The Fröhlich-Morcchio-Strocchi Mechansim and Quantum Gravity

Axel Maas

4th of November 2019 Asymptotic Safety Seminar International

NAWI Graz Natural Sciences

Der Wissenschaftsfonds

FMS: 1712.04721

- Global and local internal symmetries
 - Physical content of symmetries

- Global and local internal symmetries
 - Physical content of symmetries
- Fröhlich-Morcchio-Strocchi mechanism

- Global and local internal symmetries
 - Physical content of symmetries
- Fröhlich-Morcchio-Strocchi mechanism
 - Two examples in QFT
 - Standard-model Higgs sector
 - Toy grand-unified theory

FMS: 1712.04721 QG: 1908.02140

- Global and local internal symmetries
 - Physical content of symmetries
- Fröhlich-Morcchio-Strocchi mechanism
 - Two examples in QFT
 - Standard-model Higgs sector
 - Toy grand-unified theory
- Space-time symmetries

FMS: 1712.04721 QG: 1908.02140

- Global and local internal symmetries
 - Physical content of symmetries
- Fröhlich-Morcchio-Strocchi mechanism
 - Two examples in QFT
 - Standard-model Higgs sector
 - Toy grand-unified theory
- Space-time symmetries
- FMS in quantum gravity

FMS: 1712.04721 QG: 1908.02140

- Global and local internal symmetries
 - Physical content of symmetries
- Fröhlich-Morcchio-Strocchi mechanism
 - Two examples in QFT
 - Standard-model Higgs sector
 - Toy grand-unified theory
- Space-time symmetries
- FMS in quantum gravity
- Some speculations on phenomenology

 $Z = \int_{\Omega} D \phi^a e^{iS[\phi]}$

 $Z = \int_{\Omega}$

Measure is invariant

- no anomalies

Action is invariant $S[\phi] = S[G\phi]$

 $iS[\phi]$

 $D\phi$

 $Z = \int_{\Omega} D \phi^a e^{iS[\phi]}$

Integration range - contains all orbits $G \phi$

 $\langle \phi^b(x) \rangle = \int_{O} D \phi^a e^{iS[\phi]} \phi^b(x)$

$$\langle \phi^b(x) \rangle = \int_{\Omega} D \phi^a e^{iS[\phi]} \phi^b(x)$$

- There is no preferred point on the group orbit
 - There is no absolute orientation/frame in the internal space
 - Does not change when averaging over position
 - There is no absolute charge

$$\langle \phi^b(x) \rangle = \int_{\Omega} D \phi^a e^{iS[\phi]} \phi^b(x) = 0$$

- There is no preferred point on the group orbit
 - There is no absolute orientation/frame in the internal space
 - Does not change when averaging over position
 - There is no absolute charge

$$\langle \phi^b(x) \rangle = \int_{\Omega} D \phi^a e^{iS[\phi]} \phi^b(x) = 0$$

- There is no preferred point on the group orbit
 - There is no absolute orientation/frame in the internal space
 - Does not change when averaging over position
 - There is no absolute charge
- Individual measurements have a direction
 - These are statements about averages/expectation values

$$\langle \phi^b(x)\phi^c(y)\rangle = \int_{\Omega} D\phi^a e^{iS[\phi]}\phi^b(x)\phi^c(y)$$

• Relative charge measurement averaged over all possible starting point

$$\langle \phi^b(x)\phi^c(y)\rangle = \int_{\Omega} D\phi^a e^{iS[\phi]}\phi^b(x)\phi^c(y) = 0$$

- Relative charge measurement averaged over all possible starting point
 - Vanishes because no preferred absolute starting point

$\left\langle \delta_{bc} \phi^{b}(x) \phi^{c}(y) \right\rangle$ $= \int_{\Omega} D \phi^{a} e^{iS[\phi]} \delta_{bc} \phi^{b}(x) \phi^{c}(y)$

- Group-invariant quantity
 - Measures relative orientation
 - Created from an invariant tensor δ_{ab}

$$\left\langle \delta_{bc} \phi^{b}(x) \phi^{c}(y) \right\rangle$$
$$= \int_{\Omega} D \phi^{a} e^{iS[\phi]} \delta_{bc} \phi^{b}(x) \phi^{c}(y) \neq 0$$

- Group-invariant quantity
 - Measures relative orientation
 - Created from an invariant tensor δ_{ab}
 - Allows to measure degeneracies
 - Generalized Wigner-Eckart theorem

$$\langle \phi^b(x) \rangle = \int_{\Omega} D \phi^a e^{iS[\phi, j^c]} \phi^b(x)$$

• Explicit breaking is an explicit absolute frame

External source breaks the symmetry

$$\langle \phi^b(x) \rangle = \int_{\Omega} D \phi^a e^{iS[\phi,j]} \phi^b(x) = v(j^c) \neq 0$$

- Explicit breaking is an explicit absolute frame
 - Results are relative to the source

External source breaks the symmetry

$$\langle \phi^b(x) \rangle = \int_{\Omega} D \phi^a e^{iS[\phi,j]} \phi^b(x) = v(j^c) \neq 0$$

- Explicit breaking is an explicit absolute frame
 - Results are relative to the source
 - Remains for $j^c \rightarrow 0$: Spontaneous symmetry breaking
 - Measurement preferably aligned to source direction

$$\langle \phi^b(x) \rangle = \int_{\Omega} D \phi^a e^{iS[\phi,0]} \phi^b(x) = v(0) = 0$$

- Explicit breaking is an explicit absolute frame
 - Results are relative to the source
 - Remains for $j^c \rightarrow 0$: Spontaneous symmetry breaking
 - Measurement preferably aligned to source direction
 - At zero source: Expectation values always vanish
 - Individual measurements can show preferred direction
 - No absolute direction preferred

Field – transforms locally under a group $\phi^a(x) \rightarrow G^{ab}(x) \phi^b(x)$

$\langle \delta_{bc} \phi^{b}(x) \phi^{c}(y) \rangle$ = $\int_{\Omega} D \phi^{a} e^{iS[\phi]} \delta_{bc} \phi^{b}(x) \phi^{c}(y)$

$\langle \delta_{bc} \phi^{b}(x) \phi^{c}(y) \rangle$ = $\int_{\Omega} D \phi^{a} e^{iS[\phi]} \delta_{bc} \phi^{b}(x) \phi^{c}(y) = 0$

- No longer invariant under gauge transformations
 - Vanishes just as any other non-invariant quantity

Transporter

$$\langle \phi^{b}(x)U^{bc}(x,y)\phi^{c}(y)\rangle$$

$$= \int_{\Omega} D \phi^{a} DU e^{iS[\phi]}\phi^{b}(x)U^{bc}(x,y)\phi^{c}(y)$$

•Transporter compensates gauge transformations

• Implemented by gauge fields

$$\langle \phi^{b}(x) U^{bc}(x, y) \phi^{c}(y) \rangle$$

= $\int_{\Omega} D \phi^{a} D U e^{iS[\phi]} \phi^{b}(x) U^{bc}(x, y) \phi^{c}(y) \neq 0$

•Transporter compensates gauge transformations

• Implemented by gauge fields

Reduced integration range

$= \int_{\Omega_c} \Phi^a DU W(U, \phi) e^{iS[\phi]} \phi^b(x) \phi^c(y) \neq 0$

- Reduction of integration region by gauge fixing
 - Arbitrary choice of coordinates
 - Weight factor to keep gauge-invariant quantities the same

 Only expectation values of operators invariant under intact symmetries are non-zero

- Only expectation values of operators invariant under intact symmetries are non-zero
- Global symmetries create degeneracies and selection rules/superselection sectors

- Only expectation values of operators invariant under intact symmetries are non-zero
- Global symmetries create degeneracies and selection rules/superselection sectors
- Sources break a symmetry explicitly and create an absolute frame
 - Like an additional term in the theory

- Only expectation values of operators invariant under intact symmetries are non-zero
- Global symmetries create degeneracies and selection rules/superselection sectors
- Sources break a symmetry explicitly and create an absolute frame
 - Like an additional term in the theory
- Gauge-fixing is a choice of coordinates in an internal space
 - Introduces an absolute frame

- Only expectation values of operators invariant under intact symmetries are non-zero
- Global symmetries create degeneracies and selection rules/superselection sectors
- Sources break a symmetry explicitly and create an absolute frame
 - Like an additional term in the theory
- Gauge-fixing is a choice of coordinates in an internal space
 - Introduces an absolute frame
- Only quantities invariant under all symmetries are measurable

Fröhlich-Morchio-Strocchi mechanism

 Is there a gauge, in which gauge-invariant observables are easy to calculate?
- Is there a gauge, in which gauge-invariant observables are easy to calculate?
 - Especially: Can some gauge-invariant quantities be calculated exactly at tree-level in this gauge?

Can then have no quantum corrections

• Choice different for different parameter sets

- Is there a gauge, in which gauge-invariant observables are easy to calculate?
 - Especially: Can some gauge-invariant quantities be calculated exactly at tree-level in this gauge?

Can then have no quantum corrections

- Choice different for different parameter sets
- FMS mechanism

- Is there a gauge, in which gauge-invariant observables are easy to calculate?
 - Especially: Can some gauge-invariant quantities be calculated exactly at tree-level in this gauge?

Can then have no quantum corrections

- Choice different for different parameter sets
- FMS mechanism
 - Quantities showing classical behavior are ideal choices
 - Chose a gauge compatible with the desired classical behavior

- Is there a gauge, in which gauge-invariant observables are easy to calculate?
 - Especially: Can some gauge-invariant quantities be calculated exactly at tree-level in this gauge?

Can then have no quantum corrections

- Choice different for different parameter sets
- FMS mechanism
 - Quantities showing classical behavior are ideal choices
 - Chose a gauge compatible with the desired classical behavior
 - Split after gauge-fixing fields such that they become classical fields plus quantum corrections

• Consider an SU(2) with a single fundamental scalar

- Consider an SU(2) with a single fundamental scalar
- Essentially the standard model Higgs

$$L = -\frac{1}{4} W^a_{\mu\nu} W^{\mu\nu}_a$$
$$W^a_{\mu\nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu + g f^a_{bc} W^b_\mu W^c_\nu$$

- Ws W^a_{μ} W
- Coupling g and some numbers f^{abc}

- Consider an SU(2) with a single fundamental scalar
- Essentially the standard model Higgs

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + gf^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

- Ws W^a_{μ} W
- Higgs h_i (h)
- Coupling g and some numbers f^{abc} and t_a^{ij}

- Consider an SU(2) with a single fundamental scalar
- Essentially the standard model Higgs

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j}) + D^{\mu}_{ik} h_{k} + \lambda (h^{a} h_{a}^{+} - v^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

- Ws W^a_{μ} W
- Higgs h_i (h)
- Couplings g, v, λ and some numbers f^{abc} and t_a^{ij}

- Consider an SU(2) with a single fundamental scalar
- Essentially the standard model Higgs

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j}) + D^{\mu}_{ik} h_{k} + \lambda (h^{a} h^{+}_{a} - v^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

- Ws W^a_{μ} W
- Higgs h_i
- Couplings g, v, λ and some numbers f^{abc} and t_a^{ij}
- Parameters selected for a BEH effect

A toy model: Symmetries

- Consider an SU(2) with a single fundamental scalar
- Essentially the standard model Higgs

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k} + \lambda (h^{a} h_{a}^{+} - v^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

A toy model: Symmetries

- Consider an SU(2) with a single fundamental scalar
- Essentially the standard model Higgs

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k} + \lambda (h^{a} h^{+}_{a} - v^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

• Local SU(2) gauge symmetry $W^{a}_{\mu} \rightarrow W^{a}_{\mu} + (\delta^{a}_{b}\partial_{\mu} - gf^{a}_{bc}W^{c}_{\mu})\phi^{b}$ $h_{i} \rightarrow h_{i} + gt^{ij}_{a}\phi^{a}h_{j}$

A toy model: Symmetries

- Consider an SU(2) with a single fundamental scalar
- Essentially the standard model Higgs

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k} + \lambda (h^{a} h^{+}_{a} - v^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

- Local SU(2) gauge symmetry $W^a_{\mu} \rightarrow W^a_{\mu} + (\delta^a_b \partial_{\mu} - g f^a_{bc} W^c_{\mu}) \Phi^b$ $h_i \rightarrow h_i + g t^{ij}_a \Phi^a h_j$
- Global SU(2) custodial (flavor) symmetry
 - Acts as (right-)transformation on the scalar field only $W^a_{\mu} \rightarrow W^a_{\mu}$ $h \rightarrow h \Omega$

- Need physical, gauge-invariant particles
 - Cannot be the elementary particles
 - Non-Abelian nature is relevant

- Need physical, gauge-invariant particles
 - Cannot be the elementary particles
 - Non-Abelian nature is relevant
- Need more than one particle: Composite particles
 - Higgs-Higgs, W-W, Higgs-Higgs-W etc.

- Need physical, gauge-invariant particles
 - Cannot be the elementary particles
 - Non-Abelian nature is relevant
- Need more than one particle: Composite particles
 - Higgs-Higgs, W-W, Higgs-Higgs-W etc.

- Has nothing to do with weak coupling
 - Think QED (hydrogen atom!)
- Quite different from the usual picture

- Need physical, gauge-invariant particles
 - Cannot be the elementary particles
 - Non-Abelian nature is relevant
- Need more than one particle: Composite particles
 - Higgs-Higgs, W-W, Higgs-Higgs-W etc.

- Has nothing to do with weak coupling
 - Think QED (hydrogen atom!)
- Quite different from the usual picture
- Can be described using the FMS mechanism

The FMS mechanism

 Suspicion: Classical Higgs vev picture describes experiment well

The FMS mechanism

- Suspicion: Classical Higgs vev picture describes experiment well
- Implementation
 - Choose a gauge which allows for a Higgs vev
 - 't Hooft type gauge
 - Not a background gauge
 - Necessary symmetry: translation invariance, Lorentz symmetry
 - Split after gauge-fixing Higgs field in vev and fluctuation field

The FMS mechanism

- Suspicion: Classical Higgs vev picture describes experiment well
- Implementation
 - Choose a gauge which allows for a Higgs vev
 - 't Hooft type gauge
 - Not a background gauge
 - Necessary symmetry: translation invariance, Lorentz symmetry
 - Split after gauge-fixing Higgs field in vev and fluctuation field
- Test: Calculate gauge-invariant observables

 \square

'Experiment': Derived from the situation in the standard model

Do the calculations

- J^{PC} and custodial charge only quantum numbers
 - Different from perturbation theory
 - Operators limited to asymptotic, elementary, gauge-dependent states

Do the calculations

- J^{PC} and custodial charge only quantum numbers
 - Different from perturbation theory
 - Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
 - Bound state structure non-perturbative methods! - Lattice

 \square

Custodial singlet

 \square

Custodial singlet

How to make predictions

- J^{PC} and custodial charge only quantum numbers
 - Different from perturbation theory
 - Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
 - Bound state structure non-perturbative methods?

How to make predictions

- J^{PC} and custodial charge only quantum numbers
 - Different from perturbation theory
 - Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
 - Bound state structure non-perturbative methods?
 - But coupling is still weak and there is a BEH

How to make predictions

- J^{PC} and custodial charge only quantum numbers
 - Different from perturbation theory
 - Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
 - Bound state structure non-perturbative methods?
 - But coupling is still weak and there is a BEH
 - Perform double expansion [Fröhlich et al.'80, Maas'12]
 - Vacuum expectation value (FMS mechanism)
 - Standard expansion in couplings
 - Together: Gauge-invariant perturbation theory

[Fröhlich et al.'80,'81 Maas'12,'17]

1) Formulate gauge-invariant operator

[Fröhlich et al.'80,'81 Maas'12,'17]

- 1) Formulate gauge-invariant operator
 - 0⁺ singlet: $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

[Fröhlich et al.'80,'81 Maas'12,'17]

1) Formulate gauge-invariant operator

0⁺ singlet: $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

2) Expand Higgs field around fluctuations $h=v+\eta$

[Fröhlich et al.'80,'81 Maas'12,'17]

1) Formulate gauge-invariant operator

0⁺ singlet: $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle = v^2 \langle \eta^+ (x)\eta(y) \rangle \\ + v \langle \eta^+ \eta^2 + \eta^{+2} \eta \rangle + \langle \eta^{+2} \eta^2 \rangle$$

- [Fröhlich et al.'80,'81 Maas'12,'17]
- 1) Formulate gauge-invariant operator

0⁺ singlet: $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle = v^2 \langle \eta^+ (x)\eta(y) \rangle \\ + v \langle \eta^+ \eta^2 + \eta^{+2} \eta \rangle + \langle \eta^{+2} \eta^2 \rangle$$

3) Standard perturbation theory

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle = v^2 \langle \eta^+ (x)\eta(y) \rangle + \langle \eta^+ (x)\eta(y) \rangle \langle \eta^+ (x)\eta(y) \rangle + O(g,\lambda)$$

[Fröhlich et al.'80,'81 Maas'12,'17]

1) Formulate gauge-invariant operator

0⁺ singlet: $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle = v^2 \langle \eta^+ (x)\eta(y) \rangle \\ + v \langle \eta^+ \eta^2 + \eta^{+2} \eta \rangle + \langle \eta^{+2} \eta^2 \rangle$$

3) Standard perturbation theory

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle = v^2 \langle \eta^+ (x)\eta(y) \rangle + \langle \eta^+ (x)\eta(y) \rangle \langle \eta^+ (x)\eta(y) \rangle + O(g,\lambda)$$

4) Compare poles on both sides

[Fröhlich et al.'80,'81 Maas'12,'17]

1) Formulate gauge-invariant operator

0⁺ singlet: $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle = v^2 \langle \eta^+ (x)\eta(y) \rangle \\ + v \langle \eta^+ \eta^2 + \eta^{+2} \eta \rangle + \langle \eta^{+2} \eta^2 \rangle$$

3) Standard perturbation theory

Bound state $\langle (h^+ h)(x)(h^+ h)(y) \rangle = v^2 \langle \eta^+ (x)\eta(y) \rangle$ mass $+ \langle \eta^+ (x)\eta(y) \rangle \langle \eta^+ (x)\eta(y) \rangle + O(g,\lambda)$

4) Compare poles on both sides

[Fröhlich et al.'80,'81 Maas'12,'17]

1) Formulate gauge-invariant operator

0⁺ singlet: $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle = v^2 \langle \eta^+ (x)\eta(y) \rangle \\ + v \langle \eta^+ \eta^2 + \eta^{+2} \eta \rangle + \langle \eta^{+2} \eta^2 \rangle$$

3) Standard perturbation theory

Bound state $\langle (h^+ h)(x)(h^+ h)(y) \rangle = v^2 \langle \eta^+ (x)\eta(y) \rangle$ mass $+ \langle \eta^+ (x)\eta(y) \rangle \langle \eta^+ (x)\eta(y) \rangle \rightarrow O(g,\lambda)$

2 x Higgs mass: Scattering state

4) Compare poles on both sides
[Fröhlich et al.'80,'81 Maas'12,'17]

1) Formulate gauge-invariant operator

0⁺ singlet: $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle = v^2 \langle \eta^+ (x)\eta(y) \rangle \\ + v \langle \eta^+ \eta^2 + \eta^{+2} \eta \rangle + \langle \eta^{+2} \eta^2 \rangle$$

3) Standard perturbation theory

Bound state $\langle (h^+ h)(x)(h^+ h)(y) \rangle = v^2 \langle \eta^+ (x)\eta(y) \rangle$ mass mass $+ \langle \eta^+ (x)\eta(y) \rangle \langle \eta^+ (x)\eta(y) \rangle \rightarrow O(g,\lambda)$ 2 x Higgs mass:

Scattering state

Higgs

4) Compare poles on both sides

- [Fröhlich et al.'80,'81 Maas'12,'17]
- 1) Formulate gauge-invariant operator

0⁺ singlet: $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle = v^2 \langle \eta^+ (x)\eta(y) \rangle \\ + v \langle \eta^+ \eta^2 + \eta^{+2} \eta \rangle + \langle \eta^{+2} \eta^2 \rangle$$

3) Standard perturbation theory

4) Compare poles on both sides

[Fröhlich et al.'80,'81 Maas'12]

1) Formulate gauge-invariant operator 1⁻ triplet: $\langle (\tau^i h^+ D_\mu h)(x)(\tau^j h^+ D_\mu h)(y) \rangle$

- 1) Formulate gauge-invariant operator
 - **1**⁻ triplet: $\langle (\tau^i h^+ D_\mu h)(x)(\tau^j h^+ D_\mu h)(y) \rangle$
- 2) Expand Higgs field around fluctuations $h=v+\eta$

- 1) Formulate gauge-invariant operator
 - **1**⁻ triplet: $\langle (\tau^i h^+ D_\mu h)(x)(\tau^j h^+ D_\mu h)(y) \rangle$
- 2) Expand Higgs field around fluctuations $h=v+\eta$
 - $\langle (\tau^i h^+ D_{\mu} h)(x)(\tau^j h^+ D_{\mu} h)(y) \rangle = v^2 c_{ij}^{ab} \langle W^a_{\mu}(x) W^b(y)^{\mu} \rangle + \dots$

- 1) Formulate gauge-invariant operator
 - **1**⁻ triplet: $\langle (\tau^i h^+ D_\mu h)(x)(\tau^j h^+ D_\mu h)(y) \rangle$
- 2) Expand Higgs field around fluctuations $h=v+\eta$
 - $\langle (\tau^{i}h^{+}D_{\mu}h)(x)(\tau^{j}h^{+}D_{\mu}h)(y)\rangle = v^{2}c_{ij}^{ab}\langle W_{\mu}^{a}(x)W^{b}(y)^{\mu}\rangle + \dots$

Matrix from group structure

- 1) Formulate gauge-invariant operator
 - **1**⁻ triplet: $\langle (\tau^i h^+ D_\mu h)(x)(\tau^j h^+ D_\mu h)(y) \rangle$
- 2) Expand Higgs field around fluctuations $h=v+\eta$

$$\langle (\tau^i h^+ D_{\mu} h)(x)(\tau^j h^+ D_{\mu} h)(y) \rangle = v^2 c_{ij}^{ab} \langle W^a_{\mu}(x) W^b(y)^{\mu} \rangle + \dots$$
$$= v^2 \langle W^i_{\mu} W^j_{\mu} \rangle + \dots$$

Matrix from group structure

- 1) Formulate gauge-invariant operator
 - **1**⁻ triplet: $\langle (\tau^i h^+ D_{\mu} h)(x)(\tau^j h^+ D_{\mu} h)(y) \rangle$
- 2) Expand Higgs field around fluctuations $h=v+\eta$
 - $\langle (\tau^{i}h^{+}D_{\mu}h)(x)(\tau^{j}h^{+}D_{\mu}h)(y)\rangle = v^{2}c_{ij}^{ab}\langle W_{\mu}^{a}(x)W^{b}(y)^{\mu}\rangle + \dots$ $= v^{2}\langle W_{\mu}^{i}W_{\mu}^{j}\rangle + \dots$

Matrix from group structure

c projects custodial states to gauge states

- 1) Formulate gauge-invariant operator
 - **1**⁻ triplet: $\langle (\tau^i h^+ D_\mu h)(x)(\tau^j h^+ D_\mu h)(y) \rangle$
- 2) Expand Higgs field around fluctuations $h=v+\eta$
 - $\langle (\tau^{i}h^{+}D_{\mu}h)(x)(\tau^{j}h^{+}D_{\mu}h)(y)\rangle = v^{2}c_{ij}^{ab}\langle W_{\mu}^{a}(x)W^{b}(y)^{\mu}\rangle + \dots$ $= v^{2}\langle W_{\mu}^{i}W_{\mu}^{j}\rangle + \dots$ Matrix from group structure

c projects custodial states to gauge states

Exactly one gauge boson for every physical state

Physical spectrum

 \square

Custodial Singlet Triplet

$$tr \frac{h^{+}}{\sqrt{h^{+} h}} D_{\mu} \frac{h}{\sqrt{h^{+} h}}$$

Physical spectrum

- FMS works
 - Some lattice support for SU(2)xU(1) [Shrock et al. 85-88]
 - Extension to the whole standard model

[Maas,Raubitzke,Törek'18]

[Maas,Raubitzke,Törek'18]

[Maas,Raubitzke,Törek'18]

[Maas,Raubitzke,Törek'18]

[Maas,Raubitzke,Törek'18]

[Maas,Raubitzke,Törek'18]

[Maas,Raubitzke,Törek'18]

Vector form factor

• Physical "Z" *mr~2*

- FMS worked because corrections are small
 - Same structure of local and global symmetry

- FMS worked because corrections are small
 - Same structure of local and global symmetry
- What happens if there are qualitative effects?

- FMS worked because corrections are small
 - Same structure of local and global symmetry
- What happens if there are qualitative effects?
 - Different structures of local and global symmetry

- FMS worked because corrections are small
 - Same structure of local and global symmetry
- What happens if there are qualitative effects?
 - Different structures of local and global symmetry
- FMS still works, if quantum fluctuations in a suitable gauge are small: Example

• Consider an SU(3) with a single fundamental scalar

- Consider an SU(3) with a single fundamental scalar
- Looks very similar to the standard model Higgs

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$

- Ws W^a_{μ} W
- Coupling g and some numbers f^{abc}

- Consider an SU(3) with a single fundamental scalar
- Looks very similar to the standard model Higgs

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

- Ws W^a_{μ} W
- Higgs h_i (h)
- Coupling g and some numbers f^{abc} and t_a^{ij}

- Consider an SU(3) with a single fundamental scalar
- Looks very similar to the standard model Higgs

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j}) + D^{\mu}_{ik} h_{k} + \lambda (h^{a} h^{+}_{a} - v^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

- Ws W^a_{μ} W
- Higgs h_i
- Couplings g, v, λ and some numbers f^{abc} and t_a^{ij}

- Consider an SU(3) with a single fundamental scalar
- Looks very similar to the standard model Higgs

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j}) + D^{\mu}_{ik} h_{k} + \lambda (h^{a} h^{+}_{a} - v^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

- Ws W^a_{μ} W
- Higgs h_i (h)
- Couplings g, v, λ and some numbers f^{abc} and t_a^{ij}
- Parameters selected for a BEH effect

- Consider an SU(3) with a single fundamental scalar
- Looks very similar to the standard model Higgs

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k} + \lambda (h^{a} h^{+}_{a} - v^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

- Consider an SU(3) with a single fundamental scalar
- Looks very similar to the standard model Higgs

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k} + \lambda (h^{a} h_{a}^{+} - v^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

• Local SU(3) gauge symmetry $W^{a}_{\mu} \rightarrow W^{a}_{\mu} + (\delta^{a}_{b}\partial_{\mu} - gf^{a}_{bc}W^{c}_{\mu})\phi^{b}$ $h_{i} \rightarrow h_{i} + gt^{ij}_{a}\phi^{a}h_{j}$
A toy model

- Consider an SU(3) with a single fundamental scalar
- Looks very similar to the standard model Higgs

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k} + \lambda (h^{a} h^{+}_{a} - v^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

- Local SU(3) gauge symmetry $W^a_\mu \rightarrow W^a_\mu + (\delta^a_b \partial_\mu - g f^a_{bc} W^c_\mu) \Phi^b$ $h_i \rightarrow h_i + g t^{ij}_a \Phi^a h_j$
- Global U(1) custodial (flavor) symmetry
 - Acts as (right-)transformation on the scalar field only $W^a_{\mu} \rightarrow W^a_{\mu}$ $h \rightarrow \exp(ia)h$

 Choose parameters to get a Brout-Englert-Higgs effect

- Choose parameters to get a Brout-Englert-Higgs effect
- Minimize the classical action

- Choose parameters to get a Brout-Englert-Higgs effect
- Minimize the classical action
- Choose a suitable gauge and obtain 'spontaneous gauge symmetry breaking': SU(3) → SU(2)

- Choose parameters to get a Brout-Englert-Higgs effect
- Minimize the classical action
- Choose a suitable gauge and obtain 'spontaneous gauge symmetry breaking': SU(3) → SU(2)
- Get masses and degeneracies at treelevel

- Choose parameters to get a Brout-Englert-Higgs effect
- Minimize the classical action
- Choose a suitable gauge and obtain 'spontaneous gauge symmetry breaking': SU(3) → SU(2)
- Get masses and degeneracies at treelevel
- Perform perturbation theory

Gauge-dependent Vector

[Maas & Törek'16,'18 Maas, Sondenheimer & Törek'17]

[Maas & Törek'16,'18 Maas, Sondenheimer & Törek'17]

[Maas & Törek'16,'18 Maas, Sondenheimer & Törek'17]

- Qualitatively different spectrum
- Results in agreement with analytic predictions

- Qualitatively different spectrum
- No mass gap!

• Qualitatively different spectrum

• No mass gap! - But can be there: Adjoint Higgs

[Maas, Sondenheimer & Törek'17, Shigemitsu & Lee'85, Afferrante, Maas, Törek'19]

- [Maas & Törek'16]
- 1) Formulate gauge-invariant operator
 - 1⁻ singlet

1) Formulate gauge-invariant operator 1^{-} singlet: $\langle (h^{+} D_{\mu}h)(x)(h^{+} D_{\mu}h)(y) \rangle$

- 1) Formulate gauge-invariant operator
 - **1**⁻ singlet: $\langle (h^+ D_{\mu}h)(x)(h^+ D_{\mu}h)(y) \rangle$
- 2) Expand Higgs field around fluctuations $h=v+\eta$

- Formulate gauge-invariant operator

 1⁻ singlet: (h⁺ D_μh)(x)(h⁺ D_μh)(y))

 Expand Higgs field around fluctuations h=v+η
 - $\langle (h + D_{\mu}h)(x)(h + D_{\mu}h)(y) \rangle = v^2 c^{ab} \langle W^a_{\mu}(x)W^b(y)^{\mu} \rangle + \dots$

- [Maas & Törek'16]
- 1) Formulate gauge-invariant operator
 - **1**⁻ singlet: $\langle (h^+ D_{\mu}h)(x)(h^+ D_{\mu}h)(y) \rangle$
- 2) Expand Higgs field around fluctuations $h=v+\eta$
 - $\langle (h^+ D_{\mu}h)(x)(h^+ D_{\mu}h)(y)\rangle = v^2 c^{ab} \langle W^a_{\mu}(x)W^b(y)^{\mu}\rangle + \dots$

Matrix from group structure

- [Maas & Törek'16]
- 1) Formulate gauge-invariant operator
 - **1**⁻ singlet: $\langle (h^+ D_{\mu}h)(x)(h^+ D_{\mu}h)(y) \rangle$
- 2) Expand Higgs field around fluctuations $h=v+\eta$
 - $\langle (h^+ D_{\mu}h)(x)(h^+ D_{\mu}h)(y)\rangle = v^2 c^{ab} \langle W^a_{\mu}(x)W^b(y)^{\mu}\rangle + \dots$ $= v^2 \langle W^8_{\mu}W^8_{\mu}\rangle + \dots$

Matrix from group structure

c^{*ab*} projects out only one field

- 1) Formulate gauge-invariant operator
 - **1**⁻ singlet: $\langle (h^+ D_{\mu}h)(x)(h^+ D_{\mu}h)(y) \rangle$
- 2) Expand Higgs field around fluctuations $h=v+\eta$
 - $\langle (h^{+} D_{\mu}h)(x)(h^{+} D_{\mu}h)(y)\rangle = v^{2}c^{ab}\langle W_{\mu}^{a}(x)W^{b}(y)^{\mu}\rangle + \dots$ $= v^{2}\langle W_{\mu}^{8}W_{\mu}^{8}\rangle + \dots$ Matrix from group structure

c^{*ab*} projects out only one field

Only one state remains in the spectrum at mass of gauge boson 8 (heavy singlet)

• QFT setting – no strings or other non-QFT settings

- QFT setting no strings or other non-QFT settings
- Diffeomorphism is like a non-standard gauge symmetry
 - Arbitrary local choices of coordinates do not affect observables
 - Physical observables must be manifestly invariant

- QFT setting no strings or other non-QFT settings
- Diffeomorphism is like a non-standard gauge symmetry
 - Arbitrary local choices of coordinates do not affect observables – pure passive formulation
 - Physical observables must be manifestly invariant

- QFT setting no strings or other non-QFT settings
- Diffeomorphism is like a non-standard gauge symmetry
 - Arbitrary local choices of coordinates do not affect observables – pure passive formulation
 - Physical observables must be manifestly invariant
- Spin seems to remain observable
 - Spin degeneracies and selection rules due to spin conservation
 - Needs a global structure

- QFT setting no strings or other non-QFT settings
- Diffeomorphism is like a non-standard gauge symmetry
 - Arbitrary local choices of coordinates do not affect observables – pure passive formulation
 - Physical observables must be manifestly invariant
- Spin seems to remain observable
 - Spin degeneracies and selection rules due to spin conservation
 - Needs a global structure
- Particle physics gauge symmetries and global symmetries should remain the same
Gravity as a gauge theory

Set of events with neighbor relations

[Hehl et al.'76]

[Hehl et al.'76]

Gravity as a gauge theory,

Internal symmetries act in internal spaces Global: One internal space Local: One space at every event

Gauge symmetry is event-dependent

Global symmetry is eventindependent

 $Z = \int_{\Omega} De^a_{\mu} D\phi^a e^{iS[\phi,e] + iS_{EH}[e]}$

$$Z = \int_{\Omega} De^{a}_{\mu} D\phi^{a} e^{iS[\phi,e] + iS_{EH}[e]}$$

- Needs an elementary carrier of the global charge: Vierbein as dynamical degree of freedom
 - Other choices possibles

- Needs an elementary carrier of the global charge: Vierbein as dynamical degree of freedom
 - Other choices possibles
- Otherwise standard

- Needs an elementary carrier of the global charge: Vierbein as dynamical degree of freedom
 - Other choices possibles
- Otherwise standard
 - E.g. Asymptotic safety for ultraviolet stability

$\langle O \rangle = \int_{\Omega} De^{a}_{\mu} D\phi^{a} Oe^{iS[\phi,e]+iS_{EH}[e]}$

 $\langle O \rangle = \int_{\Omega} De^a_{\mu} D\phi^a Oe^{iS[\phi,e]+iS_{EH}[e]}$

Needs to be invariant

$$\langle O \rangle = \int_{\Omega} De^a_{\mu} D\phi^a Oe^{iS[\phi,e]+iS_{EH}[e]}$$

Needs to be invariant

- Locally under Diffeomorphism
- Globally under Lorentz transformation
- Globally under custodial,... transformation
- Locally under gauge transformation

$\bigoplus_{\mathbf{A}} \neq \langle O \rangle = \int_{\Omega} De^{a}_{\mu} D\phi^{a} Oe^{iS[\phi,e] + iS_{EH}[e]}$

Needs to be invariant

- Locally under Diffeomorphism
- Globally under Lorentz transformation
- Globally under custodial,... transformation
- Locally under gauge transformation

to be non-zero

• Consider a scalar particle

- Consider a scalar particle
 - E.g. the 'Higgs' scalar $O(x) = (\phi_{ai})^* (x) \phi_{ai}(x)$
 - Completely invariant

$$\langle O(x)O(y)\rangle = D(x,y)$$

- Consider a scalar particle
 - E.g. the 'Higgs' scalar $O(x) = (\phi_{ai})^* (x) \phi_{ai}(x)$
 - Completely invariant

$$\langle O(x)O(y)\rangle = D(x,y)$$

Completely scalar: Invariant under all symmetries

- Consider a scalar particle
 - E.g. the 'Higgs' scalar $O(x) = (\phi_{ai})^{+} (x) \phi_{ai}(x)$
 - Completely invariant

Argument is the event, not the coordinate

Result depends on events

 $\langle O(x)O(y)\rangle = D(x, y)$

- Consider a scalar particle
 - E.g. the 'Higgs' scalar $O(x) = (\phi_{ai})^* (x) \phi_{ai}(x)$
 - Completely invariant

Argument is the event, not the coordinate

Result depends on events

 $\langle O(x)O(y)\rangle = D(x, y)$

- Consider a scalar particle
 - E.g. the 'Higgs' scalar $O(x) = (\phi_{ai})^* (x) \phi_{ai}(x)$
 - Completely invariant
- Events not a useful argument

[Schaden'15]

Simpelst object: Scalar

$\langle O(x)O(y)\rangle = D(r(x,y))$

$\langle O(x)O(y)\rangle = D(r(x,y))$

- Distance is a quantum object: Expectation value
 - Needs a diff-invariant formulation

$$\langle O(x)O(y)\rangle = D(r(x,y))$$
$$r(x,y) = \langle \min_{z} \int_{x}^{y} d\lambda g_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle$$

- Distance is a quantum object: Expectation value
 - Needs a diff-invariant formulation
 - Diff-invariant distance: Geodesic distance

 $\langle \mathbf{o}(\cdot) \mathbf{o}(\cdot) \rangle = \mathbf{p}(\cdot(\cdot))$

$$\langle O(x)O(y)\rangle = D(r(x,y))$$

$$r(x,y) = \langle \min_{z} \int_{x}^{y} d\lambda g_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle$$
Select geodesic

- Distance is a quantum object: Expectation value
 - Needs a diff-invariant formulation
 - Diff-invariant distance: Geodesic distance

$$\langle O(x)O(y)\rangle = D(r(x,y))$$
 Separate calculation
 $r(x,y) = \langle min_z \int_x^y d\lambda g_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle$

- Distance is a quantum object: Expectation value
 - Needs a diff-invariant formulation
 - Diff-invariant distance: Geodesic distance
 - Needs to be determined separately

Reduces the full dependence: Definition Dependence on events will only vanish if all events on the average are equal – probably true

$$\langle O(x)O(y)\rangle = D(r(x,y))$$

$$r(x,y) = \langle \min_{z} \int_{x}^{y} d\lambda g_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle$$

- Distance is a quantum object: Expectation value
 - Needs a diff-invariant formulation
 - Diff-invariant distance: Geodesic distance
 - Needs to be determined separately

$$\langle O(x)O(y)\rangle = D(r(x,y))$$
$$r(x,y) = \langle \min_{z} \int_{x}^{y} d\lambda g_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle$$

- Distance is a quantum object: Expectation value
 - Needs a diff-invariant formulation
 - Diff-invariant distance: Geodesic distance
 - Needs to be determined separately
- Generalization of flat-space arguments

Applying FMS

- Our universe is well-approximated by a classical metric
 - Due to the parameter values special!
 - Small quantum fluctuations at large scales
 - Empirical result

Applying FMS

- Our universe is well-approximated by a classical metric
 - Due to the parameter values special!
 - Small quantum fluctuations at large scales
 - Empirical result
- FMS split after (convenient) gauge fixing
 - $g_{\mu\nu} = g^c_{\mu\nu} + \gamma_{\mu\nu}$
 - Classical part g^c is a metric, chosen to give exact (observed) curvature
 - Quantum part is assumed small

Distance

$$r(x,y) = \langle \min_{z} \int_{x}^{y} d\lambda g_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle$$

Application to the distance between two events

Distance

$$r(x,y) = \langle \min_{z} \int_{x}^{y} d\lambda g_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle$$
$$= r^{c}(x,y) + \langle \min_{z} \int_{x}^{y} d\lambda \gamma_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle = r^{c} + \delta r$$

Classical geodesic distance

- Application to the distance between two events
 - Yields to leading order classical distance

Distance

$$r(x,y) = \langle \min_{z} \int_{x}^{y} d\lambda g_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle$$
$$= r^{c}(x,y) + \langle \min_{z} \int_{x}^{y} d\lambda \gamma_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle = r^{c} + \delta r$$

Classical geodesic distance

Quantum corrections

- Application to the distance between two events
 - Yields to leading order classical distance
 - Size of quantum corrections depends on events
$\langle O(x)O(y) \rangle$

$\langle O(x)O(y)\rangle = D_c(r^c) + \sum (\delta r)^n \partial_r^n D_c(r) + \langle O(x)O(y)\rangle_{\gamma}$

$$D_c = \langle O(x) O(y) \rangle_{g^c}$$

• Double expansion

$$\langle O(x)O(y)\rangle = D_c(r^c) + \sum (\delta r)^n \partial_r^n D_c(r) + \langle O(x)O(y)\rangle_{\gamma}$$

Leading term is $D_c = \langle O(x) O(y) \rangle_{g^c}$ flat space propagator

• Double expansion

Corrections from quantum distance effects

 $\langle O(x)O(y)\rangle = D_c(r^c) + \sum (\delta r)^n \partial_r^n D_c(r) + \langle O(x)O(y)\rangle_{\gamma}$

$$D_c = \langle O(x) O(y) \rangle_{g^c}$$

- Double expansion
 - Quantum fluctuations in the argument

Corrections from metric fluctuations

$$\langle O(x)O(y)\rangle = D_c(r^c) + \sum (\delta r)^n \partial_r^n D_c(r) + \langle O(x)O(y)\rangle_{\gamma}$$

$$D_c = \langle O(x) O(y) \rangle_{g^c}$$

- Double expansion
 - Quantum fluctuations in the argument
 - Quantum fluctuations in the action

$\langle O(x)O(y)\rangle = D_c(r^c) + \sum (\delta r)^n \partial_r^n D_c(r) + \langle O(x)O(y)\rangle_{\gamma}$

$$D_c = \langle O(x) O(y) \rangle_{g^c}$$

- Double expansion
 - Quantum fluctuations in the argument
 - Quantum fluctuations in the action
- Reduces to QFT at vanishing gravity

$\langle O(x)O(y)\rangle = D_c(r^c) + \sum (\delta r)^n \partial_r^n D_c(r) + \langle O(x)O(y)\rangle_{\gamma}$

$$D_c = \langle O(x) O(y) \rangle_{g^c}$$

- Double expansion
 - Quantum fluctuations in the argument
 - Quantum fluctuations in the action
- Reduces to QFT at vanishing gravity
 - Can be supplemented by FMS of BEH

Particles with spin – e.g. spin 1

$$e^a_\mu(x)O^\mu(x)$$

Particles with spin – e.g. spin 1

Flat space operator

Particles with spin – e.g. spin 1

 $e^a_\mu(x)O^\mu(x)$ Dressing for diff invariance

Particles with spin – e.g. spin 1

Vector in tangent space

Particles with spin – e.g. spin 1

Vector in tangent space – like flavor and custodial charges

Particles with spin – e.g. spin 1

$$e^a_\mu(x)O^\mu(x)$$

Particles with spin – e.g. spin 1

$$e^a_\mu(x)O^\mu(x)$$

Scalar:
$$R(x)$$

Particles with spin – e.g. spin 1

$$e^a_\mu(x)O^\mu(x)$$

Scalar:
$$R(x) \stackrel{e.g.flat,de Sitter,...}{=} const.+g_c^{\mu\nu}\gamma_{\mu\nu}+O(\gamma^2)$$

Particles with spin – e.g. spin 1

$$e^a_\mu(x)O^\mu(x)$$

Pure gravity excitations possible (Geons) Graviton trace mode

Scalar:
$$R(x) \stackrel{e.g.flat,deSitter,...}{=} const.+g_c^{\mu\nu}\gamma_{\mu\nu}+O(\gamma^2)$$

Particles with spin – e.g. spin 1

$$e^a_\mu(x)O^\mu(x)$$

Pure gravity excitations possible (Geons) Graviton trace mode Scalar: $R(x) \stackrel{e.g.flat,de Sitter,...}{=} const.+g_c^{\mu\nu} \gamma_{\mu\nu} + O(\gamma^2)$ Massive? Stable? Dark matter?

Particles with spin – e.g. spin 1

$$e^a_\mu(x)O^\mu(x)$$

Scalar:
$$R(x) \stackrel{e.g.flat,de Sitter,...}{=} const.+g_c^{\mu\nu}\gamma_{\mu\nu}+O(\gamma^2)$$

Tensor:
$$e^{\mu}_{a}e^{\nu}_{b}R_{\mu\nu}$$

Particles with spin – e.g. spin 1

$$e^a_\mu(x)O^\mu(x)$$

Scalar:
$$R(x) \stackrel{e.g.flat,de Sitter,...}{=} const.+g_c^{\mu\nu}\gamma_{\mu\nu}+O(\gamma^2)$$

Tensor:
$$e_a^{\mu} e_b^{\nu} R_{\mu\nu}$$

 \checkmark
Lorentz tensor

Particles with spin – e.g. spin 1

$$e^a_\mu(x)O^\mu(x)$$

Scalar:
$$R(x) \stackrel{e.g.flat,de Sitter,...}{=} const.+g_c^{\mu\nu}\gamma_{\mu\nu}+O(\gamma^2)$$

Tensor:
$$e_a^{\mu} e_b^{\nu} R_{\mu\nu} \stackrel{e.g.flat,deSitter,...}{=} e_{ca}^{\mu} e_{cb}^{\nu} \gamma_{\mu\nu} + O(\gamma^2)$$

Particles with spin – e.g. spin 1

$$e^a_\mu(x)O^\mu(x)$$

Scalar:
$$R(x) \stackrel{e.g.flat,de Sitter,...}{=} const.+g_c^{\mu\nu}\gamma_{\mu\nu}+O(\gamma^2)$$

Tensor:
$$e_a^{\mu} e_b^{\nu} R_{\mu\nu} \stackrel{e.g.flat,deSitter,...}{=} e_{ca}^{\mu} e_{cb}^{\nu} \gamma_{\mu\nu} + O(\gamma^2)$$

Graviton

 Macroscopic gravitational objects need to be build in the same way

- Macroscopic gravitational objects need to be build in the same way
 - Just like neutron stars from QCD

- Macroscopic gravitational objects need to be build in the same way
 - Just like neutron stars from QCD
- Black hole: Two options

- Macroscopic gravitational objects need to be build in the same way
 - Just like neutron stars from QCD
- Black hole: Two options
 - Single operator without decomposition
 - Monolithic, essentially elementary particle
 - Will have overlap with *R*(*x*)

- Macroscopic gravitational objects need to be build in the same way
 - Just like neutron stars from QCD
- Black hole: Two options
 - Single operator without decomposition
 - Monolithic, essentially elementary particle
 - Will have overlap with *R*(*x*)
 - Product of separate diff-invariant operators
 - Geon star: Similar to neutron star
 - Hawking radiation as tunneling

Summary

 Physics determined by manifest gaugeinvariant, composite objects

Summary

 Physics determined by manifest gaugeinvariant, composite objects

 Yields unexpected patterns in particle physics

Summary

 Physics determined by manifest gaugeinvariant, composite objects

 Yields unexpected patterns in particle physics

Can be applied to quantum gravity

Outlook

- Particle Physics Phenomenology
 - LHC, flavor, model building

Outlook

- Particle Physics Phenomenology
 - LHC, flavor, model building

- Quantum gravity phenomenology
 - Systematic application of FMS mechanism

Outlook

- Particle Physics Phenomenology
 - LHC, flavor, model building

- Quantum gravity phenomenology
 - Systematic application of FMS mechanism

- Simulations in quantum gravity?
 - Discretization on events as gauge theory?

