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● Group-invariant quantity
● Measures relative orientation
● Created from an invariant tensor
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● Generalized Wigner-Eckart theorem 

δab
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Path integral and global symmetries

● Explicit breaking is an explicit absolute frame
● Results are relative to the source
● Remains for          : Spontaneous symmetry breaking

● Measurement preferably aligned to source direction
● At zero source: Expectation values always vanish

● Individual measurements can show preferred direction
● No absolute direction preferred

jc
→0
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Path integral and global symmetries
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● Reduction of integration region by gauge fixing
● Arbitrary choice of coordinates
● Weight factor to keep gauge-invariant quantities the same

Reduced integration range
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Physical observables

● Only expectation values of operators invariant 
under intact symmetries are non-zero

● Global symmetries create degeneracies and 
selection rules/superselection sectors

● Sources break a symmetry explicitly and create an 
absolute frame
● Like an additional term in the theory

● Gauge-fixing is a choice of coordinates in an internal 
space
● Introduces an absolute frame

● Only quantities invariant under all symmetries are 
measurable
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Fröhlich-Morchio-Strocchi mechanism
● Is there a gauge, in which gauge-invariant 

observables are easy to calculate?
● Especially: Can some gauge-invariant quantities 

be calculated exactly at tree-level in this gauge?
● Can then have no quantum corrections

● Choice different for different parameter sets
● FMS mechanism

● Quantities showing classical behavior are ideal 
choices

● Chose a gauge compatible with the desired 
classical behavior

● Split after gauge-fixing fields such that they 
become classical fields plus quantum corrections
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● Consider an SU(2) with a single fundamental scalar
● Essentially the standard model Higgs

● Ws
● Higgs

● Couplings g, v, λ and some numbers f abc and t
a

ij

● Parameters selected for a BEH effect
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● Consider an SU(2) with a single fundamental scalar
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● Consider an SU(2) with a single fundamental scalar
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A toy model: Symmetries

● Consider an SU(2) with a single fundamental scalar
● Essentially the standard model Higgs

● Local SU(2) gauge symmetry

● Global SU(2) custodial (flavor) symmetry
● Acts as (right-)transformation on the scalar field only
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Physical states

● Need physical, gauge-invariant particles
● Cannot be the elementary particles
● Non-Abelian nature is relevant

● Need more than one particle: Composite particles

● Higgs-Higgs, W-W, Higgs-Higgs-W etc.

● Has nothing to do with weak coupling

● Think QED (hydrogen atom!)
● Quite different from the usual picture

● Can be described using the FMS mechanism

Wh W WW WWh
h

h

[Fröhlich et al.'80,
 Banks et al.'79]
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The FMS mechanism

● Suspicion: Classical Higgs vev picture 
describes experiment well

● Implementation
● Choose a gauge which allows for a Higgs vev

● ‘t Hooft type gauge
● Not a background gauge

● Necessary symmetry: translation invariance, 
Lorentz symmetry

● Split after gauge-fixing Higgs field in vev and 
fluctuation field

● Test: Calculate gauge-invariant observables
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‘Experiment’: Derived from the situation in the standard model
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Experiment

M
a
ss

0

Scalar Vector triplet



Custodial singlet

Physical spectrum
Lattice calculation

Scalar

[Maas’12, Maas & Mufti’14]

Experiment

M
a
ss

0

Scalar Vector triplet



Custodial singlet

Physical spectrum
Lattice calculation

Scalar

[Maas’12, Maas & Mufti’14]
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How to make predictions

● JPC and custodial charge only quantum numbers
● Different from perturbation theory

● Operators limited to asymptotic, elementary, 
gauge-dependent states

● Formulate gauge-invariant, composite operators
● Bound state structure – non-perturbative 

methods?
● But coupling is still weak and there is a BEH
● Perform double expansion [Fröhlich et al.'80, Maas’12]

● Vacuum expectation value (FMS mechanism)
● Standard expansion in couplings
● Together: Gauge-invariant perturbation theory

[Fröhlich et al.’80,’81,
 Maas & Törek'16,’18,
 Maas, Sondenheimer & Törek'17]
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Gauge-invariant perturbation theory

1) Formulate gauge-invariant operator

     0+ singlet:

2) Expand Higgs field around fluctuations

3) Standard perturbation theory

4) Compare poles on both sides

⟨(h + h)(x)(h + h)( y)⟩

Bound 
state
mass

Higgs
mass

2 x Higgs mass:
Scattering state

⟨(h + h)(x)(h + h)( y)⟩=v2 ⟨η +
(x)η( y)⟩

+v ⟨η +
η
2
+η

+2
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h h h h hhh≈ + +something small

h=v+η

[Fröhlich et al.’80,’81
 Maas'12,’17]
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What about the vector?

1) Formulate gauge-invariant operator

     1- triplet:

2) Expand Higgs field around fluctuations

⟨(τ
i h + Dμh)(x)(τ j h + Dμh)( y)⟩

Exactly one gauge boson 
for every physical state

Matrix from
group structure

c projects custodial
states to gauge
states

⟨(τ
i h + Dμh)(x)(τ j h + Dμh)( y)⟩=v2cij

ab
⟨Wμ

a
(x)W b

( y)μ⟩+...

=v2 ⟨W μ

i W μ

j
⟩+...

h=v+η

[Fröhlich et al.’80,’81
 Maas'12]
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Physical spectrum [Maas’12, Maas & Mufti’14]

Lattice calculation

Scalar
Experiment

M
a
ss

0

Scalar Vector triplet

Custodial Singlet Triplet

Vector

● FMS works
● Some lattice support for SU(2)xU(1) [Shrock et al. 85-88]

● Extension to the whole standard model
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Bound states as extended objects
[Maas,Raubitzke,Törek’18]

● Physical “Z” mr~2

FMS at high energies:
Probes substructure
Behaves like ZWW

At low energies:
Dominated by bound state
with finite size

Physical “Z” form factor
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Beyond quantitative

● FMS worked because corrections are 
small
● Same structure of local and global 

symmetry
● What happens if there are qualitative 

effects?
● Different structures of local and global 

symmetry
● FMS still works, if quantum fluctuations 

in a suitable gauge are small: Example
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● Consider an SU(3) with a single fundamental scalar
● Looks very similar to the standard model Higgs

● Ws
● Higgs

● Couplings g, v, λ and some numbers f abc and t
a

ij

● Parameters selected for a BEH effect
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A toy model

● Consider an SU(3) with a single fundamental scalar
● Looks very similar to the standard model Higgs

● Local SU(3) gauge symmetry
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A toy model

● Consider an SU(3) with a single fundamental scalar
● Looks very similar to the standard model Higgs

● Local SU(3) gauge symmetry

● Global U(1) custodial (flavor) symmetry
● Acts as (right-)transformation on the scalar field only
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Textbook approach

● Choose parameters to get a Brout-
Englert-Higgs effect

● Minimize the classical action
● Choose a suitable gauge and obtain 

‘spontaneous gauge symmetry 
breaking’: SU(3) → SU(2)

● Get masses and degeneracies at tree-
level

● Perform perturbation theory
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● Qualitatively different spectrum
● No mass gap! - But can be there: Adjoint Higgs

[Maas, Sondenheimer & Törek'17, Shigemitsu & Lee’85, Afferrante, Maas, Törek’19]
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What about the vector?

1) Formulate gauge-invariant operator

     1- singlet:

2) Expand Higgs field around fluctuations

⟨(h + Dμh)(x)(h + Dμh)( y)⟩

Matrix from
group structure

cab projects out
only one field

⟨(h + Dμh)(x)(h + Dμh)( y)⟩=v2cab
⟨Wμ

a
(x)W b

( y)μ⟩+...

=v2 ⟨Wμ

8Wμ
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What about the vector?

1) Formulate gauge-invariant operator

     1- singlet:

2) Expand Higgs field around fluctuations

⟨(h + Dμh)(x)(h + Dμh)( y)⟩

Only one state remains in the spectrum
at mass of gauge boson 8 (heavy singlet)

Matrix from
group structure

cab projects out
only one field

⟨(h + Dμh)(x)(h + Dμh)( y)⟩=v2cab
⟨Wμ

a
(x)W b

( y)μ⟩+...

=v2 ⟨Wμ

8Wμ

8
⟩+...

h=v+η

[Maas & Törek’16]



Quantum gravity: Setting the scene

● QFT setting – no strings or other non-QFT settings



Quantum gravity: Setting the scene

● QFT setting – no strings or other non-QFT settings
● Diffeomorphism is like a non-standard gauge 

symmetry
● Arbitrary local choices of coordinates do not affect 

observables
● Physical observables must be manifestly invariant



Quantum gravity: Setting the scene

● QFT setting – no strings or other non-QFT settings
● Diffeomorphism is like a non-standard gauge 

symmetry
● Arbitrary local choices of coordinates do not affect 

observables – pure passive formulation
● Physical observables must be manifestly invariant



Quantum gravity: Setting the scene

● QFT setting – no strings or other non-QFT settings
● Diffeomorphism is like a non-standard gauge 

symmetry
● Arbitrary local choices of coordinates do not affect 

observables – pure passive formulation
● Physical observables must be manifestly invariant

● Spin seems to remain observable
● Spin degeneracies and selection rules due to spin 

conservation
● Needs a global structure



Quantum gravity: Setting the scene

● QFT setting – no strings or other non-QFT settings
● Diffeomorphism is like a non-standard gauge 

symmetry
● Arbitrary local choices of coordinates do not affect 

observables – pure passive formulation
● Physical observables must be manifestly invariant

● Spin seems to remain observable
● Spin degeneracies and selection rules due to spin 

conservation
● Needs a global structure

● Particle physics gauge symmetries and global 
symmetries should remain the same
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Gravity as a gauge theory [Hehl et al.’76]

Global
symmetry
is event-
independent

Gauge symmetry
is event-dependent

Internal symmetries act in internal spaces
Global: One internal space
Local: One space at every event
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Dynamical formulation

● Needs an elementary carrier of the global 
charge: Vierbein as dynamical degree of 
freedom
● Other choices possibles

● Otherwise standard
● E.g. Asymptotic safety for ultraviolet stability

Z=∫
Ω

Deμ
a D ϕ

a eiS [ϕ , e ]+iSEH [e ]

Standard model fields

Standard gravityStandard gravity
coupling
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Dynamical formulation

0≠⟨O ⟩=∫
Ω

Deμ
a D ϕ

a O eiS [ϕ , e ]+iSEH [e ]

Needs to be invariant
● Locally under Diffeomorphism
● Globally under Lorentz transformation
● Globally under custodial,… transformation
● Locally under gauge transformation
to be non-zero
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Simpelst object: Scalar

● Consider a scalar particle
● E.g. the ‘Higgs’ scalar
● Completely invariant

● Events not a useful argument

⟨O (x)O( y)⟩=D (x , y)

O(x)=(ϕai)
+
(x)ϕai(x)

Argument is the event, not the coordinate

Result depends on events
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● Distance is a quantum object: Expectation value
● Needs a diff-invariant formulation
● Diff-invariant distance: Geodesic distance
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● Distance is a quantum object: Expectation value
● Needs a diff-invariant formulation
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Simpelst object: Scalar

● Distance is a quantum object: Expectation value
● Needs a diff-invariant formulation
● Diff-invariant distance: Geodesic distance
● Needs to be determined separately

⟨O(x)O( y)⟩=D(r (x , y))

r (x , y)=⟨minz∫x

y
d λ gμ ν

dzμ

d λ
dzν

d λ
⟩

Reduces the full dependence: Definition
Dependence on events will only vanish if all events on the 
average are equal – probably true

[Schaden’15]



Simpelst object: Scalar

● Distance is a quantum object: Expectation value
● Needs a diff-invariant formulation
● Diff-invariant distance: Geodesic distance
● Needs to be determined separately

● Generalization of flat-space arguments

⟨O(x)O( y)⟩=D(r (x , y))

r (x , y)=⟨minz∫x

y
d λ gμ ν

dzμ

d λ
dzν

d λ
⟩

[Schaden’15]
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Applying FMS

● Our universe is well-approximated by a 
classical  metric
● Due to the parameter values – special!
● Small quantum fluctuations at large scales

● Empirical result
● FMS split after (convenient) gauge fixing

●

● Classical part gc is a metric, chosen to give 
exact (observed) curvature

● Quantum part is assumed small

gμ ν=gμ ν
c
+γμ ν
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Distance

● Application to the distance between two 
events
● Yields to leading order classical distance
● Size of quantum corrections depends on 

events

r (x , y)=⟨minz∫x

y
d λ gμ ν

dzμ

d λ
dzν

d λ
⟩

=rc
(x , y)+⟨minz∫x

y
d λ γμ ν

dzμ

d λ
dzν

d λ
⟩=r c

+δ r

Classical geodesic
distance

Quantum corrections



Propagators

⟨O(x)O( y)⟩



Propagators

● Double expansion

⟨O(x)O( y)⟩=Dc (r
c
)+∑ (δ r)n

∂r
n Dc(r )+⟨O(x)O( y)⟩γ

Dc=⟨O (x)O ( y)⟩gc



Propagators

● Double expansion

⟨O(x)O( y)⟩=Dc (r
c
)+∑ (δ r)n

∂r
n Dc(r )+⟨O(x)O( y)⟩γ

Dc=⟨O (x)O ( y)⟩gcLeading term is
flat space propagator



Propagators

● Double expansion
● Quantum fluctuations in the argument

⟨O(x)O( y)⟩=Dc (r
c
)+∑ (δ r)n

∂r
n Dc(r )+⟨O(x)O( y)⟩γ

Dc=⟨O (x)O ( y)⟩gc

Corrections from quantum
distance effects



Propagators

● Double expansion
● Quantum fluctuations in the argument
● Quantum fluctuations in the action

⟨O(x)O( y)⟩=Dc (r
c
)+∑ (δ r)n

∂r
n Dc(r )+⟨O(x)O( y)⟩γ

Dc=⟨O (x)O ( y)⟩gc

Corrections from
metric fluctuations



Propagators

● Double expansion
● Quantum fluctuations in the argument
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Propagators

● Double expansion
● Quantum fluctuations in the argument
● Quantum fluctuations in the action

● Reduces to QFT at vanishing gravity
● Can be supplemented by FMS of BEH

⟨O(x)O( y)⟩=Dc (r
c
)+∑ (δ r)n

∂r
n Dc(r )+⟨O(x)O( y)⟩γ

Dc=⟨O (x)O ( y)⟩gc
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Vector in tangent space – like flavor and custodial charges
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Pure gravity excitations possible (Geons)

Scalar: R(x) =
e . g . flat ,de Sitter , ...

const .+gc
μ ν
γμ ν+O (γ

2
)

Graviton trace mode

Massive? Stable? Dark matter?
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Other operators

Particles with spin – e.g. spin 1

eμ
a
(x)Oμ

(x)

Pure gravity excitations possible (Geons)

Scalar: R(x) =
e . g . flat ,de Sitter , ...

const .+gc
μ ν
γμ ν+O (γ

2
)

Tensor: ea
μ eb

ν Rμ ν =
e . g . flat , de Sitter , ...

eca
μ ecb

ν
γμ ν+O(γ

2
)

Graviton
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Speculative phenomenology

● Macroscopic gravitational objects need 
to be build in the same way
● Just like neutron stars from QCD

● Black hole: Two options
● Single operator without decomposition

● Monolithic, essentially elementary particle
● Will have overlap with R(x)

● Product of separate diff-invariant operators
● Geon star: Similar to neutron star
● Hawking radiation as tunneling
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Summary

● Physics determined by manifest gauge-
invariant, composite objects

● Yields unexpected patterns in particle 
physics

● Can be applied to quantum gravity

@axelmaas
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Outlook

● Particle Physics Phenomenology
● LHC, flavor, model building

● Quantum gravity phenomenology
● Systematic application of FMS mechanism

● Simulations in quantum gravity?
● Discretization on events as gauge theory?

@axelmaas


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213

