, q2)8t’Rk(q2) Oty = Z m
q
12vy 1
0 =(2—-d _—
O Gt (11 2/ 0p )2

T2vg4 2

O = (d — A\ S S
M= (d =DM+ =3 (1+ 2k Ap)3
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The regulator-sourced 2P| effective action: quick example

10-4L1 | | | | I I
10610 10 107 102 1070 10°

ki

[E. Alexander, PM, J. Nursey & P. M. Saffin '19]

> Solid: regulator-sourced 2Pl. Dashed: Wetterich-Morris-Ellwanger.
> The flow of k is faster (in d = 4); the flow of Ay is slower (in d = 4).

> This is in a perturbative regime . ..
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Concluding remarks

> [t pays to be pedantic when it comes to the quantum effective action.

» We can exploit the sources to:

> Improve our perturbation theory.
> Improve symmetry properties.
> Map between different realisations of the effective action.

> Study the exact RG flow?

> But we do not recover the Wetterich-Morris-Ellwanger equation:

> Is there an ambiguity?
> How significant can the deviation be in non-perturbative regimes?

> Are the fixed points the same?

» Lotstodo...

Millington, Asymptotic Safety Seminar, 21/10/2019 26



Backup: the Legendre transform

f(x)
(x)

1.0 -0.5 0.0 0.5 1.0

[M. Deserno '12 (unpublished); PM '16 (unpublished)]

> A function f that is strictly convex or concave on an interval | € R has a
second-derivative of definite sign.

> lts first derivative f/(x) is monotonic, single-valued and invertible on /.

> We can express f as the set of ordered pairs {(x, f(x))|x € I,f(x) € R} or the
envelope of the tangents to f.

» The Legendre transform maps {(x, f(x))} to {(x*, F*(x*) = —*f(x*))},
specifying the gradients and intercepts of the tangents. (x = convex conjugate.)
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Backup: the Legendre transform

f(x)
f(x)

[M. Deserno '12 (unpublished); PM '16 (unpublished)]

X*X.

» Define w(x)

> If f(x) is convex (concave), w(x) — f(x) will have a maximum (minimum):

*(x*) = min, e/ {f(x) — x*x} , f(x) convex
T | maxeer{f(x) = x*x}, f(x) concave
(x*) = maxxe {x*x — f(x)}, f(x) convex
x*) =
minye{x*x — f(x)} , f(x) concave
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Backup: middle saddle

20
10
@
0
0
410
-4
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Backup: saddles with IC £ 0

i ( D)

3NV
RN+ D
o1V + D

b

—1/V2T+

=221+ D
o =32+

]

—1/V2T -

[PM & P. M. Saffin '19]

The values on the right-hand side are 7 + K&, with |[K| = 1.
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Backup: d =2

| | | | |
106 10-3 104 1073 1072 10! 100

[E. Alexander, PM, J. Nursey & P. M. Saffin '19]
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Backup: d =3

| | |
106 10-3 104 1073 1072 10! 100

kip

[E. Alexander, PM, J. Nursey & P. M. Saffin '19]
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