An introduction to covariant quantum gravity and asymptotic safety

List of changes

Version 1.04 dated 06/12/2020
Updated version of this file can be found in
http://www.percacci.it/roberto/physics/book2/index.html
Please send further corrections to percacci@sissa.it

- p.14, line below eq. (2.1): $G=6.674 \times 10^{-11}$
- p.15, equation (2.9): some of the indices are not in the correct positions. The corrected formula reads

$$
\begin{equation*}
S_{F P}=\int d^{4} x\left(-\frac{1}{2} \partial_{\alpha} \phi_{\mu \nu} \partial^{\alpha} \phi^{\mu \nu}+\partial_{\alpha} \phi_{\mu}^{\alpha} \partial_{\beta} \phi^{\mu \beta}-\partial_{\alpha} \phi_{\mu}^{\alpha} \partial^{\mu} \phi+\frac{1}{2} \partial_{\alpha} \phi \partial^{\alpha} \phi\right) \tag{2.9}
\end{equation*}
$$

- p.21, 8th line of second paragraph: replace "working on the physical principles" by "working on the same physical principles"
- p21, before and after eq. (2.46), and p.23, second line of second paragraph: replace "irrreducible representations of te Lorentz group" by "irreducible representations of the rotation group".
- p23, before equation (2.61) replace "wave-number" by "wave-vector"
- p24, third line: replace "tranformations" by "transformations"
- p24, before (2.62) modify te text into "distinguish generic gauge transformations..., from those for which it is also transverse."
\bullet p25, eq. (2.69): replace $\partial^{\nu} \phi$ by $\partial^{\mu} \phi$
\bullet p27, three lines below (2.84): change sign in the formula in line, to $2 R_{\mu \nu} R^{\mu \nu}-\frac{2}{3} R^{2}$, and change $a_{1}=3 a_{2}$ to $a_{1}=-3 a_{2}$.
- p.34, eq. (2.106): the font of 2 is corrected by changing the overall definition of \backslash lc to \newcommand $\{\backslash$ lc $\}\{\{\backslash$ mit \backslash Gamma $\}\}$
- p.34, unnumbered formula before (2.107): insert a factor 4 ! in the r.h.s.
- p.36, eqs.(3.2) and (3.9): replace $d^{4} x$ by $d^{d} x$
- p.37, unnumbered formula before (3.11): N to be replaced by \mathcal{N}.
- p.39, equation (3.22): before the second equality, insert $\left.\right|_{s=0}$.
- p.42, before eq. (3.37) replace (15.2.1) by (3.21) and (15.2.6) by (3.31).
- p.45, eq. (3.49): insert λ in the first term in square brackets.
- p.47, in the line after equation (3.60): replace "fuction" by "function".
- p.50, in the third last line: "the integrals of C^{2} and E are Weyl invariant".
- p.51: in eq. (3.82), the classical action has to be added in the first two lines:

$$
\begin{aligned}
\Gamma\left(\Omega^{2} g\right) & =S\left(\Omega^{2} g\right)+\frac{1}{2} \sum_{n} \log \left(\frac{\Omega^{-2} \lambda_{n}}{\mu^{2}}\right) \\
& =S(g)+\frac{1}{2} \sum_{n} \log \left(\frac{\lambda_{n}}{\mu^{2}}\right)+\frac{1}{2} \log \left(\Omega^{-2}\right) \operatorname{Tr} \mathbf{1} \\
& =\Gamma(g)-\log \Omega \zeta_{\Delta}(0)
\end{aligned}
$$

- p.53: replace the text after (3.100) and equation (3.101) by:

We can now interchange the f and h integrations and use the finite analogues of (3.94-98-99) to change h to h^{f} in the measure, in Ψ and in the action:

$$
\begin{equation*}
Z=\int(d f) \int_{\mathcal{M}}\left(d h^{f}\right) \Psi\left(h^{f} ; \bar{g}\right) \delta\left(F_{\mu}\left(h^{f} ; \bar{g}\right)\right) e^{i S\left(h^{f} ; \bar{g}\right)} \tag{1}
\end{equation*}
$$

- p.55: in eq. (3.110) and (3.111), in the exponents on the l.h.s. one has $W(j, \bar{\tau}, \tau ; \bar{g})$.
- p.57: in eq. (3.124) there is an undefined quantity h_{μ}. Also \square should be typeset $\bar{\nabla}^{2}$. The corrected formula reads as follows:

$$
\begin{equation*}
R^{(2)} \approx \frac{1}{4}\left(h_{\mu \nu} \bar{\nabla}^{2} h^{\mu \nu}+h \bar{\nabla}^{2} h+2 \bar{\nabla}_{\rho} h_{\mu}^{\rho} \bar{\nabla}_{\sigma} h^{\sigma \mu}+2 \bar{R}_{\alpha \beta} h^{\alpha \gamma} h_{\gamma}^{\beta}+2 \bar{R}_{\alpha \beta \gamma \delta} h^{\alpha \gamma} h^{\beta \delta}\right) \tag{3.124}
\end{equation*}
$$

- p.62, eq.(3.158): replace 10 by 20 , twice.
- p.67, eq.(3.174): replace $-16 \frac{4}{t^{2}}$ by $+\frac{4}{t^{2}}$. In the next unnumbered formula, change the sign of the second term on the r.h.s.
- p.80, fig.4.1: remove the first two figures on the left. Three-point vertices are present for more general parametrizations of the target space, but are absent with the exponential parametrization (4.6). In the subsequent line remove "two, three or four".
- p.86, four lines below eq. (4.20): replace "which is subject" by "which are subject".
- p.87, in eq. (4.22): replace \sqrt{g} by $\sqrt{|g|}$.
- p.99, eq. (5.60): the initial factor $1 / 2$ multiplies all that follows:

$$
\begin{equation*}
R_{\mu \nu}^{(1)}=\frac{1}{2}\left[\Delta_{L 2} h_{\mu \nu}+\nabla_{\mu}\left(\nabla_{\rho} h_{\nu}^{\rho}-\frac{1}{2} \nabla_{\nu} h\right)+\nabla_{\nu}\left(\nabla_{\rho} h_{\mu}^{\rho}-\frac{1}{2} \nabla_{\mu} h\right)\right] \tag{5.60}
\end{equation*}
$$

- p.100, equations (5.63-64) hold in an Einstein space. Equations (5.61-62-65) actually hold for any metric.
- p.112, in eq.(5.113) replace $-\frac{2 \bar{R}}{d}$ by $-\frac{\bar{R}}{2}$.
- p.112, two lines before eq.(5.114) replace "are witten" by "are written".
- p.115, 2nd line of section 5.5.2, replace "Lichnewrowicz" by "Lichnerowicz".
- p.124, eq.(5.166): replace f by W.
- p.118, Table 5.1: replace everywhere l by ℓ.
- p.129, in the fifth last line of the introductory section, change the text to "...derivation of te Exact Renormalization Group Equation (ERGE)".
- p.141, eq.(6.50): add $-S_{g h}$ in the exponent.
- p.155, in the unnumbered matrix before eq.(6.106): replace $\frac{\delta^{2} \Gamma_{k}}{\delta a \delta a}$ by $\frac{\delta^{2} \Gamma_{k}}{\delta h \delta h}$.
- p.158, eq.(6.119): replace $d x$ by $d^{d} x$.
- p.188, before eq.(7.50) remove the words "They do not change under Euclidean continuation" and after eq. (7.50) add: "(this is not the Wick rotation of equation (2.75), since the signs of α, β, γ would have to be changed)".
- p.193, equations (7.77-79): in the l.h.s. of each equation, remove the subscript h from Δ_{h}.
- p.195, after eq.(7.94): replace "which" by "that".
- p.198, in the first line of the second paragraph, remove the word "how"
- p.216, in the first line after table (7.1) the reference should be to eq. (7.146) rather than (6.116).
- p.218-221, in several formulas in section 7.6.3 the dependence on the parameters M^{2} and Λ does not reflect the calculations described in the text.
- In equations (7.154) and (7.164-166), $\tilde{\Lambda}$ has to be replaced everywhere by $-\tilde{M}^{2} / 2$.
- In the line after eq. (7.155), the text should be modified into: "The coefficients A_{1}, A_{2}, B_{1}, B_{2} are still given by (6.121), except for the replacement of the denominators $1-2 \tilde{\Lambda}$ by $1+\tilde{M}^{2 "}$
- The functions a, b, c, d, e, f defined in equations (7.159) and (7.163) generally depend on $\tilde{\Lambda}$ and \tilde{M}^{2}.
- Equations (7.160) and (7.161) have to be replaced by the following:

$$
\begin{aligned}
a\left(\tilde{\Lambda}, \tilde{M}^{2}\right) & =\frac{a_{0}+a_{1} \tilde{\Lambda}+a_{2} \tilde{\Lambda}^{2}+a_{3} \tilde{M}^{2}+a_{4} \tilde{M}^{4}+a_{5} \tilde{M}^{6}+a_{6} \tilde{M}^{8}+a_{7} \tilde{\Lambda} \tilde{M}^{2}}{(4 \pi)^{d / 2} \Gamma(d / 2) d^{2}\left(d^{2}-4\right)(3 d-2)\left(1+\tilde{M}^{2}\right)^{4}}, \\
a_{0} & =-4 \pi(d-2)\left(-896+264 d+1076 d^{2}-434 d^{3}+21 d^{4}+d^{5}\right) \\
a_{1} & =16 \pi(d-1)\left(d^{2}-4\right)\left(64+52 d-32 d^{2}+3 d^{3}\right), \\
a_{2} & =-16 \pi d(d+2)\left(-16+12 d+40 d^{2}-19 d^{3}+d^{4}\right), \\
a_{3} & =-8 \pi(d-2)\left(-2176+2512 d-138 d^{2}-111 d^{3}-27 d^{4}+4 d^{5}\right), \\
a_{4} & =-32 \pi(d-2)\left(-816+1180 d-384 d^{2}+55 d^{3}-12 d^{4}+d^{5}\right) ; \\
a_{5} & =4 a_{6}=-512 \pi(d-2)\left(-32+50 d-19 d^{2}+2 d^{3}\right) ; \\
a_{7} & =-64 \pi(d-1)\left(d^{2}-4\right)\left(16+26 d-13 d^{2}+d^{3}\right) ; \\
c\left(\tilde{\Lambda}, \tilde{M}^{2}\right) & =\frac{c_{0}+c_{1} \tilde{\Lambda}+c_{2} \tilde{M}^{2}}{(4 \pi)^{d / 2} \Gamma(d / 2) d^{2}(d+2)(d+4)(3 d-2)\left(1+\tilde{M}^{2}\right)^{3}} \\
c_{0} & =8 \pi(d-1)\left(128+720 d-350 d^{2}+29 d^{3}\right) ; \\
c_{1} & =64 \pi(d-1)(d+4)\left(16+26 d-13 d^{2}+d^{3}\right) ; \\
c_{2} & =32 \pi(d-1)(d-3)(d+4)\left(-8-10 d+d^{2}\right) ;
\end{aligned}
$$

- In equation (7.167) add the term $+\eta_{h} \tilde{M}^{2}$
- Equation (7.170) has to be replaced by the following:

$$
\begin{equation*}
r\left(\tilde{\Lambda}, \tilde{M}^{2}\right)=\frac{512 \pi d}{(4 \pi)^{d / 2} \Gamma(d / 2)(d+4)(d+6)(3 d-2)} \tag{2}
\end{equation*}
$$

These beta functions and anomalous dimensions give the flow described in fig.7.18 and Table 7.2. They reduce to the expressions given in the book when M^{2} is identified with -2Λ.

- p.223, Table 7.2: the one loop value for \tilde{M}_{*}^{2} is -0.335 instead of -0.565 .
- p.228, Table 7.4: the correct title of the table is "Scaling exponents".
- p.253, the second last paragraph should begin with: "In an application to cosmology".
- p.282, ref.[224]: capitalize Gilkey.

