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Why the renormalization group?

Consider a system with many degrees of freedom and a physical quantity
defined at large scale:

Example: Ising (or φ4) model: phase diagram, magnetization (〈φ(x)〉),
correlation length (inverse mass), specific heat, ...

Typically, this quantity involves the sum of many microscopic degrees of
freedom and gets contributions from fluctuations on all scales
−→ if the central limit theorem holds, then, independently of the
underlying theory, it is gaussian distributed: trivial case.

−→ if the central limit theorem does not hold then the distribution is not
gaussian and the RG is necessary.

Remark: This has nothing to do with the strength of the interaction
among microscopic d.o.f. but with the strength of their correlations.
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Why the nonperturbative (or functional or exact)
renormalization group?

Renormalization group = machinery to build nongaussian (functional)
probability measure.

Two possibilities
Either the probability measure is
−→ closed to the gaussian, that is, the effective long-distance coupling
between infrared d.o.f. is small and mean-field + perturbation theory is
OK: φ4 in d = 4− ε dimensions or N →∞,
−→ far from the gaussian and nonperturbative RG is necessary (when
there is no exact solution) because it is not based on the smallness of a
coupling constant.

Solution: Wilson’s RG with nonperturbative approximation schemes.
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The different NPRG schemes

Historically: two main implementations of approximate RG flows:

Wilson-Polchinski: flows of hamiltonians or (almost equivalent) of
Helmoltz free energies: W[J] = logZ[J] = generating functional of
connected correlation functions,

Wetterich (and Ellwanger and Morris and Parola-Reatto): flow of
Gibbs free energies = Legendre transform of W[J]= generating
functional of 1PI correlation functions.

In principle, Wilson-Polchinski ⇔ Wetterich.

When approximations are performed: Wetterich much better than
Wilson-Polchinski: we shall see why.
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Wilson’s RG

Statistical or quantum system given by:

Z[J] =

∫
Dϕ exp

{
− H[ϕ] +

∫
x
J(x)ϕ(x)

}
and supposed to be regularized at short distance:
Ising (lattice spacing a) or φ4 with a UV cutoff Λ ∼ a−1.

We will be interested in scale invariant systems
⇓

close to criticality
⇓

correlation length = ξ � a ∼ Λ−1 ⇒ mR � Λ

W[J] = lnZ[J] (Helmoltz)

φ(~x) = 〈ϕ(~x)〉 = δW [J]
δJ(~x)

Γ[φ] +W[J] =
∫

x Jxφx (Gibbs = Legendre transform)
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Solving the theory = computing Z[J] (or Γ[φ])
⇓

Integrate over all scales

Wilson: summation over fluctuations momentum scale by
momentum scale,

⇔ “Block-spin” summation à la Kadanoff,

summation over rapid modes (i.e. short distance or high energy)
in order to:

Wilson-Polchinski: obtain an effective hamiltonian or (similarly)
Helmoltz free-energy for the slow modes (not yet summed over);
Wetterich: obtain the effective (coarse-grained) Gibbs free energy
corresponding to the integration over the rapid modes (already
integrated over).

transform the problem into a differential problem (important for
approximations).
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build a one-parameter-family of models
indexed by a scale k

that interpolates between H and Γ
⇓

Integrate over the rapid modes only
⇓

freeze out the slow modes
by making them non-critical

⇓
Deduce the model with scale k − δk from k only
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The one-parameter family of models

Concretely, perform the deformation:

Z[J]→ Zk [J] =

∫
Dϕ exp

{
− H[ϕ]−∆Hk [ϕ] +

∫
x
J(x)ϕ(x)

}
with

∆Hk [ϕ] =
1

2

∫
q
Rk (q)ϕqϕ−q

must be such that

when k = Λ: ∀q, Rk=Λ(q) ∼ Λ2 ⇒ all fluctuations are frozen ⇒
mean-field approx. becomes exact: ⇒ ΓLeg

k=Λ = H + ∆Hk=Λ

⇒ better to work with Γk [φ] = ΓLeg
k [φ]−∆Hk [φ]

⇒ Γk=Λ[φ] = H[φ]

when k = 0: ∀q, Rk=0(q) = 0 ⇒ the original model is retrieved:
⇒ Zk=0[J] = Z[J] and Γk=0[φ] = Γ[φ]
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Exact flow of Γk [C.Wetterich, Phys.Lett B301 (1993) 90.]:

∂tΓk [φ] =
1

2

∫
x ,y
∂tRk (x − y)

(
Γ

(2)
k + Rk

)−1

x ,y

where ∂t = k∂k and (Γ
(2)
k [q;φ(x)] + Rk (q))−1 = Gk [q;φ(x)] is

the “full” (field-dependent) propagator

Some properties of Wetterich equation:

it is a differential equation in k (Γk−δk is fixed from Γk only);
it involves only one loop integral (one loop structure);
allows for possible nonperturbative approximations;
the initial condition is the “bare” (microscopic) theory.

Exact solution of Wetterich equation ⇔ exact solution of the
theory ⇒ very different from Gell-Mann – Low RG!
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Flow equations for Γ
(n)
k (pi , φunif.) obtained by taking functional

derivatives:

∂tΓ
(2)
k (p, φ) =

∫
q
∂tRk (q)G 2(q, φ)·

{
Γ

(3)
k (p, q, φ)G (p + q, φ)Γ

(3)
k (−p,−q, φ)− 1

2
Γ

(4)
k (p,−p, q, φ

}
Difficulty: The flow equation of Γ

(n)
k involves Γ

(n+1)
k and Γ

(n+2)
k ⇒

infinite hierarchy of equations (not closed),

A closure scheme is needed,

Main point: Wetterich’s formulation of Wilson RG is convenient for
implementing nonperturbative approximation schemes.
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What is the Derivative Expansion?

The most popular approximation scheme = Derivative expansion.

Usually, it consists in:
1. proposing an ansatz for Γk [φ] under the form of a gradient expansion.
For the φ4 theory at order ∂2:

Γk [φ] =

∫
x

{
Uk (φ(x)) +

1

2
Zk (φ(x))(∂µφ)2 + O(∂4)

}
2. computing Γ

(2)
k , · · · , Γ(n)

k from this ansatz,

3. computing the propagator
(
Γ

(2)
k (p, φ) + Rk (p)

)−1
from this ansatz,

4. plugging these expressions into the exact flow equations of Γk , Γ
(2)
k , · · · ,

5. projecting these flows onto the same functional subspace as the one
chosen in the ansatz.

This procedure yields the flows of Uk (φ), Zk (φ), · · ·
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Is the (usual) DE an (Taylor) expansion?

NO!

If it were, we would consistently truncate the rhs of all the flow equations
at the same order of the DE as Γk !

BUT, in the flow of Γ
(2)
k (for instance):

∂tΓ
(2)
k (p, φ) =

∫
q
∂tRk (q)G 2(q, φ)·

{
Γ

(3)
k (p, q, φ)G (p + q, φ)Γ

(3)
k (−p,−q, φ)− 1

2
Γ

(4)
k (p,−p, q, φ

}
and at order 2 of the DE: Γ

(3)
k (p, q, φ)Γ

(3)
k (−p,−q, φ) is of order ∂4 and

usually all terms of order 4 are kept while some other terms of order 4
have been neglected in the ansatz!

In the usual DE the ansatz of Γk is more considered as a book-keeping for
the terms considered in the approximation than as a serious Taylor
expansion!
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What is the expansion parameter of the DE?

Intuitive argument:

The DE at order s consists in truncating all Γ
(n)
k ({pi}, φ) in their expansion

in pi · pj at order s in the momenta ⇒ it must be valid at small momenta.

But small momenta with respect to which scale?

1. Suppose we consider a critical (massless) theory: the only scale
available is k : the expansion must be in pi · pj/k

2, so pi � k.

2. For a non critical (massive) theory:
- when k � pi ,m, same as before because the mass is negligible,
- when m� k � pi , the flow almost stops because the regulator is
negligible.

Expansion in:
pi · pj

k2 + m2
?
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BUT two kinds of momenta in the DE:

- the external momenta, e.g. p in the flow of Γ
(2)
k (p, φ),

- the internal momentum q in

∂tΓ
(2)
k (p, φ) =

∫
q
∂tRk (q)G 2(q, φ)·

{
Γ

(3)
k (p, q, φ)G (p + q, φ)Γ

(3)
k (−p,−q, φ)− 1

2
Γ

(4)
k (p,−p, q, φ

}
.

It is clear that p must be � k for the DE to be valid and we have to
restrict ourselves to the pi = 0 region when using the DE...

BUT we cannot choose on which range varies q!
q varies between 0 and ∞.

Good news: the effective range of the integral over q in the flow is given
by ∂tRk (q): for a “good” regulator, it is effectively [0, a q] with a ' 1.

To summarize: DE = expansion in q2/k2 (massless case); it needs to be
convergent in the range [0, k].
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What do we know about the convergence of the DE?

In the massive case (at k = 0):

Γ(2)(p)

Γ(2)(0)
= 1 +

p2

m2
+
∞∑

n=2

cn

( p2

m2

)n

The cn are universal in the critical regime k � Λ and are known in the
symmetric and broken phases!

coefficient d = 3, T > Tc d = 2, T > Tc d = 3, T < Tc

HT / ε / fixed dim. quasi-exact LT/ ε / fixed dim.

c2 -(3.0 - 7.1)×10−4 -7.936...×10−4 ' −10−2

c3 (0.5 - 1.3)×10−5 1.096...×10−5 ' 4× 10−3

c4 -(0.3 - 0.6) ×10−6 -0.3127...×10−6

c5 0.1267...×10−7

c6 -0.6300...×10−9
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Moreover, the DE

Γ(2)(p)

Γ(2)(0)
= 1 +

p2

m2
+
∞∑

n=2

cn

( p2

m2

)n

has a finite radius of convergence given by the location of the first pole in
the complex p2 plane: It is at the first multiparticle threshold.

Two possibilities:
- in the symmetric phase, it occurs at p2 = 9m2 because 3m is the energy
of the lightest 3-particle state:

at one loop →

Thus, |cn+1/cn| = 1/9 when n→∞.

- In the broken phase, it occurs at p2 = 4m2 because there is a tri-linear
coupling and thus the threshold corresponds to the creation of 2 particles.
Thus, |cn+1/cn| = 1/4 when n→∞.
Actually, even in the symmetric phase there are singularities in the 4-point
function at p2 = 4m2 ⇒ the 1/4 (and not 1/9) expansion parameter is
largely model-independent!

Convergence DE March 2020, Montevideo and the rest of the world 16 / 27



Back to the DE in NPRG

Problem: We are interested in the DE in the presence of Rk (q) at
criticality (the worst case) and not away from criticality at Rk = 0.

However, Rk plays the role of a (complicated) mass term: it drives a
critical system away from criticality and (among other things) generates a
mass mk ∼ k.
⇒ The DE should also have a finite radius of convergence Rc and we
expect 4 ≤ Rc ≤ 9.
⇒ Rc > effective range of the integral over q in the flow equations which
is ' k , at least for a regulator that decays rapidly for q2 > k2.

⇒ It is legitimate to replace any Γ
(n)
k by its DE inside a flow equation and

for vanishing external momenta.
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Another good news for the DE

We can notice that 1� |c2| � |c3| · · · � |c6|.
Can we qualitatively explain this behavior?
|cn+1| ' |cn|/9 ⇒ neglect c3 and beyond. For p < Rc :

Γ
(2)
k (p)

Γ
(2)
k (0)

' 1 +
p2

k2
+
∞∑

n=2

cn

(p2

k2

)n

≈ 1 +
p2

k2
+ c2

(p2

k2

)2

On the other hand, for p � k,
Γ

(2)
k (p)

Γ
(2)
k (0)

∼ (p/k)2−η.

For p ∼ k, let us make the guess (η � 1!)

Γ
(2)
k (p)

Γ
(2)
k (0)

∼ 1 + (p/k)2−η ≈ 1 +
p2

k2
− η p

2

k2
log(p/k)

Matching both expressions at p2 = 9k2, yields:

c2 ≈ −
η

9
≈ −4× 10−3

This matches qualitatively with something intermediate between low
and high temperature phases. It also explains why the series of the cn

is alternate.
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The DE at order 6 for the Ising model in d = 3

The ansatz is

Γk [φ] =

∫
ddx

[
Uk (φ) + 1

2Zk (φ)(∂φ)2

+ 1
2W

a
k (φ)(∂µ∂νφ)2 + 1

2φW
b
k (φ)(∂2φ)(∂φ)2

+ 1
2W

c
k (φ)

(
(∂φ)2

)
)2 + 1

2 X̃
a
k (φ)(∂µ∂ν∂ρφ)2

+ 1
2φX̃

b
k (φ)(∂µ∂νφ)(∂ν∂ρφ)(∂µ∂ρφ)

+ 1
2φX̃

c
k (φ)

(
∂2φ

)3
+ 1

2 X̃
d
k (φ)

(
∂2φ

)
)2(∂φ)2

+ 1
2 X̃

e
k (φ)(∂φ)2(∂µφ)(∂2∂µφ) + 1

2 X̃
f
k (φ)(∂φ)2(∂µ∂νφ)2

+ 1
2φX̃

g
k (φ)

(
∂2φ

) (
(∂φ)2

)2
+ 1

96 X̃
h
k (φ)

(
(∂φ)2

)3
]
. (1)

We have implemented the “true” DE, that is, we eliminate in all flows
all the terms in momenta higher than 6.

Convergence DE March 2020, Montevideo and the rest of the world 19 / 27



Quantities that have been computed and choice of regulator

Check our results with very accurate results in the literature ⇒
computation of critical exponents: numerically exact results from the
conformal bootstrap.

A major difficulty: all results should be independent of the choice of
regulator but a spurious dependence appears at any finite order of the DE.

Does this dependence decrease with the order of the DE?

NO

⇒ An optimisation procedure must be used to reduce the
regulator-dependence: this is the “Principle of minimal sensitivity”.

Wk (q2) = αZ 0
k k

2 y/(exp(y)− 1)

Θn
k (q2) = αZ 0

k k
2 (1− y)nθ(1− y) n ∈ N

Ek (q2) = αZ 0
k k

2 exp(−y)

with y = q2/k2 and Z 0
k an appropriate running renormalization factor.
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Results of the DE at order 6 for the Ising model

α is optimized according to the Principle of Minimal Sensitivity.

After optimization, the results are very similar for different families of
Rk (q).

For example, exponents for the exponential regulator:
D.E. ν |δν| η |δη|
s = 0 0.65103 0.02106 0 0.03630
s = 2 0.62752 0.00245 0.04551 0.00921
s = 4 0.63057 0.00060 0.03357 0.00273
s = 6 0.63007 0.00010 0.03648 0.00018

Conf. Boot.[1] 0.629971(4) 0.0362978(20)
6-loop [2] 0.6304(13) 0.0335(25)
High-T. [3] 0.63012(16) 0.03639(15)
M.-C. [4] 0.63002(10) 0.03627(10)

[1] Kos et al., JHEP 1411 (2014). [2] Guida, Zinn-Justin, J.Phys. A31 (1998).

[3] Campostrini et al., PRB65 (2002). [4] Hasenbusch, PRB82 (2010).
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Taking into account:
1. The variations of the optimized results between families of regulators
(which are very small),
2. The convergence of these optimized results with a decrease of their
distance to the ”exact” results by a factor between 4 and 9,

we can predict the values of the exponents together with error bars (for
the first time): ν = 0.6300(2) and η = 0.0358(6) to be compared with

Conf. Boot.[1] 0.629971(4) 0.0362978(20)
6-loop [2] 0.6304(13) 0.0335(25)
High-T. [3] 0.63012(16) 0.03639(15)
M.-C. [4] 0.63002(10) 0.03627(10)

Convergence DE March 2020, Montevideo and the rest of the world 22 / 27



Back to the DE

Let us now evaluate the behavior of the DE from the results at DE6.

In the NPRG, the expansion for Γ
(2)
k (p, φ) + Rk (0) is:

Γ
(2)
k (p, φ) + Rk (0)

Γ
(2)
k (0, φ) + Rk (0)

= 1 +
Zkp

2 + W a
k p

4 + X a
k p

6

U ′′k + Rk (0)

−−−→
k→0

1 +
p2

m2
eff

+
w∗a v

∗′′

z∗2

p4

m4
eff

+
x∗a v

∗′′2

z∗3

p6

m6
eff

Here u∗, z∗,w∗a , x
∗
a are the dimensionless functions of φ̃ at the fixed

point.

m2
eff = k2v∗′′/z∗ with v∗′′ = u∗′′ + Rk (0)/Z 0

k k
2.

The coefficients are now functions of the dimensionless field φ̃.
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Let us now compare successive orders with different Rk :

1 2 3 4 5 6 7 8 9

ρ/ρ
min

-0.25

-0.2

-0.15

-0.1

-0.05

r

Θ
4

Θ
6

E

Figure: The ratio r = x∗a u
∗′′/(w∗a z

∗) as a function of ρ̃ = φ̃2/2. The line
r = 0.25 is a guide for the eyes.

At large fields the successive orders seem to be dominated by the
p2 = −4m2

eff pole.

At lower fields the ratio r satisfies |r | < 1/4.
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Summary for Ising in d = 3

At large orders, the DE has a small expansion parameter of order
1/4→ 1/9 for model-independent reasons! (but this is not so for
Wilson-Polchinski).

The series for correlation functions alternates (at least at large
orders).

All but leading coefficients are suppressed but an η factor!

In the NPRG context we need:

A regulator that suppresses efficiently momenta q & k.
A regulator that does not introduce singularities in the complex plane
for |q2| < 4k2.
The quality of leading orders depends on the value of η.

A side remark: not two independent arbitrariness (the prefactor α of the
regulator and the renormalization point where η is computed) by only one.
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What about the O(N) models?

Very recent calculations of critical exponents for O(N) at order s = 4 in
d = 3 by G. De Polsi, I. Balog, M. Tissier and N. Wschebor.

All results above are confirmed: convergence with a factor between 1/4
and 1/9, efficiency of the PMS to select optimal regulators, very good
quality of the results and small error bars (sometimes the best known
results).

⇒ The conclusions drawn above seem robust!
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What about the PMS?

The DE does not converge for generic regulators: It is only after
optimization that it does.
In fact, the dependence of physical results on the regulator increases with
the order of the DE.
⇒ the PMS plays a crucial role whereas it is the least understood aspect
of our study.
Recent progress has been made (unpublished) by De Polsi, Tissier and
Wschebor: the conformal invariance is broken by the DE and minimizing
the breaking of this symmetry selects regulators that are (almost) identical
to those selected by the PMS! More soon...
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