Derivation of the ERGE

These notes are written for a single Euclidean scalar field y but can be
generalized to multiplets of fields, and to theories with gauge invariances.

In the functional integral approach to quantization we are instructed to
calculate the generating functional of connected Green functions W[.J], defined
by
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and the Legendre transform of W:
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where ¢ = (x) = %—‘3’, which is the generator of 1PI Green functions. In these
generating functionals all modes of the quantum field y are integrated out.
On the other hand when we perform experiments at some energy scale k, the
effective theory describing the dynamics at that scale is obtained by integrating
out all fluctuations of the fields with momenta p > k. Wilson described a
functional, the effective action Sy, which is obtained by cutting off the functional
integral at momentum k, and described its flow with k. We will proceed here
much in the same spirit, but with two important differences. First, we are
interested in a k-dependent analog of I, so the definition will involve a Legendre
transform. Second, we will not introduce a sharp cutoff in the functional integral
but rather a smooth one. More precisely, instead of cutting off the integral over
the low momentum modes of x, we will introduce a suppression factor for the
contribution of such modes. When the suppression becomes infinitely strong,
the effect is the same as not integrating on such modes at all.

To implement the above ideas, let us define a k-dependent generating func-
tional Wy[.J] by
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is a new term quadratic in the fields, which is meant to suppress the contribution
of modes with ¢ < k. This is obtained by demanding R(¢?) to be a cutoff
function, by which we mean that it is a monotonically decreasing function of
¢®> and a monotonically increasing function of k, that Ry (¢?) — 0 for ¢ — oo
faster than any polynomial, and Ry(¢?) — k? for ¢ — 0. Aside from these
requirements, the form of the cutoff is completely arbitrary.

We then define the Legendre transform of Wj, by
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and J in the r.h.s. of (3) is to regarded as a function of ¢, obtained by inverting
(4). Finally we define the average effective action I'y by subtracting from I'j,
the suppression factor that was introduced in the beginning:
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We emphasize at this point that the vertices have not been modified. The
only effect of AS} is to replace the free massles propagator ¢> by the cutoff
propagator P (q?) = ¢* + Ri(¢?). Also note that this is an infrared cutoff: its
effect is to give a mass of order k to the modes with p < k, and no mass to the
modes with p > k, so it introduces a mass gap in the excitation spectrum of the
field. However, curing IR divergences is not its primary purpose: rather, it is
a way of introducing explicitly a k dependence in the functional integral. We
also notice that when k£ — 0, ASy — 0 and therefore I'y, reduces to the ordinary
effective action I', where all fluctuations have been integrated out unsuppressed.

In order to begin understanding the motivation behind the definition, we
can try to evaluate this functional at one loop. Recall that the ordinary one
loop effective action is given by

By the same calculation, the one loop average effective action is
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Note that the term ASj, has canceled out in the r.h.s, so that the only modi-
fication has been the replacement of the bare inverse propagator by the cutoff
inverse propagator. This provides some rationale for the definition (5).

If we now take the derivative with respect to ¢t = log k& we obtain the following
equation:
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This equation contains all the one loop beta functions of the theory. If we
expand
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where O;[x] are functional constructed with the field and its derivatives, and
gi(k) are running couplings, taking derivative we have
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and so comparing with the r.h.s. of (6) one can in principle read off all the one
loop beta functions.



In the r.h.s. of (6) there appears the bare cutoff inverse propagator. One
may guess that the RG improvement of this equation, namely the equation
obtained by replacing S by I'j in the r.h.s., gives a more accurate description
of physics. We shall now show that this improved equation is actually ezact.

Let us begin by deriving the functional Wj:
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where the trace is an integration over coordinate and momentum space. Then
using (4)
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Next recall the identity
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which follows from (4) and
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Using this identity and (5) we arrive at the equation
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As mentioned above, this equation is identical to the one loop equation except
for the replacement of the bare action by I'j in the r.h.s.. In fact, the equation
does not contain any reference to the bare action anymore, it is written entirely
in terms of I'y,. Furthermore, the trace in the r.h.s. is finite due to the fast
decreasing properties of the cutoff for p > k, so that no UV regulator is needed
in defining the r.h.s.. This means that the equation contains no reference to
UV physics, its is written entirely in terms of renormalized quantities. So,
irrespective of the renormalizability or lack thereof of a theory, if one is able to
expand the trace on the r.h.s. on the basis of operators O; then, as indicated
above, one can compute all the beta functions of the theory.

Finally we observe that one can use this equation to study the UV limit of
a theory. The ERGE (7) was derived formally from a functional integral, which
is an ill defined quantity. However, as mentioned above, the ERGE itself is
perfectly well defined. So one can assume that a theory is described by some
functional T';, belonging to some properly defined functional space, and impose
that it obeys (7). The flow of this functional for &k — oo tells us directly whether
on a given trajectory the renormalized (physical) quantities diverge or not.



