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● Group-invariant quantity
● Measures relative orientation
● Created from an invariant tensor
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● Generalized Wigner-Eckart theorem 

δab
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Path integral and global symmetries

● Explicit breaking is an explicit absolute frame
● Results are relative to the source
● Remains for          : Spontaneous symmetry breaking

● Measurement preferably aligned to source direction
● At zero source: Expectation values always vanish

● Individual measurements can show preferred direction
● No absolute direction preferred

jc
→0
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● Reduction of integration region by gauge fixing
● Arbitrary choice of coordinates
● Weight factor to keep gauge-invariant quantities the same

Reduced integration range
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Physical observables

● Only expectation values of operators invariant 
under intact symmetries are non-zero

● Global symmetries create degeneracies and 
selection rules/superselection sectors

● Sources break a symmetry explicitly and create an 
absolute frame
● Like an additional term in the theory

● Gauge-fixing is a choice of coordinates in an internal 
space
● Introduces an absolute frame

● Only quantities invariant under all symmetries are 
measurable
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Fröhlich-Morchio-Strocchi mechanism
● Is there a gauge, in which gauge-invariant 

observables are easy to calculate?
● Especially: Can some gauge-invariant quantities 

be calculated exactly at tree-level in this gauge?
● Can then have no quantum corrections

● Choice different for different parameter sets
● FMS mechanism

● Quantities showing classical behavior are ideal 
choices

● Chose a gauge compatible with the desired 
classical behavior

● Split after gauge-fixing fields such that they 
become classical fields plus quantum corrections
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● Consider an SU(2) with a single fundamental scalar
● Essentially the standard model Higgs

● Ws
● Higgs

● Couplings g, v, λ and some numbers f abc and t
a

ij

● Parameters selected for a BEH effect
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● Consider an SU(2) with a single fundamental scalar
● Essentially the standard model Higgs
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A toy model: Symmetries

● Consider an SU(2) with a single fundamental scalar
● Essentially the standard model Higgs

● Local SU(2) gauge symmetry

● Global SU(2) custodial (flavor) symmetry
● Acts as (right-)transformation on the scalar field only
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Physical states

● Need physical, gauge-invariant particles
● Cannot be the elementary particles
● Non-Abelian nature is relevant

● Need more than one particle: Composite particles

● Higgs-Higgs, W-W, Higgs-Higgs-W etc.

● Has nothing to do with weak coupling

● Think QED (hydrogen atom!)
● Quite different from the usual picture

● Can be described using the FMS mechanism

Wh W WW WWh
h

h

[Fröhlich et al.'80,
 Banks et al.'79]
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The FMS mechanism

● Suspicion: Classical Higgs vev picture 
describes experiment well

● Implementation
● Choose a gauge which allows for a Higgs vev

● ‘t Hooft type gauge
● Not a background gauge

● Necessary symmetry: translation invariance, 
Lorentz symmetry

● Split after gauge-fixing Higgs field in vev and 
fluctuation field

● Test: Calculate gauge-invariant observables
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‘Experiment’: Derived from the situation in the standard model
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Physical spectrum
Lattice calculation

Scalar

[Maas’12, Maas & Mufti’14]
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How to make predictions

● JPC and custodial charge only quantum numbers
● Different from perturbation theory

● Operators limited to asymptotic, elementary, 
gauge-dependent states

● Formulate gauge-invariant, composite operators
● Bound state structure – non-perturbative 

methods?
● But coupling is still weak and there is a BEH
● Perform double expansion [Fröhlich et al.'80, Maas’12]

● Vacuum expectation value (FMS mechanism)
● Standard expansion in couplings
● Together: Gauge-invariant perturbation theory

[Fröhlich et al.’80,’81,
 Maas & Törek'16,’18,
 Maas, Sondenheimer & Törek'17]
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Gauge-invariant perturbation theory

1) Formulate gauge-invariant operator

     0+ singlet:

2) Expand Higgs field around fluctuations

3) Standard perturbation theory

4) Compare poles on both sides

⟨(h + h)(x)(h + h)( y)⟩

Bound 
state
mass

Higgs
mass

2 x Higgs mass:
Scattering state

⟨(h + h)(x)(h + h)( y)⟩=v2 ⟨η +
(x)η( y)⟩

+v ⟨η +
η
2
+η

+2
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η
2
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h h h h hhh≈ + +something small

h=v+η

[Fröhlich et al.’80,’81
 Maas'12,’17]



Gauge-invariant perturbation theory

=D (P2
)h h



Gauge-invariant perturbation theory

h h D (P)=⟨(h + h)(x)(h + h)( y)⟩



Gauge-invariant perturbation theory

h h D (P)=⟨(h + h)(x)(h + h)( y)⟩
=v2⟨η +

(x)η( y)⟩tree level



Gauge-invariant perturbation theory

h h D (P)=⟨(h + h)(x)(h + h)( y)⟩
=v2 ⟨η +

(x)η( y)⟩



Gauge-invariant perturbation theory

h h D (P)=⟨(h + h)(x)(h + h)( y)⟩
=v2 ⟨η +

(x)η( y)⟩tree level+⟨η
+
(x)η( y )⟩tree level

2



Gauge-invariant perturbation theory

h h D (P)=⟨(h + h)(x)(h + h)( y )⟩
=v2 ⟨η +

(x)η( y)⟩+⟨η +
(x)η( y)⟩tree level

2



What about the vector? [Fröhlich et al.’80,’81
 Maas'12]



What about the vector?

1) Formulate gauge-invariant operator

     1- triplet:

[Fröhlich et al.’80,’81
 Maas'12]

⟨(τ
i h + Dμh)(x)(τ j h + Dμh)( y)⟩



What about the vector?

1) Formulate gauge-invariant operator

     1- triplet:

2) Expand Higgs field around fluctuations

⟨(τ
i h + Dμh)(x)(τ j h + Dμh)( y)⟩

h=v+η

[Fröhlich et al.’80,’81
 Maas'12]



What about the vector?

1) Formulate gauge-invariant operator

     1- triplet:

2) Expand Higgs field around fluctuations

⟨(τ
i h + Dμh)(x)(τ j h + Dμh)( y)⟩

⟨(τ
i h + Dμh)(x)(τ j h + Dμh)( y)⟩=v2cij

ab
⟨Wμ

a
(x)W b

( y)μ⟩+...

h=v+η

[Fröhlich et al.’80,’81
 Maas'12]



What about the vector?

1) Formulate gauge-invariant operator

     1- triplet:

2) Expand Higgs field around fluctuations

⟨(τ
i h + Dμh)(x)(τ j h + Dμh)( y)⟩

Matrix from
group structure

⟨(τ
i h + Dμh)(x)(τ j h + Dμh)( y)⟩=v2cij

ab
⟨Wμ

a
(x)W b

( y)μ⟩+...

h=v+η

[Fröhlich et al.’80,’81
 Maas'12]



What about the vector?

1) Formulate gauge-invariant operator

     1- triplet:

2) Expand Higgs field around fluctuations

⟨(τ
i h + Dμh)(x)(τ j h + Dμh)( y)⟩

Matrix from
group structure

⟨(τ
i h + Dμh)(x)(τ j h + Dμh)( y)⟩=v2cij

ab
⟨Wμ

a
(x)W b

( y)μ⟩+...

=v2 ⟨W μ

i W μ

j
⟩+...

h=v+η

[Fröhlich et al.’80,’81
 Maas'12]



What about the vector?

1) Formulate gauge-invariant operator

     1- triplet:

2) Expand Higgs field around fluctuations

⟨(τ
i h + Dμh)(x)(τ j h + Dμh)( y)⟩

Matrix from
group structure

c projects custodial
states to gauge
states

⟨(τ
i h + Dμh)(x)(τ j h + Dμh)( y)⟩=v2cij

ab
⟨Wμ

a
(x)W b

( y)μ⟩+...

=v2 ⟨W μ

i W μ

j
⟩+...

h=v+η

[Fröhlich et al.’80,’81
 Maas'12]



What about the vector?

1) Formulate gauge-invariant operator

     1- triplet:

2) Expand Higgs field around fluctuations

⟨(τ
i h + Dμh)(x)(τ j h + Dμh)( y)⟩

Exactly one gauge boson 
for every physical state

Matrix from
group structure

c projects custodial
states to gauge
states

⟨(τ
i h + Dμh)(x)(τ j h + Dμh)( y)⟩=v2cij

ab
⟨Wμ

a
(x)W b

( y)μ⟩+...

=v2 ⟨W μ

i W μ

j
⟩+...

h=v+η

[Fröhlich et al.’80,’81
 Maas'12]
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Lattice calculation

Scalar
Experiment

M
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Scalar Vector triplet

Custodial Singlet Triplet

Vector

● FMS works
● Some lattice support for SU(2)xU(1) [Shrock et al. 85-88]

● Extension to the whole standard model
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Bound states as extended objects
[Maas,Raubitzke,Törek’18]

● Physical “Z” mr~2

FMS at high energies:
Probes substructure
Behaves like ZWW

At low energies:
Dominated by bound state
with finite size

Physical “Z” form factor



Beyond quantitative

● FMS worked because corrections are 
small
● Same structure of local and global 

symmetry



Beyond quantitative

● FMS worked because corrections are 
small
● Same structure of local and global 

symmetry
● What happens if there are qualitative 

effects?



Beyond quantitative

● FMS worked because corrections are 
small
● Same structure of local and global 

symmetry
● What happens if there are qualitative 

effects?
● Different structures of local and global 

symmetry



Beyond quantitative

● FMS worked because corrections are 
small
● Same structure of local and global 

symmetry
● What happens if there are qualitative 

effects?
● Different structures of local and global 

symmetry
● FMS still works, if quantum fluctuations 

in a suitable gauge are small: Example
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● Consider an SU(3) with a single fundamental scalar
● Looks very similar to the standard model Higgs

● Ws
● Higgs

● Couplings g, v, λ and some numbers f abc and t
a

ij

● Parameters selected for a BEH effect
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● Consider an SU(3) with a single fundamental scalar
● Looks very similar to the standard model Higgs

● Local SU(3) gauge symmetry
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A toy model

● Consider an SU(3) with a single fundamental scalar
● Looks very similar to the standard model Higgs

● Local SU(3) gauge symmetry

● Global U(1) custodial (flavor) symmetry
● Acts as (right-)transformation on the scalar field only
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Textbook approach

● Choose parameters to get a Brout-
Englert-Higgs effect

● Minimize the classical action
● Choose a suitable gauge and obtain 

‘spontaneous gauge symmetry 
breaking’: SU(3) → SU(2)

● Get masses and degeneracies at tree-
level

● Perform perturbation theory
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● Qualitatively different spectrum
● Results in agreement with analytic predictions

Gauge-invariant
Vector
singlet

Vector
non-singlet

[Maas & Törek’16,'18
 Maas, Sondenheimer & Törek'17]

Scalar
singlet

Scalar
non-singlet

Predicted

Observed Upper limits

Spectrum



Gauge-invariantGauge-dependent

M
a
ss

0
[Maas & Törek’16,'18
 Maas, Sondenheimer & Törek'17]

Vector Scalar Scalar
singlet

=

Spectrum

● Qualitatively different spectrum

Vector
non-singlet

Vector
singlet

Scalar
non-singlet



● Qualitatively different spectrum

Gauge-invariantGauge-dependent

M
a
ss

0
[Maas & Törek’16,'18
 Maas, Sondenheimer & Törek'17]

Vector Scalar Scalar
singlet

Scalar
non-singlet

2x

Spectrum

Vector
non-singlet

Vector
singlet



● Qualitatively different spectrum

Gauge-invariantGauge-dependent
Vector
singlet

M
a
ss

0

=

[Maas & Törek’16,'18
 Maas, Sondenheimer & Törek'17]

Vector Scalar Scalar
singlet

Scalar
non-singlet

Spectrum

Vector
non-singlet



● Qualitatively different spectrum

Gauge-invariantGauge-dependent
Vector
singlet

Vector
non-singlet

M
a
ss

0

2x

[Maas & Törek’16,'18
 Maas, Sondenheimer & Törek'17]

Vector Scalar Scalar
singlet

Scalar
non-singlet

Spectrum



● Qualitatively different spectrum
● No mass gap!

Gauge-invariantGauge-dependent
Vector
singlet

Vector
non-singlet

M
a
ss

0
[Maas & Törek’16,'18
 Maas, Sondenheimer & Törek'17]

Vector Scalar Scalar
singlet

Scalar
non-singlet

Spectrum



● Qualitatively different spectrum
● No mass gap! - But can be there: Adjoint Higgs

[Maas, Sondenheimer & Törek'17, Shigemitsu & Lee’85, Afferrante, Maas, Törek’19]
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What about the vector?

1) Formulate gauge-invariant operator

     1- singlet:

2) Expand Higgs field around fluctuations

⟨(h + Dμh)(x)(h + Dμh)( y)⟩

Matrix from
group structure

cab projects out
only one field

⟨(h + Dμh)(x)(h + Dμh)( y)⟩=v2cab
⟨Wμ

a
(x)W b

( y)μ⟩+...

=v2 ⟨Wμ

8Wμ

8
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h=v+η
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What about the vector?

1) Formulate gauge-invariant operator

     1- singlet:

2) Expand Higgs field around fluctuations

⟨(h + Dμh)(x)(h + Dμh)( y)⟩

Only one state remains in the spectrum
at mass of gauge boson 8 (heavy singlet)

Matrix from
group structure

cab projects out
only one field

⟨(h + Dμh)(x)(h + Dμh)( y)⟩=v2cab
⟨Wμ

a
(x)W b

( y)μ⟩+...

=v2 ⟨Wμ

8Wμ

8
⟩+...

h=v+η

[Maas & Törek’16]
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Quantum gravity: Setting the scene

● QFT setting – no strings or other non-QFT settings
● Diffeomorphism is like a non-standard gauge 

symmetry
● Arbitrary local choices of coordinates do not affect 

observables – pure passive formulation
● Physical observables must be manifestly invariant

● Spin seems to remain observable
● Spin degeneracies and selection rules due to spin 

conservation
● Needs a global structure

● Particle physics gauge symmetries and global 
symmetries should remain the same
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Gravity as a gauge theory [Hehl et al.’76]

Global
symmetry
is event-
independent

Gauge symmetry
is event-dependent

Internal symmetries act in internal spaces
Global: One internal space
Local: One space at every event
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Dynamical formulation

● Needs an elementary carrier of the global 
charge: Vierbein as dynamical degree of 
freedom
● Other choices possibles

● Otherwise standard
● E.g. Asymptotic safety for ultraviolet stability

Z=∫
Ω

Deμ
a D ϕ

a eiS [ϕ , e ]+iSEH [e ]

Standard model fields

Standard gravityStandard gravity
coupling



Dynamical formulation

⟨O ⟩=∫
Ω

Deμ
a D ϕ

a O eiS [ϕ , e ]+iSEH [e ]



Dynamical formulation

⟨O ⟩=∫
Ω

Deμ
a D ϕ

a O eiS [ϕ , e ]+iSEH [e ]

Needs to be invariant



Dynamical formulation

⟨O ⟩=∫
Ω

Deμ
a D ϕ

a O eiS [ϕ , e ]+iSEH [e ]

Needs to be invariant
● Locally under Diffeomorphism
● Globally under Lorentz transformation
● Globally under custodial,… transformation
● Locally under gauge transformation



Dynamical formulation

0≠⟨O ⟩=∫
Ω

Deμ
a D ϕ

a O eiS [ϕ , e ]+iSEH [e ]

Needs to be invariant
● Locally under Diffeomorphism
● Globally under Lorentz transformation
● Globally under custodial,… transformation
● Locally under gauge transformation
to be non-zero
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Simpelst object: Scalar

● Consider a scalar particle
● E.g. the ‘Higgs’ scalar
● Completely invariant

● Events not a useful argument

⟨O (x)O( y)⟩=D (x , y)

O(x)=(ϕai)
+
(x)ϕai(x)

Argument is the event, not the coordinate

Result depends on events
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● Distance is a quantum object: Expectation value
● Needs a diff-invariant formulation
● Diff-invariant distance: Geodesic distance

⟨O(x)O( y)⟩=D(r (x , y))

r (x , y)=⟨minz∫x

y
d λ gμ ν

dzμ

d λ
dzν

d λ
⟩

Select geodesic

[Schaden’15]



Simpelst object: Scalar
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Simpelst object: Scalar

● Distance is a quantum object: Expectation value
● Needs a diff-invariant formulation
● Diff-invariant distance: Geodesic distance
● Needs to be determined separately

⟨O(x)O( y)⟩=D(r (x , y))

r (x , y)=⟨minz∫x

y
d λ gμ ν

dzμ

d λ
dzν

d λ
⟩

Reduces the full dependence: Definition
Dependence on events will only vanish if all events on the 
average are equal – probably true

[Schaden’15]



Simpelst object: Scalar

● Distance is a quantum object: Expectation value
● Needs a diff-invariant formulation
● Diff-invariant distance: Geodesic distance
● Needs to be determined separately

● Generalization of flat-space arguments

⟨O(x)O( y)⟩=D(r (x , y))

r (x , y)=⟨minz∫x

y
d λ gμ ν

dzμ

d λ
dzν

d λ
⟩

[Schaden’15]



Applying FMS

● Our universe is well-approximated by a 
classical  metric
● Due to the parameter values – special!
● Small quantum fluctuations at large scales

● Empirical result



Applying FMS

● Our universe is well-approximated by a 
classical  metric
● Due to the parameter values – special!
● Small quantum fluctuations at large scales

● Empirical result
● FMS split after (convenient) gauge fixing

●

● Classical part gc is a metric, chosen to give 
exact (observed) curvature

● Quantum part is assumed small

gμ ν=gμ ν
c
+γμ ν
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Distance

● Application to the distance between two 
events
● Yields to leading order classical distance
● Size of quantum corrections depends on 

events

r (x , y)=⟨minz∫x

y
d λ gμ ν

dzμ

d λ
dzν

d λ
⟩

=rc
(x , y)+⟨minz∫x

y
d λ γμ ν

dzμ

d λ
dzν

d λ
⟩=r c

+δ r

Classical geodesic
distance

Quantum corrections
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● Double expansion
● Quantum fluctuations in the argument
● Quantum fluctuations in the action

● Reduces to QFT at vanishing gravity
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Propagators

● Double expansion
● Quantum fluctuations in the argument
● Quantum fluctuations in the action

● Reduces to QFT at vanishing gravity
● Can be supplemented by FMS of BEH

⟨O(x)O( y)⟩=Dc (r
c
)+∑ (δ r)n

∂r
n Dc(r )+⟨O(x)O( y)⟩γ

Dc=⟨O (x)O ( y)⟩gc



Other operators



Other operators

Particles with spin – e.g. spin 1

eμ
a
(x)Oμ

(x)



Other operators

Particles with spin – e.g. spin 1

eμ
a
(x)Oμ

(x)

Flat space operator



Other operators

Particles with spin – e.g. spin 1

eμ
a
(x)Oμ

(x)

Dressing for diff invariance



Other operators

Particles with spin – e.g. spin 1

eμ
a
(x)Oμ

(x)

Vector in tangent space



Other operators

Particles with spin – e.g. spin 1

eμ
a
(x)Oμ

(x)

Vector in tangent space – like flavor and custodial charges
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Particles with spin – e.g. spin 1

eμ
a
(x)Oμ

(x)

Pure gravity excitations possible (Geons)

Scalar: R(x) =
e . g . flat ,de Sitter , ...

const .+gc
μ ν
γμ ν+O (γ

2
)

Graviton trace mode

Massive? Stable? Dark matter?
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const .+gc
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Other operators

Particles with spin – e.g. spin 1

Pure gravity excitations possible (Geons)

Scalar: R(x) =
e . g . flat ,de Sitter , ...

const .+gc
μ ν
γμ ν+O (γ

2
)

Tensor: ea
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ν Rμ ν =
e . g . flat , de Sitter , ...
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Other operators

Particles with spin – e.g. spin 1

eμ
a
(x)Oμ

(x)

Pure gravity excitations possible (Geons)

Scalar: R(x) =
e . g . flat ,de Sitter , ...

const .+gc
μ ν
γμ ν+O (γ

2
)

Tensor: ea
μ eb

ν Rμ ν =
e . g . flat , de Sitter , ...

eca
μ ecb

ν
γμ ν+O(γ

2
)

Graviton
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Speculative phenomenology

● Macroscopic gravitational objects need 
to be build in the same way
● Just like neutron stars from QCD

● Black hole: Two options
● Single operator without decomposition

● Monolithic, essentially elementary particle
● Will have overlap with R(x)

● Product of separate diff-invariant operators
● Geon star: Similar to neutron star
● Hawking radiation as tunneling
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Summary

● Physics determined by manifest gauge-
invariant, composite objects

● Yields unexpected patterns in particle 
physics

● Can be applied to quantum gravity

@axelmaas
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Outlook

● Particle Physics Phenomenology
● LHC, flavor, model building

● Quantum gravity phenomenology
● Systematic application of FMS mechanism

● Simulations in quantum gravity?
● Discretization on events as gauge theory?

@axelmaas
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