
The beta function of scalar theory.

We apply the Exact Renormalization Group Equation (ERGE)

∂tΓk =
1
2
Tr
(

δ2Γk

δφδφ
+ Rk

)−1

∂tRk (1)

to a Euclidean scalar theory in d spacetime dimensions, which can also be viewed as a statistical mechanical
model in d space dimensions. The r.h.s. of the equation can be viewed as a “beta functional” of the theory,
containing all the beta functions of all couplings. In order to perform an explicit calculation we consider a
truncation of Γk of the form

Γk(φ) =
∫

ddx

[
1
2
(∂µφ)2 + Vk(φ2)

]
, (2)

where Vk is a k-dependent potential. We will insert this ansatz i (1) and extract the beta functions of the
potential. The inverse propagator corresponding to (2) is

δ2Γk

δφδφ
= −∂2 + 2V ′

k + 4φ2V ′′
k , (3)

where a prime denotes the derivative with respect to φ2. In the definition of the functional Γk we modify
the inverse propagator by adding to it the kernel Rk(−∂2), which in momentum space is simply a function
of q2. The modified inverse propagator is

δ2Γk

δφδφ
+ Rk = Pk(−∂2) + 2V ′

k + 4φ2V ′′
k , (4)

where we have defined the function Pk(z) = z +Rk(z) (for any argument). With these definitions the ERGE
becomes

∂tΓk =
1
2
Tr
(

∂tPk

Pk + 2V ′
k + 4φ2V ′′

k

)
. (5)

(We have used ∂tRk = ∂tPk.) The trace involves an integration over spacetime and over momenta. For any
function W ,

Tr(W (−∂2)) =
∫

ddx

∫
ddp

(2π)d
W (q2) = Ad

∫
ddxQ d

2
(W ) . (6)

In the last step we have performed the angular integration and we have defined

Qn[W ] =
1

Γ(n)

∫ +∞

0

dz zn−1W (z) . (7)

where W is a function of z = |p|2. Thus, the function Q contains the integration over the modulus of the
momentum. The constant Ad is equal to

Ad =
1
2

1
(2π)d

Vol(Sd−1)Γ(d/2) =
1

(4π)d/2
,

where Vol(Sd−1) = 2πd/2

Γ(d/2) is the volume of the (d − 1)-dimensional sphere. If we now restrict ourselves
to constant scalar fields, we can remove a volume factor from both sides of the ERGE and we obtain the
k-dependence of the potential as:

∂tVk =
1
2
AdQ d

2

(
∂tPk

Pk + 2V ′
k + 4φ2V ′′

k

)
. (8)

1



There are various ways of studying this equation. In order to make connection with familiar formulae
let us consider potentials that admit a Taylor series of the form

V (φ2) =
N∑

n=1

λ2nφ2n . (9)

We will use the ERGE to derive the beta functions of the couplings in the potential. The coupling constants
can be extracted from the potential by

λ2n =
1
n!

∂nV

∂(φ2)n

∣∣∣
φ=0

. (10)

and the beta functions can be extracted from the “beta functional” (8) by

β2n = ∂tλ2n =
1
n!

∂n

∂(φ2)n
∂tVk

∣∣∣
φ=0

. (11)

Explicitly, the first few beta functions are given by

β2 =
Ad

2

[
−12λ4Q d

2

(
∂tPk

(Pk + 2λ2)2

)]
,

β4 =
Ad

2

[
−30λ6Q d

2

(
∂tPk

(Pk + 2λ2)2

)
+ 144λ2

4Q d
2

(
∂tPk

(Pk + 2λ2)3

)]
,

β6 =
Ad

2

[
−56λ8Q d

2

(
∂tPk

(Pk + 2λ2)2

)
+ 720λ4λ6Q d

2

(
∂tPk

(Pk + 2λ2)3

)
− 1728λ3

4Q d
2

(
∂tPk

(Pk + 2λ2)4

)]
,

β8 =
Ad

2

[
− 90λ10Q d

2

(
∂tPk

(Pk + 2λ2)2

)
+ 1344λ4λ8Q d

2

(
∂tPk

(Pk + 2λ2)3

)

+ 900λ2
6Q d

2

(
∂tPk

(Pk + 2λ2)3

)
− 12960λ6λ

2
4Q d

2

(
∂tPk

(Pk + 2λ2)4

)
+ 20736λ4

4Q d
2

(
∂tPk

(Pk + 2λ2)5

)]
.

(12)

Each term in the r.h.s. can be represented as a one loop diagram with 2n external legs.
When looking for fixed points, and more generally when doing numerical work, one has to reduce

everything to dimensionless variables. We assume that units are such that h̄ = 1, c = 1, so that everything
has dimension of a power of mass. Then, we take k as unit of mass and we measure everything else in units
of k. Thus, we define the dimensionless variables

λ̃2n = k(d−2)n−dλ2n , (13)

which are the couplings measured in units of k. Their beta functions are

∂tλ̃2n = ((d − 2)n − d)λ̃2n + k(d−2)n−dβ2n . (14)

The Wilson–Fisher fixed point.

We will use these beta functions to derive the Wilson–Fisher fixed point. Let us now restrict ourselves
to d = 3 and consider the simplest truncation N = 2 in (9). Then the beta functions are

∂tλ̃2 = − 2λ̃2 − 6A3λ̃4k
−1Q 3

2

(
∂tP

(P + 2λ2)2

)

∂tλ̃4 = − λ̃4 + 72A3λ̃
2
4kQ 3

2

(
∂tP

(P + 2λ2)3

) (15)
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In order to be able to perform the integrals in Q in closed form we will use the so-called “optimized cutoff
function” of Litim (2001)

Rk(z) = (k2 − z)θ(k2 − z) . (16)

With this cutoff ∂tRk = 2k2θ(k2 − z). Since the integrals are all cut off at z = k2 by the theta function in
the numerator, we can simply use Pk(z) = k2 in the integrals. For n > 0 we have

Qn

(
∂tP

(P + A)�

)
=

2
n!

1
(1 + ã)�

k2(n−�+1) . (17)

where ã = ak−2. Then the beta functions become

∂tλ̃2 = − 2λ̃2 − 1
π2

2λ̃4

(1 + 2λ̃2)2
,

∂tλ̃4 = − λ̃4 +
1
π2

24λ̃2
4

(1 + 2λ̃2)3
.

(18)

These beta functions have two simultaneous zeroes. One is in the origin λ̃2 = λ̃4 = 0 and is called the
Gaussian fixed point; the other is at

λ̃2 = − 1
26

≈ −0.03846 ; λ̃4 =
72π2

2197
≈ 0.3234 . (19)

and is called the Wilson-Fisher fixed point.
The attractivity properties of a fixed point can be determined by studying the linearized flow in its

neighborhood. The linearized flow equations are

∂tyi = Mijyj , (20)

where yi = λ̃i − λ̃i∗ and

Mij =
∂β̃i

∂g̃j

∣∣
∗ . (21)

M∗ =

(
∂β̃2

∂λ̃2

∂β̃2

∂λ̃4
∂β̃4

∂λ̃2

∂β̃4

∂λ̃4

)∣∣∣∣∣
∗

=
(

− 5
3 − 36π2

169− 169
72π2 1

)
≈
(−1.6667 −2.1024
−0.2378 1

)
. (22)

The eigenvalues of this matrix are -1.8425 and 1.1759; the flow approaches the fixed point as kα, where
α are the eigenvalues. For this reason the eigenvalues, or rather minus the eigenvalues, θ1 = 1.8425 and
θ2 = −1.1759 are called the “critical exponents”. In particular, when this theory is used in statistical
mechanics as a model for phase transitions in three dimensions, the “mass critical exponent” ν = −1/α1

determines the scaling of the correlation length near the critical temperature

ξ ≈ |T − Tc|−ν .

In the preceding calculation ν ≈ 0.5427. This number can be measured experimentally and has been
calculated to high precision using several methods (long before the ERGE was even known). Bonanno and
Zappalà (2001) Phys.Lett.B504:181-187 (e-Print: hep-th/0010095) give a table comparing the values of the
critical exponents of this theory from various approximations and from experiment. The best values for ν
are in the range 0.62 − 0.63.

One way to improve the approximation is to take into account the effect of higher couplings. This means
truncating the potential by a polynomial of sixth or higher order. Instead of proceeding as before, we shall
write directly the beta functional for the dimensionless potential. We return to general dimension d. We
define the dimensionless field φ̃ = k

2−d
2 φ and the dimensionless potential

Ṽ (φ̃2) = k−dVk(φ2) = k−dVk(kd−2φ̃2) . (23)
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Then we have
∂tṼ = −dṼ + (d − 2)φ̃2Ṽ ′ + k−d∂tVk . (24)

Let us now choose the optimized cutoff (16). In this case the momentum integral in (8) can be performed
explicitly yielding

∂tVk = Cd
kd

1 + 2Ṽ ′ + 4φ̃2Ṽ ′′ . (25)

where
Cd =

1
2

4
d

1
Γ(d/2)

Ad . (26)

Therefore
∂tṼ = −dṼ + (d − 2)φ̃2Ṽ ′ + Cd

1
1 + 2Ṽ ′ + 4φ̃2Ṽ ′′ , (27)

For the potential (9), we have

Ṽ (φ̃2) =
N∑

n=1

λ̃2nφ̃2n . (28)

The beta functions of λ̃2n can be obtained directly from (27):

∂tλ̃2n =
1
n!

∂n

∂(φ̃2)n
∂tṼk

∣∣∣
φ̃=0

. (29)

The attached Mathematica notebook calculates the beta functions and the critical exponents for various
truncations. The program is to be used as follows. Set d = 3 (or any other dimension, if one is interested in
computing the scalar beta functions in other dimensions). Set n to the desired value, e.g. n = 2 corresponds
to the calculation that was done above. The symbol ρ is used for φ̃2. (In general, all tildas are dropped for
notational simplicity.) Evaluate lines down to line 13. Output line 13 gives the position of the zeroes of the
beta functions. Most of these fixed points are fictitious: they come from having approximated the potential
by a polynomial. In line 14, manually select the physical fixed point. For example, Extract[fp,[3]] will
select the third solution. The choice is not obvious at first. One can immediately discard the solutions with
a nonvanishing imaginary part, but there are generally several real solutions. One procedure is to note the
position of the fixed point at a given n and then in the truncation at order n + 1 identify the solution for
which the couplings λ̃2 . . . λ̃2n are closest to those of the lower truncation. Pay attention: sometimes all
solutions seem to have an imaginary part but it is zero within numerical errors. Having chosen the quantity
“wf”, the remaining lines extract the matrix M and the critical exponents.

This calculation serves as an introduction to the use of truncations of the ERGE. However, truncating
on the field (i.e. approximating the potential by a polynomial) is not the best way of using the ERGE. In the
present problem, it is better to treat (27) as a beta functional for the dimensionless potential and look for a
function Ṽ∗ that is a zero of this functional. When possible it is better to use an expansion in derivatives,
where one keeps all terms in the action that contain up to a certain number of derivatives. See for example
C. Bagnuls and C. Bervilliers (2001).
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