Exact asymptotic safety: new solutions and large-N equivalences

Tom Steudtner University of Sussex

based on arXiv:1911.11168 in collaboration with Daniel Litim, Andrew Bond

International Asymptotic Safety Seminar 13th January 2020 UNIVERSITY OF SUSSEX

Outline

1

Motivation

Recap: Asymptotic safety in 4d gauge theories Asymptotically safe template model Alternative exact theories? Majorana fermions

Large-N equivalences

Conclusion

Motivation

- particle physics: search for extension / UV completion of the SM
 - ➤ common setup: perturbation theory, d=4, no gravity
 - ➤ asymptotic freedom as guiding principle

- progress in 2014: exact asymptotic safety in gauge-Yukawa theory [Litim, Sannino, JHEP 2014] [Litim, Sannino, Mojaza, JHEP 2016]
 - ➤ useful as template for model building
 - ➤ Are there more exact theories like this?

Recap: Asymptotic safety in 4d gauge theories

gauge theory with matter:

$$\alpha_g = \frac{g^2}{(4\pi)^2}$$

$$\beta_{g} = -B \alpha_{g}^{2} + C \alpha_{g}^{3} + \dots$$

$$B > 0: \qquad \text{asymptotic freedom}$$

$$B \le 0 \implies C > 0 \qquad \text{no UV fixed point}_{[Bond, Litim, EPJ 2017]}$$

Recap: Asymptotic safety in 4d gauge theories

gauge theory with matter:

$$\alpha_g = \frac{g^2}{(4\pi)^2}$$

3

 $\beta_{g} = -B \alpha_{g}^{2} + C \alpha_{g}^{3} + \dots$ $B > 0: \qquad \text{asymptotic freedom}$ $B \le 0 \implies C > 0 \qquad \text{no UV fixed point}_{[Bond, Litim, EPJ 2017]}$

gauge and Yukawa interaction:

$$\beta_g = -B \alpha_g^2 + C \alpha_g^3 - D \alpha_y \alpha_g^2$$

$$\beta_y = E \alpha_y^2 - F \alpha_g \alpha_y$$

$$D, E, F \ge 0$$

Recap: Asymptotic safety in 4d gauge theories

gauge theory with matter:

$$\alpha_g = \frac{g^2}{(4\pi)^2}$$

3

 $\beta_{g} = -B \alpha_{g}^{2} + C \alpha_{g}^{3} + \dots$ B > 0: B > 0: $B \le 0 \Rightarrow C > 0$ $B \le 0$ $B \le 0 \Rightarrow C > 0$ $B \le 0$ $B \le 0 \Rightarrow C > 0$ $B \le 0$ B

gauge and Yukawa interaction:

 $\beta_{g} = -B \alpha_{g}^{2} + C \alpha_{g}^{3} - D \alpha_{y} \alpha_{g}^{2}$ $\beta_{y} = E \alpha_{y}^{2} - F \alpha_{g} \alpha_{y}$ $D, E, F \ge 0$ $C' = C - \frac{DF}{E} < 0$ B < 0, C' < 0: gauge-Yukawa UV fixed point

$$\alpha_y^* = \frac{F}{E} \alpha_g^* \qquad \alpha_g^* = B/C'$$

Yukawa interaction is strictly required!

Example: Uncharged scalars

Consider:

- ➤ non-abelian gauge
- charged fermions
- ➤ uncharged scalar

Example: Uncharged scalars

Consider:

- ➤ non-abelian gauge
- charged fermions
- ➤ uncharged scalar

fermionic vs. scalar DOF B < 0 C' < 0

What theories do actually allow for this UV fixed point?

Asymptotically safe template

[Litim, Sannino, JHEP 2014] [Litim, Sannino, Mojaza, JHEP 2016]

- $SU(N_c)$ gauge symmetry
- $SU(N_f) \times SU(N_f)$ global symmetry
- N_f quarks-like Dirac fermions $\Psi_i = (\Psi_{Li}, \Psi_{Ri})^{\mathsf{T}}$
- $N_f \times N_f$ meson-like scalars H_{ij} (uncharged, complex matrix)

Exact perturbative control

- Veneziano limit: $N_{f,c} \to \infty$ but $N_f/N_c = \text{const.}$
- introduce 't Hooft couplings:

$$\alpha_g = \frac{d_R g^2}{(4\pi)^2} \qquad \alpha_y = \frac{d_R y^2}{(4\pi)^2} \qquad \alpha_u = \frac{N_f u}{(4\pi)^2} \qquad \alpha_v = \frac{N_f^2 v}{(4\pi)^2}$$

small expansion parameter: $\epsilon = \frac{N_f}{N_c} - \frac{11}{2} \qquad -\frac{11}{2} < \epsilon < \infty$

Exact perturbative control

- Veneziano limit: $N_{f,c} \to \infty$ but $N_f/N_c = \text{const.}$
- introduce 't Hooft couplings:

$$\alpha_g = \frac{d_R g^2}{(4\pi)^2} \qquad \alpha_y = \frac{d_R y^2}{(4\pi)^2} \qquad \alpha_u = \frac{N_f u}{(4\pi)^2} \qquad \alpha_v = \frac{N_f^2 v}{(4\pi)^2}$$

small expansion parameter: $\epsilon = \frac{N_f}{N_c} - \frac{11}{2} \qquad -\frac{11}{2} < \epsilon < \infty$

$$\beta_g = \alpha_g^2 \left[\frac{4}{3} \epsilon + \left(25 + \frac{26}{3} \epsilon \right) \alpha_g - 2 \left(\frac{11}{2} + \epsilon \right)^2 \alpha_y \right]$$

$$\beta_y = \alpha_y \left[(13 + 2\epsilon) \alpha_y - 6 \alpha_g \right]$$

$$\beta_u = - \left(11 + 2\epsilon \right) \alpha_y^2 + 4\alpha_u \left(\alpha_y + 2\alpha_u \right)$$

$$\beta_v = 12\alpha_u^2 + 4\alpha_v \left(\alpha_v + 4\alpha_u + \alpha_y \right)$$

1L gauge coefficient can be made arbitrarily small

Exact perturbative control

- Veneziano limit: $N_{f,c} \to \infty$ but $N_f/N_c = \text{const.}$
- introduce 't Hooft couplings:

$$\alpha_g = \frac{d_R g^2}{(4\pi)^2} \qquad \alpha_y = \frac{d_R y^2}{(4\pi)^2} \qquad \alpha_u = \frac{N_f u}{(4\pi)^2} \qquad \alpha_v = \frac{N_f^2 v}{(4\pi)^2}$$

small expansion parameter: $\epsilon = \frac{N_f}{N_c} - \frac{11}{2} \qquad -\frac{11}{2} < \epsilon < \infty$

$$\begin{aligned} \beta_g &= \alpha_g^2 \left[\frac{4}{3} \epsilon + \left(25 + \frac{26}{3} \epsilon \right) \alpha_g - 2 \left(\frac{11}{2} + \epsilon \right)^2 \alpha_y \right] & \begin{array}{lll} \text{IL gauge coefficient can be} \\ \text{made arbitrarily small} \\ \beta_y &= \alpha_y \left[\left(13 + 2\epsilon \right) \alpha_y - 6 \alpha_g \right] \\ \beta_u &= - \left(11 + 2\epsilon \right) \alpha_y^2 + 4\alpha_u \left(\alpha_y + 2\alpha_u \right) \\ \beta_v &= 12\alpha_u^2 + 4\alpha_v \left(\alpha_v + 4\alpha_u + \alpha_y \right) \end{aligned}$$

- → fixed point couplings, critical exponents under perturbative control for $|\epsilon| \ll 1$
- higher loop orders suppressed with higher powers of expansion parameter

UV conformal window

• $-\frac{11}{2} < \epsilon < 0$ asymptotic freedom $0 < \epsilon < \epsilon_{max}$ asymptotic safety

- UV conformal window studied at highest available loop orders
 - → 3-loop in gauge, 2-loop in Yukawa, quartic RGEs

[Bond, Litim, Medina, TS, PRD 2018]

- NLO in ϵ -expansion
- $\epsilon_{\max} \Rightarrow N_c^{\min} = 5..7$

Is this template model unique? Are there more 4d theories with exact asymptotic safety?

Alternative exact theories ?

• remember, we want $N_{c,f} \to \infty$ and $N_f/N_c = \text{const.}$

Alternative exact theories ?

• remember, we want $N_{c,f} \to \infty$ and $N_f/N_c = \text{const.}$

- how about other non-abelian gauge groups?
 - → exceptional ones do not have N_c
 - orthogonal or symplectic are the only options

$$SO(N_c): C_2^G = N_c/2 - 1$$
 $Sp(N_c): C_2^G = N_c/2 + 1$
 R
 d_R
 S_2^R

 fund.
 N_c
 $1/2$
 R
 d_R
 S_2^R

 adj.
 $N_c(N_c-1)/2$
 $N_c/2 - 1$
 antisymm.
 $(N_c/2+1)(N_c-1)/2$
 $N_c/2 + 1$

Template model with SO, Sp

- universal definition $\epsilon = \frac{N_f}{N_c} \frac{11}{2}$ for $SU(N_c)$, $SO(2N_c)$, $Sp(2N_c)$
- RGEs imply

 $\alpha_i^{SO} = \alpha_i^{Sp}$

$$\beta_{g} = \alpha_{g}^{2} \left[\frac{2}{3} \epsilon + \left(\frac{25}{4} + \frac{13}{6} \epsilon \right) \alpha_{g} - \frac{1}{2} \left(\frac{11}{2} + \epsilon \right)^{2} \alpha_{y} \right]$$
$$\beta_{y} = \alpha_{y} \left[\left(\frac{15}{2} + \epsilon \right) \alpha_{y} - 3 \alpha_{g} \right]$$
$$\beta_{u} = - \left(\frac{11}{2} + \epsilon \right) \alpha_{y}^{2} + 4 \alpha_{u} \left(\alpha_{y} + 2 \alpha_{u} \right)$$
$$\beta_{v} = 12 \alpha_{u}^{2} + 4 \alpha_{v} \left(\alpha_{v} + 4 \alpha_{u} + \alpha_{y} \right)$$

Template model with SO, Sp

- universal definition $\epsilon = \frac{N_f}{N_c} \frac{11}{2}$ for $SU(N_c)$, $SO(2N_c)$, $Sp(2N_c)$
- RGEs imply $\alpha_i^{SO} = \alpha_i^{Sp} \qquad \qquad \beta_g = \alpha_g^2 \left[\frac{2}{3} \epsilon + \left(\frac{25}{4} + \frac{13}{6} \epsilon \right) \alpha_g - \frac{1}{2} \left(\frac{11}{2} + \epsilon \right)^2 \alpha_y \right] \\
 \beta_y = \alpha_y \left[\left(\frac{15}{2} + \epsilon \right) \alpha_y - 3 \alpha_g \right] \\
 \beta_u = - \left(\frac{11}{2} + \epsilon \right) \alpha_y^2 + 4\alpha_u \left(\alpha_y + 2\alpha_u \right) \\
 \beta_v = 12\alpha_u^2 + 4\alpha_v \left(\alpha_v + 4\alpha_u + \alpha_v \right) \\
 \end{cases}$
- fixed point requires $B, C' < 0, B/C' \ll 1$, but:

$$\frac{C'}{C}\Big|_{B\to -0} \approx \begin{cases} -0.117 & \text{for} & SU(N_c) \\ +0.032 & \text{for} & SO(2N_c), Sp(2N_c) \end{cases}$$

➔ gauge-Yukawa fixed point is only UV in the SU(N) case

Template model with SO, Sp

• fixed point requires $B, C' < 0, B/C' \ll 1$, but:

$$\frac{C'}{C}\Big|_{B\to -0} \approx \begin{cases} -0.117 & \text{for} & SU(N_c) \\ +0.032 & \text{for} & SO(2N_c), Sp(2N_c) \end{cases}$$

- → gauge-Yukawa fixed point is only UV in the SU(N) case
- Why? Ratio #scalars / #fermions:

$N_f \approx \frac{11}{2} N_c$	Gauge group	fermions	scalars
	$SU\left(N_{c} ight)$	$2N_f N_c$	$2N_f^2$
	$SO\left(2N_{c} ight),Sp\left(2N_{c} ight)$	$4N_f N_c$	$2N_f^2$

→ Is SU(N) special, or can we reduce the number of fermions?

Woul

Real

The Majorana cure

• introduce Majoranas $\Psi^c = \Psi$ to reduce fermion DOF

$$\Psi = \begin{pmatrix} \Psi_L \\ \Psi_R \end{pmatrix} \quad \Rightarrow \quad \frac{1}{\sqrt{2}} \begin{pmatrix} \psi \\ \psi^c \end{pmatrix}$$

This is **forbidden** for $SU(N_c)$ due to chiral anomalies!

- $SO(N_c)$:fundamental rep. is real $(t^a)^{\intercal} = -t^a$ $Sp(N_c)$:fundamental rep. is pseudoreal $(t^a)^{\intercal} = -Mt^aM^{-1}$
- \rightarrow Anomalies cancel: $d^{abc} = \frac{1}{2} \operatorname{Tr} \left[t^a \left\{ t^b, t^c \right\} \right] = 0$

Majoranas in action

 $\mathcal{L} = -\frac{1}{4}F^{a}_{\mu\nu}F^{a\mu\nu} + \operatorname{Tr}\left(\psi^{\dagger}i\sigma^{\mu}D_{\mu}\psi\right) + \operatorname{Tr}\left(\partial_{\mu}H^{\dagger}\partial^{\mu}H\right) - u\operatorname{Tr}\left(H^{\dagger}H\right)^{2} - v\left(\operatorname{Tr}H^{\dagger}H\right)^{2} + \dots$

 $SO(N_c)$ $Sp(N_c)$

$$\dots - \frac{1}{2} y \operatorname{Tr} \left(\psi^{\mathsf{T}} h H \varepsilon \psi + \psi^{\dagger} h H^{\dagger} \varepsilon \psi^{*} \right)$$

symmetric gauge contraction

 $H_{ij} \Rightarrow H_{(ij)}$

 $\dots - \frac{1}{2} y \operatorname{Tr} \left(\psi^{\mathsf{T}} f \, H \varepsilon \, \psi + \psi^{\dagger} f \, H^{\dagger} \varepsilon \, \psi^* \right)$

antisymmetric gauge contraction

 $H_{ij} \Rightarrow H_{[ij]}$

In both cases, the flavour symmetry is $SU(N_f)$

Majorana RGEs

 $\beta_g = \alpha_g^2 \left| \frac{2}{3} \epsilon + \left(\frac{25}{4} + \frac{13}{6} \epsilon \right) \alpha_g - \frac{1}{2} \left(\frac{11}{2} + \epsilon \right)^2 \alpha_y \right|$ $SO(N_c), Sp(N_c):$ $\beta_u = \alpha_u \left[\left(\frac{13}{2} + \epsilon \right) \alpha_y - 3 \alpha_q \right]$ $\epsilon = \frac{N_f}{N_c} - \frac{11}{2}$ $\beta_u = -\left(\frac{11}{2} + \epsilon\right)\alpha_u^2 + 2\alpha_u\left(\alpha_u + 2\alpha_u\right)$ $\beta_v = 6\alpha_u^2 + 2\alpha_v \left(\alpha_v + 4\alpha_u + \alpha_u\right)$ $\frac{C'}{C}\Big|_{B\to -0} \approx -0.117$ $SO(N_c)$, $Sp(N_c)$ with Majorana fermions (+ subl.) for all 3 cases: $SU(N_c)$ with Dirac fermions

➤ exact asymptotic safety discovered in SO(N), Sp(N) theories!

Majorana RGEs

 $\beta_g = \alpha_g^2 \left| \frac{2}{3} \epsilon + \left(\frac{25}{4} + \frac{13}{6} \epsilon \right) \alpha_g - \frac{1}{2} \left(\frac{11}{2} + \epsilon \right)^2 \alpha_y \right|$ $SO(N_c), Sp(N_c):$ $\beta_u = \alpha_u \left[\left(\frac{13}{2} + \epsilon \right) \alpha_y - 3 \alpha_q \right]$ $\epsilon = \frac{N_f}{N_e} - \frac{11}{2}$ $\beta_u = -\left(\frac{11}{2} + \epsilon\right)\alpha_u^2 + 2\alpha_u\left(\alpha_y + 2\alpha_u\right)$ $\beta_v = 6\alpha_u^2 + 2\alpha_v \left(\alpha_v + 4\alpha_u + \alpha_v\right)$ $\frac{C'}{C}\Big|_{B\to -0} \approx -0.117$ $SO(N_c)$, $Sp(N_c)$ with Majorana fermions (+ subl.) for all 3 cases: $SU(N_c)$ with Dirac fermions

Even away from the fixed point:

$$\alpha_i^{SO} = \alpha_i^{Sp} = 2\,\alpha_i^{SU}$$

How can this equivalence be understood?

17

 $SO(2N_c)$ gauge group $\alpha_i^{SO} = \alpha_i^{Sp}$ $Sp(2N_c)$ gauge group $SU(N_f) \times SU(N_f)$ global $SU(N_f) \times SU(N_f) \times SU(N_f)$ global $SU(N_f) \times SU(N_f)$ globalDirac fermions, H_{ij} Dirac fermions, H_{ij}

Negative dimensionality theorems

• at finite n, m:

$$SU(n) = \overline{SU}(-n), \quad SO(m) = \overline{Sp}(-m)$$

→ exchange symmetr. \leftrightarrow antisymmetr.

[King, J.Math. Phys. 12, 1588 (1971)][Mkrtchian, Phys. Lett. 105B, 174 (1981)][Cvitanovic, Kennedy, Phys. Scripta 26, 5 (1982)]

Negative dimensionality theorems

• at finite n, m:

$$SU(n) = \overline{SU}(-n), \quad SO(m) = \overline{Sp}(-m)$$

- → exchange symmetr. \leftrightarrow antisymmetr.
- apply both to gauge- and flavour group: ", theory" with $-N_c$, $-N_f$
- can map back $-N_c \mapsto +N_c$, $-N_f \mapsto +N_f$ in the large-N limit
 - $\alpha_i \mapsto \alpha_i$ 't Hooft couplings are matched
 - → $\epsilon \mapsto \epsilon$ ratios N_f/N_c do not change
 - → corrections $\mathcal{O}(N^{-1})$ are subleading

$$\beta_i |_{SO(N_c) \times SU(N_f)} = \beta_i |_{\overline{Sp}(-N_c) \times \overline{SU}(-N_f)} \stackrel{N_{c,f} \to \infty}{=} \beta_i |_{\overline{Sp}(N_c) \times \overline{SU}(N_f)}$$

RGEs of 't Hooft couplings

[King, J.Math. Phys. 12, 1588 (1971)] [Mkrtchian, Phys. Lett. 105B, 174 (1981)] [Cvitanovic, Kennedy, Phys. Scripta 26, 5 (1982)]

Negative dimensionality theorems

 $SU(N_c)$ gauge group $SU(N_c)$ gauge group $SU(N_f) \times SU(N_f)$ global \blacktriangleright SU $(N_f) \times$ SU (N_f) global Dirac fermions, H_{ij} Dirac fermions, H_{ij} $SO(2N_c)$ gauge group $Sp(2N_c)$ gauge group $SU(N_f) \times SU(N_f)$ global $SU(N_f) \times SU(N_f)$ global Dirac fermions, H_{ii} Dirac fermions, H_{ij} $SO(N_c)$ gauge group $Sp(N_c)$ gauge group $SU(N_f)$ global symmetry $SU(N_f)$ global symmetry Majorana fermions, $H_{(ij)}$ Majorana fermions, $H_{[ij]}$

Orbifold reduction – a recipe

- identify parent theory
- identify discrete subgroup of global symmetry, eliminate all DOF not invariant
 - → generates projection \mathcal{P}
- \mathcal{P} : parent theory \mapsto child theory for classical fields, operators
- for certain choices:
 - \mathcal{P} (neutral single trace operator) $|_{\text{parent}} \sim \langle \text{neutral single trace operator} \rangle |_{\text{child}}$
 - → this hold to in all loop orders at large-N

[Bershadsky, Johansen, Nucl. Phys. B536, 141 (1998)] [Schamltz, Phys. Rev. D59, 105018 (1999)] [Erlich, Naqvi, JHEP 12 ,047 (2002)] [Armoni, Shifman, Veneziano, Nucl. Phys. B667, 170 (2003)] [Kovtun, Unsal, Yaffe, JHEP 07, 008 (2005)]

Orbifold reduction

parent

 $Sp(2N_c)$ gauge group

 $SU(2N_f)$ global symmetry

parent

 $SO(2N_c)$ gauge group $SU(2N_f)$ global symmetry Majorana fermions, $H_{(ij)}$

 child theory has only half the DOF

$$\alpha_i^{SO} = \alpha_i^{Sp} = 2\alpha_i^{SU}$$

[Hanada, Yamamoto, JHEP 02, 138 (2012)]

Conclusion

• exact asymptotic safety with SU, SO and Sp gauge groups

requires Dirac fermions requires Majoranas

- large-N equivalences due to negative dimensionality theorems and orbifold reduction
 - triality of asymptotic safe theories
 - ➤ duality of IR conformal theories
 - ➤ many more equivalences in reach