Scalegenesis and fermionic dark matters in the flatland scenario

Yu Hamada (Kyoto Univ.)

Based on [arXiv:2002.03666]

Collaborators: Koji Tsumura (Kyushu U.), Masatoshi Yamada (Heidelberg U.)

Asymptotic safety seminar (23 Mar. 2020)

Out line

Introduction (6p.)

 Asymptotic safety and Flatland scenario (7p.)

 Fermionic dark matter in flatland scenario (6p.)

• Summary

Introduction

Motivation

After the Higgs boson's discovery, the Standard Model is established.

https://www.theguardian.com/science/blog/2012/jul/04/higgs-boson-discovered-live-coverage-cern

But there are still many problems unanswered by the SM.

Gauge hierarchy Dark matter

Neutrino mass Baryon asymmetry

etc.

Motivation

But there are still many problems unanswered by the SM.

Neutrino mass Baryon asymmetry

etc.

We tackle these two problems in this talk.

Gauge Hierarchy

How can we naturally explain this hierarchy?

= What is the origin of EW scale?

Dark Matter

There are many evidences for dark matter

Galaxy rotation curve (from Wiki)

Gravitational lens (from Wiki)

Our model

• Inspired by asymptotic safety scenario of quantum gravity, we propose a $U(1)_X$ extended model beyond the SM.

 $G_{SM} \times U(1)_X$ gauge sym.

$$\mathscr{L} = \mathscr{L}_{SM}|_{m_H \to 0} + |D_{\mu}S|^2 - \frac{1}{4}X_{\mu\nu}X^{\mu\nu} + \bar{\chi}_R \not\!\!\!D\chi_R + \bar{\chi}_L \not\!\!\!D\chi_L + \epsilon X_{\mu\nu}B^{\mu\nu} + y_R S \bar{\chi}_R^c \chi_R + y_L S \bar{\chi}_L^c \chi_L + V(H,S) + h.c.$$
(1)

$$\begin{array}{ccc} U(1)_X \text{ charge} \\ \chi_R \ \chi_L & +1 \\ S & -2 \end{array} \end{array} \xrightarrow[]{\text{Both are}} \\ \text{SM singlet} \end{array}$$

Our model

• Inspired by asymptotic safety scenario of quantum gravity, we propose a $U(1)_X$ extended model beyond the SM.

 $G_{SM} \times U(1)_X$ gauge sym.

$$\mathscr{L} = \mathscr{L}_{SM}|_{m_H \to 0} + |D_{\mu}S|^2 - \frac{1}{4}X_{\mu\nu}X^{\mu\nu} + \bar{\chi}_R \not\!\!\!D\chi_R + \bar{\chi}_L \not\!\!\!D\chi_L + \epsilon X_{\mu\nu}B^{\mu\nu} + y_R S \bar{\chi}_R^c \chi_R + y_L S \bar{\chi}_L^c \chi_L + V(H,S) + h.c.$$
(1)

Today's Message

• Asymptotically safe gravity gives severe constraints on this model.

• This model has only one free parameter.

strong predictability!

Today's Message

• Asymptotically safe gravity gives severe constraints on this model.

- This model has only one free parameter.
 - strong predictability!

Phenomenology of asymptotically safe gravity is interesting!!

Out line

Introduction (6p.)

 Asymptotic safety and Flatland scenario (7p.)

 Fermionic dark matter in flatland scenario (6p.)

• Summary

Asymptotic safety and Flatland scenario

Gravity effect on scalar potential

['17 Eichhorn, Hamada, Lumma, Yamada]

Ex.) single scalar

$$V(\phi) = \frac{m^2}{2}\phi^2 + \frac{\lambda}{4!}\phi^4$$

- $\theta_m, \theta_\lambda < 0$ above M_{pl} due to graviton fluctuation
- In order to make the potential UV-complete, they must run as

$$\lambda, \tilde{m}^{2}$$

$$\bigcup \forall \text{ fixed pt: } \begin{cases} \lambda_{*} = 0 \\ \tilde{m}_{*}^{2} = 0 \end{cases}$$

$$M_{pl}$$

$$M_{pl$$

Flatland scenario

['13, '14 Hashimoto, Iso, Orikasa] ['13 Chun, Jung, Lee]

Impose these conditions on all scalar masses and couplings

Coleman-Weinberg mechanism

['73 Coleman, Weinberg]

• We have no scale (besides M_{pl}) at the classical level. How can we generate the EW scale?

Trigger of EW symmetry breaking

• SSB of $U(1)_X$ triggers EW symmetry breaking

Trigger of EW symmetry breaking

• SSB of $U(1)_X$ triggers EW symmetry breaking

$$V(H,S) = \lambda_{S} |S|^{4} + \lambda_{H} |H|^{4} + \lambda_{HS} |S|^{2} |H|^{2}$$
(3)
$$\bigvee \langle S \rangle = v_{S} / \sqrt{2}$$
$$V(H,S) = \frac{\lambda_{S} v_{S}^{4}}{4} + \lambda_{H} |H|^{4} + \frac{\lambda_{HS} v_{S}^{2}}{2} |H|^{2}$$
(4)

If $\lambda_{HS} < 0$, this is negative mass term for Higgs

Electroweak symmetry breaking occurs!

Typical running of the scalar couplings

Both of boson and fermions are essential !

Typical running of the scalar couplings

Both of boson and fermions are essential !

Typical running of the scalar couplings

- The running of λ_{HS} is dominated by 2nd part
- ϵ : mixing parameter between $U(1)_X$ and SM $U(1)_Y$

$$\mathscr{L} \supset \epsilon B_{\mu\nu} X^{\mu\nu}$$
 17

Free parameters in the model

Originally we have 7 parameters in the model.

• λ 's are determined by the flat conditions:

$$\lambda_S(M_{pl}) = \lambda_{HS}(M_{pl}) = \lambda_H(M_{pl}) = 0$$

- y_L and the mixing ϵ are determined s.t. CW mechanism works,
- i.e., reproduce the observed EW parameters: $\begin{cases} \langle n \rangle = 246 \text{ GeV} \\ m_1 = 125 \text{ GeV} \end{cases}$

We have only 2 free parameters : ξ and g_X !

Out line

Introduction (6p.)

 Asymptotic safety and Flatland scenario (7p.)

 Fermionic dark matter in flatland scenario (6p.)

• Summary

Fermionic dark matter in flatland scenario

Majorana fermions

After the scalegenesis,

$$\mathscr{L} \supset y_R S \bar{\chi}_R^c \chi_R + y_L S \bar{\chi}_L^c \chi_L + h.c.$$
(7)
$$\checkmark \langle S \rangle = v_S / \sqrt{2}$$
$$\mathscr{L} \supset \frac{M_R}{2} \bar{\chi}_R^c \chi_R + \frac{M_L}{2} \bar{\chi}_L^c \chi_L + h.c.$$
(8)
$$M_{R(L)} \equiv \sqrt{2} y_{R(L)} v_S$$

Can these Majorana fermions be dark matter?

Majorana fermions

After the scalegenesis,

$$\mathscr{L} \supset y_R S \bar{\chi}_R^c \chi_R + y_L S \bar{\chi}_L^c \chi_L + h.c.$$
(7)
$$\checkmark \langle S \rangle = v_S / \sqrt{2}$$
$$\mathscr{L} \supset \frac{M_R}{2} \bar{\chi}_R^c \chi_R + \frac{M_L}{2} \bar{\chi}_L^c \chi_L + h.c.$$
(8)
$$M_{R(L)} \equiv \sqrt{2} y_{R(L)} v_S$$

• Can these Majorana fermions be dark matter?

Yes!

Freeze out mechanism

• The relic abundance of $\chi_{R(L)}$ in the early universe is determined by Boltzman equation:

 n_R : number density

H: Hubble constant

creation

 M_R/T

Dark matter relic abundance

• Dark matter relic abundance is given by

$$\Omega_{DM}h^2 = \frac{h^2}{\rho_c} \left(M_R n_R(\infty) + M_L n_L(\infty) \right)$$
(10)

h: dimensionless Hubble const. ρ_c : critical energy density

• To explain the observed dark matter relic abundance,

Dark matter direct detection

• The dark matter candidates χ_R, χ_L can be observed by a spin-independent elastic scattering between χ_R, χ_L and nucleons.

• We calculate the spin-independent cross section $\sigma_{SI}^L, \sigma_{SI}^R$, and compare the current experimental bound (XENON1T).

Dark matter direct detection

Dark matter direct detection

- Our model has small allowed region
- will be soon detected or excluded by future experiment ! (XENONnT)
- If DM is detected and the mass is observed , the only free parameter g_X will be determined

→ All parameters in our model are determined !

super strong predictability !!

Summary

- Asymptotic safety scenario for quantum gravity provides natural conditions, called as flatland scenario.
- $U(1)_X$ is spontaneously broken by CW mechanism, which triggers EW symmetry breaking.
- Two fermions χ_R, χ_L can be DM candidates.
- If DM mass is observed, **all parameters are determined!**

super strong predictability !!

Back up

Allowed region for scalegenesis

Allowed region for scalegenesis

Benchmark values

• Input parameters at M_{pl} as

$$y_L(M_{pl}) = 1.842$$
 $y_R(M_{pl}) = 1.354$

$$g_X(M_{pl}) = 0.794$$
 $g_{mix}(M_{pl}) = -\frac{\epsilon}{\sqrt{1-\epsilon^2}}g_Y = 0.134$

 $v_S = 1756.2 \text{ GeV}$ $M_L = 1114.3 \text{ GeV}$ $M_R = 1042.5 \text{ GeV}$

 $M_X = 1380.8 \text{ GeV}$ $M_\phi = 227.9 \text{ GeV}$