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Preface

The aim of this book is primarily pedagogical. It is intended as an introduction to
the covariant formalism of quantum gravity and in particular to current research
on asymptotic safety. The first four chapters, forming the first half of the book,
are based on a short course entitled “Introduction to quantum gravity” that I have
taught at SISSA in the last three academic years. They contain a concise review
of well-established facts about the covariant approach to quantum gravity, the cen-
tral result being the derivation of one loop divergences by 't Hooft and Veltman,
described in chapter 3. Another classic result in quantum gravity is asymptotic
freedom of higher derivative gravity, which is reported in detail later, together with
other calculations of beta functions. This first part closes with a discussion of open
options.

The second half of the book is an introduction to the current work on asymp-
totic safety. It begins with two technical chapters containing material that is useful
also outside the domain of asymptotic safety, mainly heat kernel techniques and
the functional renormalization group. Chapter 7 contains the general definition of
asymptotic safety and then a number of explicit calculations in gravity. I have cho-
sen to present in some detail the one loop calculation of beta functions in Einstein-
Hilbert gravity, in higher derivative gravity and in three-dimensional topologically
massive gravity, which are well understood, and some sample calculations that go
beyond the one-loop approximation. The limitations of these examples are clear.
Still one may hope, by virtue of their relative simplicity, that some aspects of these
calculations will withstand the test of time.

These results are presented with very few references. There follows in chapter 8
a fairly comprehensive overview of the literature and a section describing the state
of the art. All the current research lines and open problems are briefly discussed
there with full references. This, together with the technical material, should enable
the motivated reader to start working in this field.

Trieste, summer 2016
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Chapter 1

Quantum gravity:
a brief historical overview

1.1 Early years

The four known fundamental interactions can be divided in two groups. Gravity
and electromagnetism have long range, manifest themselves macroscopically and
have been known for centuries. The weak and strong nuclear forces act only at
very short distances and were discovered only relatively recently. Gravity and elec-
tromagnetism are described by classical field theories. Both are examples of gauge
theories, namely theories whose equations are covariant under an infinite dimen-
sional group of transformations.

All this was well appreciated in 1916, after the discovery of General Relativity
(GR). Because of these analogies, steps towards a quantum theory of electromag-
netism would soon be followed, or sometimes even anticipated, by similar steps
towards a quantum theory of gravity E Significant early contributions were made
by Rosenfeld [4] and Bronstein [5]. The notion of “graviton” as quantum of the
gravitational field was established already in the 1930’s. In 1939 Fierz and Pauli
derived the linearized Einstein equations as the relativistic field equation for a spin-
2 field propagating in Minkowski space [6]. This was further developed by Gupta |7]
using methods similar to Gupta-Bleuler quantization of the electromagnetic field.
At this point there was a quantum theory of free gravitons and the next step was
understanding their interactions.

1.2 DeWitt’s era

Mechanical problems can be formulated in Lagrangian or in Hamiltonian formalism
and even though one of the two formalisms may be more convenient in some par-
ticular circumstance, it is usually the case that when a problem can be understood
in one way, it can also be understood in the other. In relativistic quantum field
theories the use of Hamiltonian methods has the disadvantage of hiding Lorentz

IFor an account of the early history see [1], and in particular 2] for the role of M. Bronstein. A
concise general history of quantum gravity can also be found in |3].
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invariance, so the Lagrangian formalism is often preferred. Attempts at quantum
gravity proceeded in parallel but the difficulties encountered in the two schemes are
seemingly very different and unrelated. Bryce DeWitt received his PhD in 1950 and
in the subsequent decades played a central role in the development of both research
lines.

Gauge invariance manifests itself at Hamiltonian level in the non-invertibility of
the relation between velocities and momenta. This gives rise to constraints on the
canonical variables and a proper way of dealing with these constraints was developed
in the 1950’s by Dirac and Bergmann. The application of this formalism to gravity
culminated in a famous work by Arnowitt, Deser and Misner [8], where they pre-
sented the “ADM formalism” for the canonical treatment of gravity. Gravity can be
seen as the motion of a point particle in an infinite dimensional “superspace” (not to
be confused with the superspace of SUSY theories) consisting of three-dimensional
metrics modulo spacial diffeomorphisms. In the mid-1960’s the Wheeler-DeWitt
equation was written down as a formal analogue of the Schrédinger equation on su-
perspace [9]. It soon appeared that this nice formalism is fraught with mathematical
and conceptual difficulties, making progress nigh impossible. At the mathematical
level, one would have to make sense of the Wheeler-DeWitt operator as a sort of
Laplacian on a Hilbert space of wave functionals over superspace; at the conceptual
level one has to deal with the “problem of time”: the fact that the Hamiltonian is
a constraint that must vanish.

In the meantime, the parallel development of a quantum theory of the electro-
magnetic and gravitational fields had diverged. In 1947 a famous conference took
place at Shelter Island, which led to great steps forward in the understanding of
interacting quantum field theories, and the construction of QED was completed in
the following years. The development of quantum gravity was obviously a much less
urgent affair, since no experimental data existed, but when the issue was addressed,
no comparable success could be claimed. The problem of computing transition am-
plitudes in quantum gravity had been addressed in earnest in the early 1960’s by
Feynman and DeWitt. Feynman showed that tree amplitudes reproduce the results
of General Relativity E| but then stumbled over apparent violations of unitarity.
This was due to the presence of the unphysical gauge degrees of freedom and was
fixed by DeWitt, who essentially introduced what we now call the Faddeev-Popov
ghosts |10L/11]. Thus the correct quantization of a non-abelian gauge theory was
established for gravity before Yang-Mills theory. The issue of the renormalizability
of the theory remained however open. The different dimension of the electromag-
netic and gravitational couplings, and its potentially nefarious consequences, had
already been remarked by Heisenberg in 1938 [12]. It was only in 1972, however,
that the one-loop effective action of Einstein’s theory was calculated by 't Hooft and
Veltman [13], using the tools developed by Feynman and DeWitt. This milestone

2If GR had not been discovered by Einstein in 1915, it would have presumably been discovered
by particle physicists at about this time.



December 7, 2020 17:48 World Scientific Book - 9.75in x 6.5in book page 3

Historical overview 3

paper established the non-renormalizability of gravity coupled to a scalar field, but
left open the possibility of “miraculous” cancellations in pure gravity. The non-
renormalizability of gravity coupled to various types of matter was established soon
thereafter [14H19]. The remaining gap was only closed several years later by Goroff
and Sagnotti [20] and van de Ven [21], who established the existence of a divergent
term cubic in curvature in the effective action of pure gravity at two loops.

These papers led to a firm conclusion: the perturbative treatment of Einstein’s
theory as a quantum field theory, either on its own or coupled to generic matter
fields, leads to the appearance of infinitely many divergences that spoil the predictiv-
ity of the theory. There were subsequently several attempts to wiggle out of this im-
passe, while remaining within the context of quantum field theory. They can be di-
vided in three categories. First, one could change the gravitational equations. Stelle
proved that a theory containing four-derivative terms in the Lagrangian (i.e. terms
quadratic in curvature) is perturbatively renormalizable [22}23]. Unfortunately it
also appeared that those Lagrangians leading to a renormalizable theory contain
propagating ghosts. These ghosts, unlike those introduced by DeWitt-Faddeev-
Popov, would be physical particles and hence would lead to violation of unitarity.
Conversely those Lagrangians that do not contain ghosts are non-renormalizable.
At the perturbative level, one is thus led to conclude that there is incompatibility
between unitarity and renormalizability.

The second attempt was based on the following idea: while a generic theory
of gravity coupled to matter is non-renormalizable, perhaps there are some spe-
cial combinations of matter fields that would lead to a renormalizable theory. By
far the most important examples in this class are supergravity theories (SUGRA),
pioneered by Freedman et al. [24]. They come in many varieties, depending on
the dimension, the number N of superpartners of the graviton and the presence
of additional multiplets or additional invariances (e.g. conformal SUGRA). Super-
symmetric theories are very special because the balance of bosonic and fermionic
degrees of freedom leads to cancellation of divergences in loop diagrams and indeed
even the simplest SUGRAs do not have the two-loop divergence that is present
in GR. Besides the improved quantum behavior, these theories have the aesthetic
appeal of being less arbitrary than non-SUSY theories, and there were hopes that
in this way one could arrive at a unique realistic unified theory of all interactions
(a “Theory of Everything” or “TOE”). The difficulty of obtaining chiral fermions
from dimensional reduction and the presence of anomalies largely thwarthed these
hopes.

The third possibility is that the failure of renormalizability is a pathology of
the perturbative approach, and not of gravity itself. There is more than one way
of implementing this idea. The Hamiltonian approach to quantum gravity can be
viewed as falling in this broad category, and will be discussed separately below.
Within the covariant formalism, most work has been based, more or less explicitly,
on the Feynman “sum over histories” approach. The earliest attempt goes back
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to 1957 and is due to Misner [25]. The Euclidean version of the gravitational
functional integral was developed in the late 1970’s especially by the Cambridge
school [26,27]. The non-perturbative nature of this approach is highlighted by the
sum over gravitational instantons [28430]. This approach led to important insights
on the thermal nature of black holes [31] and of the creation of the universe ex
nihilo [32]. Some of the issues arising in this context will be discussed later.

A less formal way of defining the gravitational path integral, parallel to similar
work in QCD, is the lattice approach. Using a hypercubic lattice does not go
well with our understanding of gravity, so two approaches have been mostly used:
quantum Regge calculus (fixing a triangulation and allowing the edge lengths to
fluctuate) [33], and Euclidean Dynamical Triangulations (EDT, building spacetime
with identical, equilateral simplices) [34,[35]. Both programs ran into difficulties,
in particular EDT was shown in the mid 1990’s to lead only to pathological phases
(a “crumpled” state in which all simplexes are directly connected or a “branched
polymer” phase) separated by a first order phase transition [36,[37]. Work in this
direction languished for a while.

The non-perturbative way out of the issue of the UV divergences is known as
“nonperturbative renormalizability” and originates from the work of Wilson on
the renormalization group. A theory with this property would be described by a
renormalization group trajectory that tends to a non-free fixed point in the UV.
This would define a continuum limit that is outside the perturbative domain. This
idea was first floated by Weinberg at an Erice school in 1978 [38] then again, and
in more detail, in his contribution to the Einstein centenary volume [39]. He used
the term “asymptotic safety” for such a behavior, to emphasize the similarity to
“asymptotic freedom”. The original evidence for asymptotic safety of gravity came
from calculations in 2+¢€ dimensions, but it was not known how to take the physically
interesting limit € — 2 and so work on this line of research also subsided very quickly.

1.3 Loop quantum gravity

Let us now return to the Hamiltonian approach. Among the most problematic
features of the ADM formalism is the non-polynomiality of the constraints, and in
particular of the Wheeler-DeWitt equation, giving rise to particularly severe factor-
ordering issues. In the 1980’s, Ashtekar discovered a canonical transformation that
makes the constraints polynomial |[40]. One of the most interesting features of this
formulation is that prior to imposing the diffeomorphism constraints the phase space
of the theory is the same as that of a Yang-Mills theory. The main issue of this
formulation is that one has to use complex variables and impose reality constraints
in the end. Few years later Rovelli and Smolin reformulated the theory in such
a way that its Hilbert space (again prior to imposing diffeomorphism constraints)
consists of spin networks [41]. This was the beginning of Loop Quantum Gravity
(LQG), one of the main contenders for a quantum formulation of gravity. In the
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course of the years, LQG went through several changes of emphasis. One was the
replacement of Ashtekar’s complex variables by a set of real ones. Another goes
under the name “spin foams”, which are four-dimensional structures interpolating
between spin network states. The transition amplitude between two spin networks
is then given by a sum over spin foams having the given networks as boundaries
and governed by a purely combinatorial action. Note that in this way spin foams
can also be seen as a definition of the gravitational sum over histories. Further
developments along these lines are Group Field Theory [42] and tensor models
[43], which can also be seen as more refined versions of dynamical triangulations.
With these developments the original canonical approach has morphed from a direct
attempt at “quantizing GR” into something resembling more closely the Feynman
path integral of a statistical model. The action of these models is only vaguely
inspired by GR, with the main issue now being whether the models reproduce GR
in some suitable continuum limit.

1.4 The standard model

Let us return to the non-renormalizability results of the late 1970’s and early 1980’s.
To understand the subsequent developments, one has to recall the main develop-
ments in particle physics after the Shelter Island conference. After the success of
QED, attention turned towards the weak and strong interactions. Although one
can try to model them by classical fields with exponentially decaying potentials,
this is not particularly useful. It is the nature of the nuclear forces that they always
act between elementary particles, so they must necessarily be described in terms
of quantum fields. The first useful theory of the weak interactions was written by
Fermi in 1933. Unlike gravity and electromagnetism, in Fermi’s theory the weak
interactions do not proceed through a field propagating in vacuo but are rather
described as a contact interaction between four fermions. More precisely, Fermi
postulated an interaction term of the form

?/‘;J“Jl , (1.1)
where J,, is a current bilinear in the spinor fields. Initially Fermi used the vector
current J, = V, . Gamow and Teller later introduced the possibility of parity
violation through an admixture of axial currents A, and still later Marshak and
Sudarshan and independently Feynman and Gell-Mann determined that the correct
combination of currents is of the form J =V — A. These four-fermion interactions
are non-renormalizable. The idea that emerged was that looking at this seemingly
point-like interaction at distances of order /G or shorter, one would see that the
fermions actually exchange a vector boson, just as in QED two electrons scatter by
exchanging a photon. The only difference is that to account for the short range of the
interaction the vector boson of the weak interactions would have to be massive, with
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a mass proportional to G;l/ ®. The technical difficulty then lay in understanding

the properties of massive vector bosons.

In 1953 Pauli generalized the Kaluza-Klein construction from five to six dimen-
sions, using 2-dimensional spheres as fibers. In this way he arrived at the notion of
non-abelian gauge fields (specifically, for the group SO(3)), but he did not publish
this work because he was not able to write a gauge-invariant mass term (see [44]).
Yang and Mills did not have such qualms and one year later proposed nonabelian
gauge fields, initially as possible carriers of the strong interactions [45]. Their work
was criticized by Pauli, but this issue was eventually resolved in 1960 with the notion
of the Higgs mechanism. EI As a side remark, it is worth mentioning that shortly
after Yang and Mills’ work, Utiyama recognized the similarity between gravity and
Yang-Mills fields, starting the research line known as “gauge theories of gravity” [47].
In the subsequent decade, the Yang-Mills theory for the group SU(2) x U(1) was
proposed by Weinberg and Salam, based on earlier work by Glashow, as a model for
electromagnetic and weak interactions. The proof of renormalizability of this theory
was provided by ’t Hooft in 1972, as already mentioned, opening the way to wide
acceptance of the model. Crucial experimental confirmations were the discovery of
the neutral currents at CERN in 1973 and eventually direct detection of the W and
Z bosons, again at CERN in 1983.

The story of the strong interactions is quite different. The original field-theoretic
model for the binding of protons and neutrons in the nuclei had been proposed by
Yukawa in 1934: it consisted of the exchange of a scalar particle called “meson”,
whose mass he could approximately predict, leading to an exponentially falling in-
teraction potential. These particles were indeed discovered in 1947 (they are now
known as the m mesons). Unfortunately, the fact that the coupling constant is
of order one precluded the use of this field theory beyond tree level. Accelerator
experiments in the 1950’s produced a plethora of new strongly interacting parti-
cles (collectively called hadrons) and it proved impossible to describe them by a
perturbative QFT. This led many physicists, including Heisenberg, to doubt that
QFT could ever describe the strong interactions, and led them pragmatically to an
alternative approach called “S-matrix theory”. Proponents of this approach were
ready to give up the notion of spacetime at nuclear distances and tried to directly
determine the S matrix from general properties such as unitarity and analyticity.
The observation that hadrons can be arranged on Regge trajectories led to the con-
clusion that not all hadrons can be elementary particles and to the development of
a string theory of the strong interactions. This kind of approach was popular in the
1960’s.

In the meantime, hadrons had been classified according to their charge and
isospin (Wigner, Heisenberg) and later also strangeness (Nishijima, Gell-Mann).
Neglecting their mass differences, they turned out to fall into multiplets of either
SU(2) or SU(3). Gell-Mann observed that this structure could be explained if the

3This story is told in detail in O’Raifeartaigh’s book [46].
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hadrons were made of more fundamental constituents called quarks, carrying the
fundamental representation of SU(3), but given that they cannot be isolated it was
not clear in what sense they could be thought of as particles. There was another dif-
ficulty with this idea, namely some hadrons would require combinations of quantum
numbers that are forbidden by Pauli’s exclusion principle. This led Han, Nambu
and Greenberg to postulate in 1965 that the quarks carry an additional quantum
number of another SU(3), now called “color”, and that they interact exchanging
vector bosons (nowadays called gluons) in an octet of this group. Feynman had a
somewhat similar model of hadrons as being composed of elementary constituents
he called “partons”, but unlike Gell-Mann he was more inclined to think of them
as ordinary particles. Based on Feynman’s ideas, Bjorken predicted that certain
scaling properties should hold in the deep inelastic scattering of electrons and pro-
tons, and this was spectacularly verified in experiments at SLAC in 1969. The
final theoretical development leading to the success of QCD was the discovery of
asymptotic freedom by Gross and Wilczek [48] and Politzer [49] in 1973. This ex-
plained why the quarks/partons behave like free particles inside the hadrons at high
energy, in spite of the theory being strongly interacting at large distances. These
developments led physicists to abandon the S-matrix approach in favor of QCD, so
also the strong interactions could be successfully described, at least at high energy,
by a perturbative Yang-Mills theory.

1.5 GUTs, Supergravity and superstrings

By 1973 the Standard Model (SM) of the electroweak and strong interactions was
therefore in place, essentially in the same form that it maintains today. The
Weinberg-Salam model gives a coherent description of the electromagnetic and weak
interactions, but is not technically a unified theory, since the group SU(2) x U(1) is
not simple and thus there are two gauge couplings. There followed years in which
many tried to extend the gauge group of the SM in such a way as to have a truly
unified theory. This led to so-called grand-unified theories (GUTs) which are quite
successful at collecting all known elementary particles in a few multiplets but be-
come quite cumbersome when one has to explain the way in which the group breaks
down to the SM group. Above all, persistent failure to observe proton decay, the
main theoretical prediction of GUTs, has led to disillusion and loss of interest.
Attempts to bring gravity into the picture rekindled interest in old approaches to
unification and in the late 1970’s and early 1980’s there was a revival of the Kaluza-
Klein approach. The original idea of obtaining the gauge fields from the mixed
(internal/spacetime) components of the metric proved too restrictive and usually
all matter fields (including the gauge fields) were assumed to be present in the
higher dimensional theory. Rather than being simply postulated, the local product
structure of the higher dimensional space was obtained by a dynamical mechanism
of “spontaneous compactification”. Harmonic expansion of the matter fields in the
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compact dimensions gave rise to an effective dynamics in spacetime, including both
light modes, that can be identified with the known fields, and an infinite tower of
yet unobserved very massive modes. All this was often in supersymmetric form. In
particular, the realization that there exists a unique N = 1 supergravity (SUGRA)
in d = 11, enjoying very special properties and related by dimensional reduction
to N = 8 SUGRA in d = 4, raised hopes that a TOE could be found along these
lines. Some of these SUGRAs turned out to be related to superstring theories
in d = 10. One of the major difficulties with some of these models were gauge
anomalies, which imply that these are not consistent as quantum theories. It was
therefore a major breakthrough when Green and Schwartz discovered that certain
very special superstring theories in d = 10 are free of anomalies. This came to be
known as the first superstring revolution.

The preceding review of the history of particle physics should help understand
the subsequent massive re-orientation of the particle physics community. The first
reason is that after QED, the understanding of the fundamental interactions as
quantum phenomena had progressed through phases of unification. By the mid-
1980’s there had been great theoretical steps forward in this direction and it seemed
that gravity would be the last piece in a puzzle that had already been largely built.
There was therefore little interest, or even little faith, in the idea of constructing a
quantum theory of gravity as a standalone interaction.

The second reason, which was important for a subset of particle physicists, was
the existing work on string theory as a model for strong interactions. Closed string
theory predicts the existence of a massless spin-2 state. As long as strings were used
as models for hadrons, there was no natural interpretation for this state, and the
reinterpretation of this state as the graviton was the first step of the first superstring
revolution.

The third reason is the importance of the perturbative approach both in es-
tablishing the existence of the theory and as a tool to extract from it quantitative
predictions. Essentially all the calculations leading to quantitative predictions in
the SM are based on this method. The main area where perturbation theory fails
are the strong interactions at low energy, where QCD becomes strongly coupled,
and here the situation is less brilliant. In principle one could try to derive all the pa-
rameters governing the physics of hadrons out of QCD. Lattice gauge theory is now
able to predict the masses of these particles (or more precisely their mass ratios):
this is a great success, but it came after thirty years of hard work and we are still
far from understanding the dynamics. This explains why the majority of particle
physicists would put more faith in a perturbative approach such as superstrings
rather than a non-perturbative one such as Weinberg’s asymptotic safety.

Superstring theory went through enormous development in the 1980’s and 1990’s
but has not fulfilled some of the initial hopes, such as being able to calculate some
of the free parameters of the SM. The reason is that while superstring theories in
d = 10 come only in a handful of varieties, and are perhaps subsumed by a unique



December 7, 2020 17:48 World Scientific Book - 9.75in x 6.5in book page 9

Historical overview 9

structure in d = 11, they admit a huge number of dimensional reductions, removing
much of the predictive power. On the other hand superstring theory has spawned
many new theoretical ideas and tools that are useful in other contexts, perhaps the
most important one being the AdS/CFT correspondence. It has also led to major
progress in understanding field theories at nonperturbative level. For this reason
superstring theory has come to be viewed by some as a more general and more
powerful theoretical framework in which to discuss QFT.

1.6 Recent developments and future prospects

Around the turn of the century some developments have taken place that some-
what changed the perspective on the problem of quantum gravity. The first is the
realization, within the particle physics community, that non-renormalizable theo-
ries can be useful and predictive in some limited energy domain, if one uses a set
of techniques that go under the name of “Effective Field Theory” (EFT). In this
way the notions of renormalizability and UV completeness lost some importance.
These ideas percolated to gravity mainly through the effort of J. Donoghue, who
provided a concrete example of a loop calculation that can be done in perturbative
quantum GR and is not affected by the uncertainties about its UV behavior: it is
the calculation of the leading quantum correction to the Newtonian potential, that
will be described in section 4.5.4. It is based on methods that have been tested in a
wide variety of other phenomena, it is free of ambiguities and it is hard to imagine
that one of its premises could be invalidated in the future. It is probably not an
exaggeration to say that this is the most reliable result we have in quantum gravity.

Quite generally, the modern EFT approach implies that the old Feynman-
DeWitt perturbative treatment of gravitons in a background spacetime, with in-
teractions dictated by the Hilbert action of GR, is a useful and consistent QFT as
long as one only asks questions about “low energy” physics, where by “low energy”
one means energies lower than the Planck mass mpjanck- In fact the expansion pa-
rameter of the EFT of gravity is the ratio E/mpianck, where FE is the characteristic
mass scale of the phenomenon under study. Even at the highest energies available in
accelerators, or in cosmic rays, this number is extremely small, in fact much smaller
than the couplings of the other interactions at the same energies. In this sense one
could paradoxically say that the EFT of gravity is the best perturbative QFT.

The predictions of this QFT deviate from those of classical GR only by amounts
that are way too small to be detected. This is unfortunate, because it means that
it is probably going to be very hard to obtain proof of genuine quantum effects in
gravity, but it can also be viewed positively, because every test of GR is also a test
of the EFT of gravity. If we keep in mind that the SM itself is incomplete (at least
because the abelian gauge interactions are not asymptotically free), then one should
conclude that we do have a QFT of gravity that is no worse than the QFT of the
electroweak interactions, with a domain of applicability ranging from cosmological
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scales up to scales that are way higher than anything that can be currently achieved
in accelerators.

While this may be viewed as a spectacularly successful theory, there are several
reasons not to be completely satisfied. The first is conceptual. The EFT is definitely
a quantum theory of gravity, as long as we understand “gravity” in the Newtonian
sense of “the force that makes apples fall”. But Einstein taught us to think of gravity
as the geometry of spacetime rather than a force, and in the EFT, spacetime is still
Minkowski space, or at most some fixed curved background, so this is definitely
not a “quantum theory of spacetime”. Understandably, this motivation is felt more
strongly among General Relativists, whereas old-school particle physicists tended
to be more comfortable with the notion that the geometric structures of GR may be
merely an illusion emerging in some limit from the dynamics of gravitons. E| With
the recognition that also Yang-Mills theories have a geometrical interpretation, and
the related work on instantons, this attitude has become unpopular even among
particle physicists, so that there is now a wide consensus that “quantum gravity”
cannot be merely a theory of gravitons propagating on a fixed background.

One may argue about how much of the structure of GR is going to be needed,
but in any case by “quantum gravity” most people nowadays mean a “quantum
theory of spacetime”, and there is no generally accepted theory of this type.

A second and more practical reason has to do with the existence of singularities
in GR. John Wheeler justly called this “the greatest crisis in physics of all time”. It
is generally expected that quantum gravity would provide an answer to this issue,
but the EFT of gravity is of no help here. This is because the quantum effects
are generally expected to come to the rescue only when the curvature reaches the
Planck scale, and this is the regime where the EFT breaks down too. So, the
quantum theory of gravity that solves the problem of the singularities will be a
quantum theory of spacetime in some sense.

The sense in which the EFT breaks down at the Planck scale is that all the op-
erators in the effective action, containing any number of curvatures and derivatives,
become equally important. The coefficients of all these terms are not calculable in
the EFT, leading to a breakdown of predictivity. In principle, some notion of UV
completeness can be used as a criterion to select theories and may restore some form
of predictivity. This is the same logic that led to the formulation of the Standard
Model, and it may be appropriate to use it again in the context of gravity. Here
too there has been progress.

Returning to our historical review, in addition to developments in superstring
theory and in LQG, the turn of the century has seen a resurgence of covariant non-
perturbative approaches. Work on asymptotic safety, which had languished since
the 1980’s, has been restarted by M. Reuter’s application of “functional renormaliza-
tion group” techniques to gravity. This has led to new evidence for the existence of
a nontrivial fixed point directly in four dimensions. This notion of non-perturbative

4This point of view has been expressed for example in the preface and section 6.9 in |50].
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renormalizability makes the theory predictive also in the trans-Planckian regime.
It will be the main topic of the last chapters of this book.

The dynamical triangulation approach has been revamped in the form of “Causal
Dynamical Triangulations” (CDT), where the sum is restricted to Euclidean con-
figurations that derive from a Lorenzian spacetime. This has led to a different and
much more promising phase structure, with a phase that looks like an extended, de
Sitter space. In principle these Monte-Carlo calculations could provide numerical
tests of the asymptotic safety idea.

A different idea that can also be tested by CDT has been proposed by Horava.
It consists in giving different scaling dimensions to time and space and writing an
action that contains four space derivatives but only two time derivatives. In this
way higher derivative gravity can be made renormalizable and free of ghosts at the
expense of local Lorentz invariance.

At the same time a dedicated group of researchers led by Bern and Dixon,
making use of ideas and techniques that originate from superstring theory, has made
great progress in the calculation of SUGRA amplitudes at previously unthinkable
loop order, finding unexpected cancellations and prompting them to conjecture that
the theory may even be finite. The divergence structure of N = 8 SUGRA is still
being actively investigated.

All the above research lines, and to some extent also spin foams, group field
theory and tensor models, are direct extensions of the covariant QFT approach to
quantum gravity. In spite of the perturbative non-renormalizability of GR, this
research line initiated by Feynman and DeWitt more than 50 years ago, is therefore
still very active.

In particle physics, many new ideas for physics beyond the SM (BSM) have
been put forward over the years and the success of the SM has become a source
of frustration. The results of the first LHC run leave open the possibility of a
“great desert” between the Fermi and the Planck scale. This would be a completely
new situation: up to now, every time a new energy scale has been opened up for
exploration, new phenomena have always appeared. There is much hope that the
second LHC run will reveal something new. On the other hand, the desert scenario
may be positive for quantum gravity, since it may give an unimpeded view of some
Planck scale phenomena. Either way, it is conceivable that a deeper understanding
of some outstanding issues in particle physics may also lead to new insights into
quantum gravity.



December 7, 2020 17:48 World Scientific Book - 9.75in x 6.5in book page 12

12 Quantum Field Theory of Gravity



December 7, 2020 17:48 World Scientific Book - 9.75in x 6.5in book page 13

Chapter 2

Gravitons

2.1 The linear field equations

There are in principle two ways to approach General Relativity. One may call
them the “top down” and the “bottom up” approach. Historically the top-down
approach came first: it is the route followed originally by Einstein. Armed with some
physical intuition and with the notions of Riemannian geometry, in 1915 he arrived
by pure thought at a unique set of nonlinear second order differential equations
for the gravitational field. For weak fields these equations can be linearized and
have solution describing the propagation of gravitational waves in a background
Minkowski space.

The bottom up approach is more laborious: it consists of starting from Lorentz-
covariant linear field equations and trying to reconstruct the full nonlinear theory
from there. The appropriate linear equation was written in 1939 by Fierz and
Pauli, who were searching for the relativistic wave equation for a spin-2 particle [6].
The question of reconstructing the interactions of such a theory was addressed and
only partly answered by Feynman around 1962 [51]. The reconstruction of the full
nonlinear theory can be achieved with a clever trick found later by Deser [52].

The two approaches are complementary and equally instructive. Due to its
elegance and in part perhaps also to Einstein’s charisma, the top-down approach
is far better known. Given that in this chapter we will be dealing with the linear
theory, we shall use both approaches and start from the bottom-up one.

2.1.1 The relativistic spin-2 field equation

In particle physics, all forces are thought of as due to the exchange of some mediator.
For example, in the Yukawa model the nuclear forces between nucleons are due to
the exchange of scalar particles (the mesons). In the standard model, electroweak
and strong interactions are due to the exchange of spin-1 particles. It is then natural
to think also of gravity as the effect of the exchange of some particle that we may
call “graviton”.

Gravity is a universal interaction that is proportional to the masses of the in-

13
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teracting bodies and decays like the inverse of the square of the distance. The
corresponding potential energy is

V(r) = G2

- (2.1)

where G = 6.674x 10~12m3 /(s?kg). Most of the time we shall use natural units i =
1, ¢ = 1, where Newton’s constant corresponds to 2.612 x 10~"%m? (see Appendix
A1 for a table of units). The fundamental properties of the graviton can be deduced
from these basic facts.

Since gravity is a long range force the exchanged particles must be massless.
What is their spin? It cannot be half-integer, because half-integer particles have
only bilinear interactions and therefore cannot act at tree level as mediators of
exchange interactions: force fields correspond to particles with integer spin. In
order to further constrain the spin, let us calculate the interaction energy between
two heavy particles, mediated by a particle of spin s. From the representation
theory of the Lorentz group, a spin s field is contained in a symmetric tensor with
s indices ¢,,,,... ., and it interacts with a conserved current J#!---#s that is also
a symmetric tensor. We choose source particles at rest with charges @1, @2 and

four-velocities © = (1,0,0,0), so that the sources are J{“Q“ = QuMt .. uts.
The Fourier transform of the interaction energy will be proportional to
Jlu‘ly.“”u’SPMla-“vﬂsvylv--w’/sJyl,'..7Ul§ ? (2'2)

where P, u.u1,....v, is the propagator of the mediator field. By Lorentz covariance
it can depend only on the metric and on g, the four-momentum of the exchanged
particle. Any term containing the momentum will drop out of due to current
conservation, so for the present purposes we can just assume

PH17~~~,HS;V1,~~>VS = %qgnll«llll e nusl’s I (23)
suitably symmetrized. In this kinematic configuration the momentum g is spacelike,
so g2 > 0 (we use signature — + ++). The overall factor —1 in the propagator is
essential in the following: it is dictated by the positivity of the energy of a freely
propagating quantum. When this form is inserted in , it produces s powers of
g(u,u) = —1. The sign of the interaction potential is thus given by (—1)**1Q; Q.
As a result, like charges attract and opposite charges repel when s is even, whereas
like charges repel and opposite charges attract when s is odd. In the case of gravity,
the charges are proportional to the masses, which for all physically realizable sources
are positive. Given that the charges of all bodies have the same sign and that the
resulting interactions are universally attractive, we conclude that the mediator of
the gravitational interaction must have even spin.

The simplest possibility would be spin zero. In this case the interaction term
would be of the form ¢T*y, where T, is the energy-momentum tensor. Since the
energy-momentum tensor of electromagnetism is traceless, there could be no gravi-
tational deflection of light, in contrast to observation. Thus the simplest remaining
option is that the graviton has spin two.
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In order to describe a spin-2 particle we must start from a symmetric tensor
¢ The free Lagrangian for such a field contains 0, ¢, 03¢, With the six indices
contracted in all possible ways. Terms without derivatives are not allowed because
the mass is zero. E| Using the symmetry of ¢,, and the freedom of performing
integrations by parts, the free action can be reduced to the general form

/d4$ (a18a¢uuaa¢uu + a28a¢uaaﬁ¢uﬁ + a38a¢uaau¢ + a46a¢aa¢) » (24)

where we write ¢ = ¢*5. Note that the field ¢, has the canonical dimension of
mass, as any bosonic field. The energy-momentum tensor of matter acts as linear
source for the graviton

Ss =k / d*x ¢, T, (2.5)

where k is a constant with the dimension of length. The resulting field equation is
of the form

f,uu = */{T;w )
with
fw/ = —2a; 62¢Mu_a2 (auaa¢ya+auaa¢ua)_a3 (auau¢+nuuaa65¢aﬂ)_2a4 77u1182¢ .

Given that the r.h.s. of the field equation is conserved, the conservation of the

Lh.s. must hold as an identity. Requiring that 9, f*, = 0 results in the conditions

2a1 + a2 =0, as + a3 = 0 and a3 + 2a4 = 0. We fix the overall normalization by

choosing a; = —1/2, which leads to az = 1, ag = —1, ay = 1/2. The sign has been

chosen such that transverse plane waves have positive energy, as we shall see below.
The final form of the Fierz-Pauli equation is

by — 0000y — 0,000, + 0,000 + 100050 — 1,020 = —KT, . (2.6)
For later reference we also write it in the form
Opupa¢po = _KJTMV . (27)
where
log 1 o o 1 ag (o8 loa o
0,7 = §(§Z5y + 556#)62 —3 (558,,8 + 5H3y8” + 900,07 + 5,8#8p)
+npaa#ay + ,r]pl/apaa - nuynpaaz . (28)

It can be derived from the action Spp + Sg, where

1 1
SFP - /d4(E <—2 a@buuaad)uy + 8a¢#aag¢“’8 - 8ﬂt¢#aa“¢ + 28a¢aa¢> : (29)

1Fierz and Pauli also considered a possible mass term. Massive gravitons have been investigated
recently in view of possible infrared modifications of gravity, see [53}/54].
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Notice that if the field ¢,, is transverse (0,¢*, = 0) and traceless (¢ = 0), its
action consists only of the first term. Recalling that we use signature — + ++, its
Hamiltonian would be

1 1
/dSl‘ (280¢My80¢uv + 26i¢uyai¢m/> )

where ¢ = 1,2, 3 labels the space coordinates. Thus the sign of the action is the
right one for a transverse traceless wave to have positive energy. On the other hand
for a pure trace field ¢, = inlwqﬁ, the Fierz-Pauli action is

3
6 / d*z 9,00" ¢ . (2.10)

This has the wrong sign: it gives a negative Hamiltonian. In the classical theory
this does not matter because the trace field does not propagate. This issue is more
serious in the quantum theory and we shall encounter it repeatedly later.

2.1.2 Linearizing Einstein’s equations

The equations for the gravitational field written by Einstein were very nonlinear:

1
R, — §gm,R =8rG T, . (2.11)
In the weak field approximation we can expand
Guv = Mpv + h;w (212)
with |h,, | < 1. The linearized Christoffel symbols are
1
FNAV = 577)\‘1' (aﬂhﬂ/ + ayh_[_u _ 8Thul/) ; (213)
and the linearized Riemann and Ricci tensor and Ricci scalar are
1
Ruvpo = 3 (0uOshpy — 0,0phey — 0,0shpy + 0,0,hay) (2.14)
1
Ry = 5 (=0%hyu + 0,0,h,, + 0,0,h",, — 9,0,h) | (2.15)
R = —3%h + 0,05h°" . (2.16)

The linearized Einstein equations are then
%Ry — (0,0 hpy +0,0” By ) + 0,0y At 11,006 KT =1, 0% h = —167G T}y, . (2.17)

When we compare this to the Fierz-Pauli equation (2.6) one has to pay attention
to the fact that the field h,, used here is dimensionless whereas the field ¢, in the
Fierz-Pauli equation has dimension of mass, as is clear from the form of the action
(2.9). The two equations agree if the fields are related by a rescaling
1
huw =26 dpy with k=—=V8rG . (2.18)
mp

The mass mp is called the reduced Planck mass. In standard units it is given by

he
=4/ — =434x 1075 =2.43 x 10'8CGeV/c? . 2.19
mp =4/ e X g X eV/e (2.19)
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2.1.3 Plane waves

It is convenient to define a bar operation on symmetric tensors:

th/ = t;u/ - ig/u/t )
where by ¢ we denote the trace g”?t,,. In dimensions d # 2 it has an inverse
1

ZW = tuy - d— 2guut

denoted by an underbar (note that in four dimensions t,, = ¢,,). In terms of
“barred” variables, the linearized Einstein equations (2.17)) can be rewritten more
compactly as

*hyy — (0,0 hpy + 0,0 hp) + 10,05 W7 = —167G T (2.20)
These equations have an infinite dimensional kernel consisting of fields of the form
huw = Ouén + Ovey (2.21)

or equivalently
BW = Opey + Op€, — ’17;“,(9)\6)\ . (2.22)

The fluctuations of this form are simply infinitesimal coordinate transformations of
the flat metric and the existence of the kernel is a consequence of the diffeomorphism
invariance of the gravitational action. This redundancy has to be eliminated by
imposing a gauge condition. When this is done, the operator on the Lh.s. of the
equation is then invertible on the subspace of fluctuations that satisfy the gauge
condition. In the discussion of gravitational waves it is convenient to use the so—
called de Donder condition

O =0 . (2.23)

Given a fluctuation h,, which does not satisfy this condition, one looks for an
infinitesimal coordinate transformation ¢, such that h,, + d,€, + 0,¢€, satisfies it.
For this, e must satisfy the equation

e, = —0"hy . (2.24)

This equation always admits a solution. In fact, the solution is determined only up
to a solution of the homogeneous equation

D%, =0, (2.25)

indicating that the gauge condition leaves some residual gauge freedom that
has to be fixed separately.

To summarize, the linearized fluctuations of the metric around flat space, in the
de Donder gauge, satisfy the simple equation

O*hy = —167G T}, (2.26)
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We will now discuss the vacuum solutions of this equation. Since the bar is invertible
in d # 2, the equation 9h,,, = 0 is equivalent to

9%y, =0 (2.27)
The general solution can be written as a Fourier superposition of plane waves. Let
us concentrate on one particular Fourier mode with momentum p*:

huy () = e 4 107 e~ e (2.28)

The complex constant tensor 11, is called polarization tensor. The wave equation
and the gauge condition require that

p?=0 and  p‘M,, =0. (2.29)

We can exploit the residual gauge freedom (2.25)) to impose four additional con-

ditions on II,,. To this end we observe that also the solution of (2.25) can be
written as a Fourier superposition of plane waves, and we pick the one with the

same momentum p* of (2.28):
eu(r) = €,ePn" 626‘”7”“ . (2.30)

Under this transformation, I:IW changes into

1:[21,1/ = ﬁMU + i(pueu + Py — ﬁ,prE,\) . (2.31)
We can choose the constant vector €, such that
UHlL,, =0 (2.32)

for some constant vector U. These look like d conditions, but in reality only d—1 are
independent since p”l:IWU ¥ is identically zero. We can thus impose one additional
condition. Taking the trace of we see that the trace of 1:1,“, changes by —2ip-e.
We can therefore choose €, so as to make 1:IW traceless. When 1:1,“, is traceless,

II,,, =1I,,, so we can summarize the conditions on the polarization as follows
I =0; p'M,, =0; U, =0. (2.33)

The polarization tensor has d(d+1)/2 free parameters on which there are altogether
2d conditions, thus leaving d(d — 3)/2 physically distinct polarization states. This
number is zero (or negative) for d < 3. This is related to the fact that in d < 3
the Riemann tensor is zero when the Ricci tensor is zero. In four dimensions a
gravitational wave has two polarization states, that we now describe in more detail.

Let us consider a plane wave propagating in the z direction. The wave vector
has components p* = (p,0,0,p); we choose U* = (1,0,0,0). Then the conditions
imply that the polarization tensor has only two degrees of freedom that we
call ey and ey:

00 00

Oer ex O
In,, = 2.34
K Oex —e; 0 (2:34)

00 0 O
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The two free real parameters e; and ey are the amplitudes of the two polarization
states of the gravitational wave with four-momentum p*. A rotation by an angle
in the (z,y) plane, given by the Lorentz transformation

1 0 0 0
0 cosf sinf 0

Aty = 0 —sin® cosf 0
0 0 0 1
transforms the polarization tensor into another with the same form, but
e, = e cos26 — ey sin26 (2.35)
e, = e;sin26 + ey cos 20 | (2.36)
so that the combinations ey, = % (ex —iex) and ep = % (es+ + iex ) transform by
a phase:
e ey =epe 2 er — €y = epe®? . (2.37)

The coefficient in the exponent means that e;, and eg represent gravitational waves
with helicity +2.
The line element of the plane wave propagating in the z direction, with + po-

larization, amplitude e, and frequency ¢ is

ds? = —dt? + (1 + 2ey sin(p(z — t)))da? + (1 — 2ey sin(p(z — t)))dy® + dz* , (2.38)
thus the proper distance between two points with fixed coordinates (x, z) and the
distance between two points with fixed coordinates (y, z) oscillate in time with a
phase shift of m. Using we see that the polarization states e and ey are
equivalent up to a rotation by /4. A ring of freely falling particles is deformed
under the effect of such waves as shown in the following figure:

%

As is well-known, in GR it does not make sense to talk of the energy and
momentum of the gravitational field. In the linearized theory on Minkowski space,
there is no conceptual difficulty of this kind and we can define the energy-momentum
tensor of the Fierz-Pauli field. For a transverse traceless wave of the type described
above, it is

1
tn = 35Ot Ouh?” (2.39)
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Averaging out the oscillations of the field, one gets

k. k
t(TT) — B2V oy 2.4
nv 167TG 14 ( O)

2.1.4 Quantization

At the level of free fields, there is no difficulty in defining gravitons as the elemen-
tary quanta of the gravitational field and imagining a gravitational wave as being
composed of a large number of gravitons.

Starting from the plane wave solutions described in the preceding section, we
can Fourier expand

(@)=Y / dp (ap’anw(a)eipu”“ —&-a;’gﬂuy(o)*e_ip“x“) . (2.41)
o=L,R
where p denotes the space components of the momentum. We then promote the
Fourier coefficients ap (o) and their conjugates to quantum operators satisfying the
canonical commutation relations

[ap,o; apr o] =0
[aL7U,aL,7U,} =0 (2.42)

[ap,m aL’,a’} = i(gaa’é(p - p/) .

We can define a Fock space whose vacuum state is the unique Poincaré—invariant
state, satisfying

aps|0) =0 (2.43)

and where ap , and CLLU act as raising and lowering operators. For example, the

single-graviton states are defined by
af, 50) = [p, o) . (2.44)

Before proceeding with a discussion of graviton interactions, it will be a useful
(and sobering) exercise to estimate what it would take to detect such a particle.
We momentarily stop using the natural units A = ¢ = 1 for the rest of this section.
Classically the energy-momentum tensor of a particle at position Z(¢) and with
four-momentum p,, is

b (&, 8) = PP (@ — (1)

Thus for a large number of gravitons all with wave-vectors k,, contained in a volume,
the averaged-out energy-momentum tensor is

k“k"N

Ty = Ah
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where N is the number density of gravitons. Comparing with the formula (2.40|) for
the energy-momentum tensor of a gravitational wave we deduce that the number

density of gravitons is

UJC2

16mhG

Typical values of the frequency and amplitude for a gravitational wave such as the

one that has been recently observed [55] would be of the order of w = 10°Hz and
I~ 1072}, leading to N =~ 10™cm 3.

Considering how difficult it is to detect classical gravitational waves, this should

77" 11, . (2.45)

make it clear that the detection of a single graviton is way beyond our experimental
capabilities. This has led Freeman Dyson to actually question the usefulness of the
notion of graviton. Continuing along the line of the previous reasoning, the energy
density of the kind of wave discussed above is tgy ~ 10~ %erg/cm?. An individual
graviton cannot be contained in a volume smaller than (c/w)?, so its energy density
would be smaller than Aw?/c® ~ 107*7erg/cm3. So to detect a graviton, a detector
working on the same physical principles as LIGO would have to have a sensitivity
that is 1037 times higher.

Dyson and others [56] have considered several sources of gravitons and several
possible designs of graviton detectors and concluded that no design leads to anything
that looks remotely feasible, even in principle. At the moment, the most convinc-
ing evidence could come from the polarization of the cosmic microwave background
due to gravitational waves produced during inflation [57,[58], which is a quantum
mechanical phenomenon and would establish the existence of gravitons. This has
not been observed yet, but is not beyond the reach of the next generation of exper-
iments.

2.1.5 Spin projectors

In Minkowski space it is often convenient to split a field into irreducible representa-
tions of the rotation group, which correspond to degrees of freedom of different spin
J and parity P. For example a vector field A, can be split into a (d—1)-dimensional
representation with J* = 1~ and a one-dimensional representation with J* = 0%,
corresponding to the transverse and longitudinal components. In Fourier space,
they are obtained by acting with the projectors
_ P'p
=
where p,, is the momentum carried by the wave.

Similarly, a symmetric rank-two field ¢,, can be decomposed into four irre-
ducible representations of the rotation group. If we choose coordinates such that

"Dy

L
v p2

. wo o S
) TIJ_(SV_

: (2.46)

2, is in the direction of the momentum and xz;, ¢ = 1...d are transverse, then the
irreducible representations can be listed as follows:

° W—dimensional representation ET with J =2+
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e a (d — 1)-dimensional representation &; = ¢;zwith JZ =1~
e a one-dimensional representation w = ¢ with J* = 0%
e a one-dimensional representation s = ¢;; with J P =0t

T
pr
&, is transverse (L "¢, = 0).

The analogs of the L and T projectors are now four-index tensors denoted

where is transverse on both indices (L " 5VT = 0) and traceless, and the vector

plJaa) W‘lﬂ where J is the spin label and a serves to distinguish between differ-
ent representations with the same spin [59-61]. It has only one value for J = 1,2
and so need not be written in those cases, while for J = 0, a runs over the values
s, w. In addition to the projectors, there are two operators P(05%) and pO:ws)
intertwining between the spin-0 representations s and w.

Explicitly we have

g 1 leg a 1 a
P® 07 = S(IT] + TITE) — =TT’ (2.47)
o 1 e ag (o2 log
pPW o = (TALY + TILY + TY LG + T L) (2.48)
1
pOss)  po — T (2.49)
ploww) po =, LP7 (2.50)
1
pOsw) po — __— T [F7 2.51
Y (250
1
plows) po — ___— 1 TP 2.52
WS a—T (252
These operators satisfy the orthogonality relation
P(J,ab)uyaﬁP(K,cd)aBpa _ 5JK(SbCP(J’ad)w,pU , (253)
and the completeness
]3(2)Wp«7 + p(l)Wpo + p(O,SS)Wpo + p(07ww)ww = 1,7, (2.54)
where
1

is the identity in the space of symmetric tensors. Acting with these projectors we
can decompose

. 1 1
¢/.Ll/ = fi)ZVT =+ Z(p,ugu + pugu) + *T;ws + *L,uuw ; (256)

d d

where the first term is transverse and traceless, the second is traceless but not
transverse, the third is transverse but not traceless and the last is neither transverse

nor traceless.
Note that the projectors/intertwiners belonging to the same spin are conve-
niently arranged into a matrix, so for spin-0 we have
P(O) _ |:P(O,ss) P(O,su}) :|

P(O,ws) P(O,ww) (257)
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Any quadratic action for a symmetric rank-two tensor can be written as

d
5O = 5 [ G G 00" @y (a) (259)

where O is a differential operator. E| Since a symmetric rank-two tensor can be
decomposed in its irreducible components as described above, it follows that this
action can also be written as

1 dq
T2 Lgb/ (2m)d

where the dot stands for contraction of pairs of indices and a4, are matrices of

—q) - agsan) (@) P 670 (q) (2.59)

coefficient depending on momentum. These coeflicients can be computed by acting
with O p on the (diagonal) spin projectors P(’/¢%) and subsequently reexpressing
the result in terms of spin projectors and intertwiners.

This way of writing has several virtues. If the operator O is Lorentz covariant, it
does not mix irreducible representations of the rotation group with different values
of spin and parity. Therefore one achieves at least a partial diagonalization of the
kinetic operator, where mixing can only occur within degrees of freedom with the
same spin and parity (in our case, only between the spin-0 fields s and w). Second,
one can immediately see what are the propagating degrees of freedom and their
masses. Third, having partially diagonalized the problem, it is now easy to invert
the operator to obtain the propagators. In fact, the propagator is

> altan (@ P (2.60)
J,a,b

where a(_J%ab)(q) are the inverses of the coefficient matrices (for J = 1,2 these are
one-by-one matrices, i.e. simple functions of q)

Finally, the spin projectors can be used to disentangle the gauge degrees of free-
dom from the physical ones, at least at linear level. Before doing this for gravity, let
us first recall how it works for electromagnetism. The analog of the decomposition
is (for a Fourier component with wave-vector p,,)

Ay = Al +ipuo, (2.61)

where p* AT = 0. A generic gauge transformation with parameter e(z) = ée*Pu*"
only changes the longitudinal part of A, shifting ¢ — ¢ + €. However, J,¢ can also
be transverse: this happens if € is a solution of the equation §%¢ = 0. In Fourier
space, this means p?¢ = 0. This freedom can be used to set one component of
A, equal to zero, for example U*A,, = 0, for some vector U*. Then, the physical
states of the electromagnetic field are parametrized by the polarization vectors II,,
satisfying k*II,, = 0 and U*1I, = 0, i.e. d — 2 degrees of freedom per Fourier mode.

2As we shall discuss in section 3.4, an operator O acting on covariant symmetric tensors carries
indices 0,7 and in Eq. there is an implicit choice of a metric in the space of symmetric
tensors. Here and throughout this chapter we simply assume that indices are raised and lowered
with the Minkowski metric 1, .



December 7, 2020 17:48 World Scientific Book - 9.75in x 6.5in book page 24

24 Quantum Field Theory of Gravity

Also in the case of gravity, in order to understand the effect of gauge tranfor-
mations on the degrees of freedom hff , €, w and s we need to distinguish generic
gauge transformation for which i(p,€, + py€,) is longitudinal, from those for which
it is also transverse. In the former case

2) » o o
P;J,z/pcr (ppe +p €’

)
P;Sipo‘ (p €’ +pa€p) (p,uﬁu +pv€,u) QiL,uuppep y
P(ss) (p e +pa€p)

i

uvpot
i(p’e” +pU€p) = QZLWPpGP , (262)

P(ww

uvpo
showing that £, and w are gauge degrees of freedom. The spin-2 and s are invariant
under this class of transformations. In the latter case

e, +pu(pue”) =0 (2.63)

and one finds

21
p,uGV +pv€,u) mTuvppep )

/—\

i 2i
pPe’ +p7ef) = mTwppep ,

P i(pPe” 4+ p7eP) =0 . (2.64)

nvpo

(ss)
P;u/p(f

These transformations can be used to set s = 0 and to impose d — 1 additional
conditions U “(;SZ[;F = 0, bringing it to the standard form described in section 2.1.3.

This formalism is particularly useful when one deals with complicated kinetic
operators, such as the ones we will discuss in the next section. As a preliminary
exercise, let us see here how this works for the Pauli-Fierz operator . Going to
the momentum representation by the standard rule 9, — ip* it can be rewritten in
the form (round bracket around indices denoting symmetrization):

OHVPT — (_pQ) (1WW _ 77u(plLV\a) _ nV(p\LNIU) + Y LPT 4 T LM — nuvnpo)
then expanding each occurrence of the metric as n*¥ = L*¥ + TH" this becomes
OMrT — (—p?) <1xwmf _ pMupvpe _ p(ww)pvpo _ (d— 1)p(88)uvm)
and finally using the completeness relation one gets
017 — (—p?) (PO197 — (d = 2)Plie) (2.65)

This implies that the Pauli-Fierz action can be written in the form (2.59) with
coeflicient matrices

o (2.66)

A naive reading of this formula seems so imply that GR contains a spin-0 degree

_ 9)p2
ay = —p*, a1 =0, aoz{(d 2)p 0}

of freedom. However, as explained above, s can be eliminated by a residual gauge
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transformation and is not a physical degree of freedom. Still, we note that the s
degree of freedom has a kinetic term with the wrong sign. This is the same sign
that had been noticed in the end of section 2.1.1 for the trace of ¢,,. Insofar
as the corresponding degree of freedom does not propagate, it does not cause any
instability, but we shall encounter this issue in a different form when we discuss the
Euclidean version of the theory.

The coefficient matrices make it manifest that the kinetic operator of GR
is not invertible in the spin-1 and in the w sectors, this being a consequence of the
gauge invariance of the theory. To make the operator invertible one can add to the
Pauli-Fierz action

1

Srp =5 / A2, O"P° $ 0y (2.67)

a gauge fixing term

1
Scp = - /ddx n"'F,F, (2.68)
with
1

¥ =0, — 53% . (2.69)

Proceeding as before, this contributes to O#*?? the terms
2
2—1’ [2P(1) 4 (d—1)P6) 4 plww) /g 1(plw) 4 P(“’S))} . (2.70)
e
Putting together (2.65) and (2.70]), the kinetic operator in the gauge-fixed Pauli-

Fierz action is

1 ww
2| pe P 20(d=2) mdl _ VAL pisw) 4 ples)y P
a 2¢ 2a 2
(2.71)
whence we read off the coefficient matrices
, 1 ) 2a(d72)7d+1p2 \/dTlpz
az = —p°, ay = —(=p°), ag = P 20 . (2.72)
a —ip? 5= (—p?)

The propagator is then given by the sum of the inverses of the coefficient matrices,
multiplied by the respective projectors:

1
L@ 4 ap® (2.73)
P a1
d—2 d-2

2a0(d—2)—d+1
d—2

(P(SU))+P(HIS)>+ P(ww)
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2.2 Four derivative theories

2.2.1 Actions

The Fierz-Pauli equations are the relativistic field equation for a spin-2 particle
involving two derivatives. If one allows also more derivatives, other equations are
possible. Here we shall discuss the equations containing four derivatives. Instead
of trying to construct them from the bottom up in Minkowski space, we will obtain
them from the linearization of fully nonlinear equations. We start from the action
principle, which will be needed anyway in later chapters.

The Einstein field equations (possibly with a cosmological constant A), can be
derived from the Hilbert action

Su(g) = %/ddx lg|(—2A + R) , k=V8rG . (2.74)

(Here we are assuming d > 2, since in d = 2 this action is a topological invariant.)
Fourth order equations will be obtained from actions that contain four derivatives
of the metric. The most general diffeomorphism invariant action of this type is:

/ Az \/|g| [aR? + BRu R" + YRypo R + TV?R] (2.75)

where V is the Levi-Civita connection, R, ,, the Riemann tensor and «, 3, v, T
are arbitrary couplings. The last term is a total derivative, and we shall mostly
ignore it.

There is some arbitrariness in the choice of the basis of invariants entering the
action. The basis of invariants used in will be referred to as the “Riemann
basis”. Let us discuss two alternative choices.

The Weyl tensor is the tracefree part of the Riemann tensor:

1

C;Lupa = R;Lupa - m(gupRuo - g,uaRup - gl/pR,uo + guaR;Lp)
1
— R vo — QuoJup) - 2.76
+(d—1)(d—2) (gupg 9u gp) ( )
and one has
4 2
Hvpo _ uvpo Qv 2 2

CrvpeC R0 R T3 2RWR + 7“[ (- 2)R . (2.77)

Another significant combination of curvature terms is
E =R, R — AR, R" + R* . (2.78)

In three dimensions the Weyl tensor is identically zero and then from Eq. one
deduces that also £ = 0. In four dimensions F is locally a total derivative. This fact
is proven in section 2.4. Thus in four dimensions only two linear combinations of the
terms in have local effects. It is then obviously useful to have E as one of the
independent combinations of curvatures. There are two particularly useful choices
for the remaining two invariants. The first choice is to use to eliminate the
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square of the Riemann tensor in favor of the squares of the Ricci tensor and Ricci
scalar:

/ddx |lg| [a1 R R* + asR* + a3E] | (2.79)

We will call this the “Ricci basis”. The relation between the couplings is
a=as+as; B =ay —4as ; y=as, (2.80)
or conversely
m=F+4y;  a=a-vy; az=r. (2.81)
The second choice is to further replace the square of the Ricci tensor by the square
of the Weyl tensor. This can be achieved by use of the identity
d—3

d
prpo _ w7 p2
ChupoC E+— (4RWR R ) : (2.82)

which can be obtained substituting (2.78)) in (2.77)). Then we can rewrite (2.75]) in

the physically more significant form
1 1 1
da’ —ClpeC*P° + —R* - ~E| . 2.83
[ @ V| g5 CuunrCrr + 51 - <] (2.59)

We call this the “Weyl basis”. In four dimensions only the first two terms in ([2.79))
and (2.83)) affect the equations of motion. Also we note that in four dimensions the
Weyl squared term has the property of being invariant under Weyl transformations:

g () = 92(x)gﬂy(x) . (2.84)

Thus in four dimensions the only term in the Weyl basis that is not Weyl invariant
is the R? term. From (2.82)) we see that in four dimensions the Weyl term is equal,
modulo total derivatives, to the combination 2R,,, R*" — %RQ, so the action 1'

is Weyl-invariant when a1 = —3as.
The relations between the couplings in (2.75) and (2.83) are
2(d—3 4(d—3 4(d—-1
Ao 2d=8) o 4d-3) (d—1) . (2.85)
(d—2)(B+4v) (d—2)B + 4y 4(d — 1)+ dB + 4y
or conversely
1 1 1 4 2 1 1
o B=c- o C =4 (286
e @y P @y Tt

Note that in d = 3, C? and E both vanish identically and the form (2.83)) is not
appropriate. The couplings A, p and £ have mass dimension 4 — d. In dimensions
higher than three, it is customary to define the dimensionless combinations

C(d= DA A

0=~ . .
g P (2.87)
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2.2.2 Linearized equations

In this section we shall assume that the cosmological constant is zero. The action
consisting of the Hilbert term (2.74]) and the four-derivative terms (2.75]) gives rise
to the following equations of motion:

1 1
53 (RW - 2ng~2> +aE() + BEQ) +4EG) =0, (2.88)
where
1
B{Y) = 2Ry, — 2V, Y, R + g0, (20R — 5R?),
1
E2) = 2R,\R) — 2V V(,Ry)x + OR,, + 5(DR — Ry RP) gy,
1
ES’,) = QRM;)\URVP/\U + 4V(pV>\)R#py)\ - igm,Rpg,\TRp‘”\T. (2.89)
and O = 92.
When linearized |°| they have the form ZIC,waghO‘B = 0, where

1 p
Iclwaﬂ = <8I<;2 + <4 + 7) D) (nuanuﬁm - nuﬂauaoe - nuﬁauaa)

1
+ (8I€2 B (a + i) D) (na68“6V + 77/“’80585 - UWTIaBD)

+ (a + g + 7) 0,0,0,03 . (2.90)

It is more useful to rewrite this operator using the spin projectors. Using the

identities ([2.54) and
Mg = (d = )P + VA= (Pl + PGy ) + P

pro pvof pvaf

M 00D + a0y = [2PN) + VA= 1 (P + P )| O

_ [pw (ww)
Muladv) 08 + (| 5Ol) O = [ng + 2Pmﬁ} .

00,0205 = PLut)0? (2.91)

we can rewrite it in the form
@) 1 B (s5) d—2 dp B
PMVQ5<8,£2+(4+’7)D>D+PHVO&5<_ Q52 + (d—l)a+z+’y O|10d=

1 d—3 (s5) d—2 d-1

—+———0 )0+ P — —0O) 0. 2.92
<8m2+2(d—2))\ ) * lmﬁ< sz g ) (2:92)
In the last step we passed to the Weyl basis. These forms reveal several important
facts. First we notice that, just like in the case of GR, only the projectors P and

P() appear. Thus clearly the field operator is not invertible in the P(!) and P(®w)
sectors. This is again the effect of the gauge invariance of the action. Furthermore,

3for this calculation one can use the general formulae given in section 3.4, see also section 7.4.1.
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the field components that appear are the gauge-invariant ones (modulo harmonic
gauge transformations, as we have seen in the preceding section). This neat separa-
tion between the gauge-invariant and the gauge degrees of freedom happens because
we are on-shell: We are expanding around Minkowski space, which is a solution of
the field equations only when the cosmological constant is zero. Using the Weyl
basis reveals that only the Weyl-squared term contributes to the propagation of the
spin-2 mode, and only the R2? term contributes to the propagation of the spin-0
mode.

Let us now restrict ourselves to four dimensions, where the higher-derivative
couplings are dimensionless. In this case we see from the first line of that for
B8 = —4a = —4~ the four-derivative terms do not contribute to the propagator at
all. This was to be expected, since this particular combination corresponds to the
Euler topological invariant. Using we write % = m%. Then (2.92) becomes

(2) 1 1 2 (ss) 3 1 2
Pyuaﬁa <D+2/\mP) D+P/,LVQBE 0- Eme U (293)

Writing a propagator for the theory requires that we fix the gauge. However,
the propagator of the spin-2 degrees of freedom and of the scalar s can be studied
without gauge fixing. In momentum space the spin-2 propagator can be decomposed

CSEE L) 294

pt—iamip? mi \—p?>  —p2+Lmi

in two fractions

We see that the theory contains two spin-2 degrees of freedom: a massless spin-2

particle that can be identified with the ordinary graviton, but also a massive spin-2

particle, which is either a tachyon (when A > 0) or a massive ghost (when A < 0).

In both cases this is a pathology. We will return to this issue in section 4.3.
Likewise in the spin-0 sector the propagator can be written

% -5 (—12 + 2112> (2.95)
p*+ ﬁfmpp mp —-p —p° — Tgfmp
The first term is a massless particle with negative residue at the pole: a ghost.
This, however, is the same as the spin-0 particle in GR and, as we have discussed in
section 2.1.5, does not propagate. There remains a physical massive particle with
the correct sign for the propagator. To avoid tachyonic propagation, one must have
&> 0.

From this type of reasoning one can also deduce that the four-derivative terms
are completely negligible at ordinary scales. This can be seen by asking what
experimental bound there is on the coefficients o and 3. We discuss 8 but obviously
the same holds for .. From the fact that general relativity works well at large scales,
comparing the different terms in the action, written in momentum space, one gets
that Bp* < m%p? or equivalently 8 < m%/p?. The strongest bound comes from
the highest momenta. Newton’s law has been tested down to distances of the order
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of a millimeter, which corresponds to momenta p of the order of the milli-eV. Using
that the Planck mass is of the order of 10?%eV, we get 8 <«10%2, which is not much
of a bound. Said differently, it would take an enormous coefficient for the higher
derivative terms to become relevant at the macroscopic scales at which we have some
experience of gravity. (Note that if 3 was so large, the mass of the ghost would also
be correspondingly lowered and the issue would become much more urgent.)

2.3 Power counting

The interactions of gravitons are obtained by expanding the action in powers of the
graviton field h. For the Hilbert action we can write schematically

S = ﬁ/d% [—é(&h)Q (OB + R @R+ .| | (2.96)

and we recall that kK = V87 G. In this section we will systematically ignore all index
structures and numerical factors of order unity.

For the sake of a perturbative treatment it is desirable to canonically normalize
the field. To this end we absorb a factor 2k in the definition of &, as in . Then
the action becomes

S = /d% [—;(%)2 + Kk ¢(09)* + K22 (00)* + ... | . (2.97)

We see that there are infinitely many interaction terms. This is due to the non-
polynomial nature of the Hilbert action. All interactions contain exactly two deriva-
tives and are proportional to powers of x according to the number of legs on the
vertex.

Consider a one-loop diagram with E external legs and let us begin by assuming
for simplicity that all vertices are three—point vertices. See for example Fig. ,
where £ = 5. Then the diagram also has F vertices and E internal propagators. Let
q be the momentum in the loop. Each propagator contributes a power 1/(—¢?) and
each vertex contributes a factor x times two powers of momenta. These momenta
could be either external momenta p*, or the loop momentum ¢*. The highest
divergence occurs when all momenta in the vertices belong to the internal lines,
because in this case each vertex contributes a factor (¢ + p)? to the numerator of
the integrand, where p is some combination of external momenta. Altogether the
powers of g from vertices and propagators cancel out, and we conclude that the
diagram diverges at worst as A?JV, where Ayy is a momentum cutoff.

Now consider a diagram with the same number of external legs, but suppose
that two three-point vertices are replaced by a four-point vertex, as in Fig. .
Relative to the previous diagram, there is one less vertex and one less internal
propagator. The overall power of xk will be the same, however, because two powers
of k from the three-vertices will be replaced by one power of k2 from the new four-
vertex. Also the powers of momenta in the integral will still cancel out so that the
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degree of divergence will be the same. By considering more general cases one can
easily see that the superficial degree of divergence of a one-loop diagram is A?JV
independent of the type of vertices that enter in the diagram.

Now suppose we add an internal line ending at two three—point vertices, as in
Fig. . We have a new momentum integration with a momentum ¢’, two new
vertices and three new internal propagators. This changes the divergence by a factor
AdU}/Q. If one of the ends of the new internal line ended at one of the pre-existing
vertices, there would be only one new vertex and two new internal propagators,
and if both ends of the new line ended on pre-existing vertices, there would be only
one new internal line. In each case the degree of divergence changes by the same
amount.

e

Fig. 2.1 Fig. 2.2

.

Fig. 2.3 Fig. 2.4

4

Fig. 2.5 Fig. 2.6

Each further loop produces a factor AdU_V2 (see e.g. the diagrams in Figs. 1 ,
(12.5)), (2.6)), so that at L loops the degree of divergence is

AFHE=DE=2) (2.98)

These are all special cases of the following general rule: the degree of divergence
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of a diagram with L loops, I internal lines and V vertices is dL + 2V — 21, so using
the topological relation L =1+ I — V one finds .

Equation shows that the degree of divergence in Einstein’s theory does not
depend on L when d = 2, so in this case the theory is power-counting renormalizable.
In fact in two dimensions the Hilbert action is topological. In four dimensions the
degree of divergence increases with the number of loops. The highest divergence is
always proportional to the operator of lowest dimension, which is the cosmological
term, but at a given loop order, there can be a finite number of lower divergences
proportional to higher-dimension operators. For example, from dimensional analysis
we see that at one loop the cosmological term has a quartic divergence, the Hilbert
term has a quadratic divergence and terms of the form can be logarithmically
divergent. At two loops the cosmological term has a sixth-power divergence, the
Hilbert term has a quartic divergence, terms of the form can be quadratically
divergent and the logarithmic divergence involves new terms with six derivatives,
e.g. three powers of curvature. The increase in the degree of divergence with the
number of loops implies that there will also be divergences proportional to operators
of higher dimension, signalling that the theory is non-renormalizable.

Of course, this argument only lists the divergences that can occur at a certain
loop order. Some other reason may prevent the divergence from actually appearing
and the theory may be better behaved than expected. For this reason, actual
calculations are needed to verify that the expected divergences actually occur. We
will discuss these calculations for gravity in chapter 3.

Let us consider instead the theories of gravity that we discussed in section 2.2.
As in it is convenient to write the coupling in the form 1/A. This time one
rescales the field with v/, and the action can be expanded as

§— / d'a [(Oh)? + VAR(OR)? + M2(Th)? + . | (2.99)

which shows that the perturbative coupling is v/A. The propagator is then of order
1/q* and the vertices are also of order ¢*. Repeating the preceding reasonings, one
finds that the superficial degree of divergence of a diagram with L loops is

d+(L—-1)(d—
AGHE=D(E@=4) (2.100)

Note that if the Hilbert term was also present, it would only contribute subleading
terms both to propagator and vertices, so the counting would not change. In four
dimensions the degree of divergence does not increase with loop order, so that the
theory is renormalizable.

One could proceed further and consider theories with still higher derivatives.
In four dimensions, a theory with six or more derivatives is power-counting su-
perrenormalizable [62]. Theories with infinitely many derivatives have a chance of
being renormalizable and ghost-free. We shall mention this briefly again in section
4.3.
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2.4 Appendix: Topological invariants

In this section we restrict ourselves to four dimensions. Let *R and R* be the dual
of the Riemann tensor as a two-form or in the Lie algebra:

“Ruvpo = %npyaBRaﬁpo‘ ; R = %npngW"ﬁ (2.101)
where 1,p0 = \/EGWM, nHvre = ﬁeuvm and €,,,, is the Kronecker symbol
(a tensor density) with numerical values +1 or 0 according to the parity of the
permutation pvpo. (For the Riemann tensor these two operations are really the
same due to the identity R,,,c = Rjouv, but for a generic metric connection they
are conceptually distinct.) The quantity *R* is the “double dual”:

1

* % aB~S
Ruupa’ = znuua,ﬁ’npo'y&R s (2102)

If the manifold is compact and without boundary the two quantities

1 4 * DUV PO
T= 1602 /d /9| Rpuvpo"R*P (2.103)

]- * D XUV PO
X= 33 /d4x\/|g|pro R*HvP (2.104)

are integral topological invariants, called the Hirzebruch signature and the Euler
number. (In particular, the Euler number is equal to the alternating sign of the
Betti numbers: y = bg—b1+ba—bs+bs.) Locally, the integrands in these expressions
can be written as total derivatives.

We will prove here a weaker consequence of these statements, namely we will
show by a direct calculation that y is invariant under infinitesimal variations of the
metric, up to surface terms. The proof requires that all dependence on the metric
be made explicit. Thus we rewrite the tensors 7 in terms of € and further recall that
the curvature tensor is originally defined with three covariant and one contravariant
index:

1
T 12872

1
Y / d4£L' g| euypoeaﬁryéga)\gfy'rR,uy)\ﬁRpoTJ

There are thus three explicit dependences on the metric, plus the dependence
through the curvature of the Levi-Civita connection. The variation gives:

1 1 1.1
oy = —— | d*s —— | == g5, """ €*P R 0 s Rpo
Y 12871—2/ x\/?'l 29 grr€ € uvaBilpoys
+26“”"”€a5759a,\gw(VM(SF:/AB — VU(SFMAB)RPUNS

+26W””ea’8756ga>\gwa’\@RPUT(; (2.105)
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We can now rewrite all terms as contractions of tensors:

1 4 / 1 A wvpo, afyo
6X: m/d z |g| l_269 /\77’ s n v RuVaBRpo'y6

+477;wpona[3'y6vﬂ(spyaﬁRpU’yé +2 nuuponaﬂvéégaeRﬂyeﬁRpg,yé . (2.106)

Using that a totally antisymmetric tensor with five indices in four dimensions is
zero, we have

naﬁ'yéé'gae — neﬁ'y&(sgo(a + nae'y(s(sgaﬁ + naﬁeéaga’y + naﬁ’ye(;ga(s

Each of the last three terms on the r.h.s. gives the same contribution as the Lh.s.,
so altogether

vpo o € 1 a, pvpo, €
277M ’ n 57559(1 R;u/eﬂRpa'yé = 2169(1 77” p n BW&RyusﬁRpa"y&

So the first and the last terms in exactly cancel. The second term can be
integrated by parts. Using that Vn = 0, and the Bianchi identity, it reduces to a
total derivative, Q.E.D.

Now let us write the Euler invariant as

1 —
= 1287T2 /d4x |g|euypaeaﬁ’v5RlWaBRﬂf7W6 :

We can use the identity

X

€ s = AL0[15T, 67 67

and contract all the indices in the two curvature tensors with the Kronecker tensors.
The contractions can give terms proportional to the square of the Riemann tensor,
the square of the Ricci tensor and the square of the Ricci scalar. Counting each
type of term gives

1
3272

X /d4x 9] [Ryuvpe R*P7 — 4R, R" + R?] = é/d‘% lg|E .
(2.107)
showing that F is the integrand of the Euler invariant.

It is worth stressing the difference between a total derivative term such as V2R,
and E. Both are of the form V,0* but whereas in the former Q* = V# R is a globally
defined vectorfield, in the case of the latter 2* may not be globally defined. This
happens when the tangent bundle is nontrivial and has to be described by different
charts. The vectorfield Q* is well-defined in each bundle chart, but if one tries to
extend it over the whole manifold one will encounter singularities, analogous to the
Dirac string in the case of the magnetic monopole.
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Chapter 3

Failure of renormalizability

The main goal of this chapter is to calculate the one-loop divergences in Einstein’s
theory. This requires a number of technical steps. By using the background field
method, the calculation can be reduced to the case of a spin-2 quantum field prop-
agating in an external non-dynamical gravitational field. We review a very general
method to compute the divergent part of the one-loop effective action in any Eu-
clidean QFT, based on the early time asymptotic expansion of the heat kernel. In
Minkowskian signature, this is known as the Schwinger-DeWitt method [63H65].
As a warmup we apply this method to scalar and gauge theories, then we come to
gravity. In order not to interrupt the flow of the arguments, some necessary results
on the heat kernel are left to Appendix 3.7.

3.1 Divergences in curved spacetime: scalar field

Quantum field theories in Minkowski space generally exhibit divergences. For ex-
ample, in the case of ¢* theory, the effective potential has a quartic divergence
that is field-independent and represents the vacuum energy density of the field, a
quadratic divergence that renormalizes the mass and a logarithmic divergence that
renormalizes the quartic self-coupling. Suppose we replace the flat metric by some
fixed curved metric. At distance scales much smaller than the typical curvature
radius, spacetime will look approximately flat. Since the ultraviolet divergences
are manifestations of quantum fluctuations with very short wavelenghts, they are
only sensitive to the local structure of spacetime and therefore we expect all the
divergences that occur in a quantum field theory in Minkowski space also to occur,
essentially unaltered, in a curved space. On the other hand, the curvature tensor
defines a new mass scale and one expects new divergent terms proportional to pow-
ers of curvature to appear in the effective action. For example, dimensional analysis
would permit a term RA? along with the term ¢?A2, and a term R? log <ﬁ—§) along
with the term ¢*log 2—;) We will analyze here the origin of these new types of

divergences. Since they are due to the interaction of the field with the background

35
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metric, it will be sufficient to consider initially fields that are minimally coupled to
the metric and to neglect their self-interactions. The effective action of such fields
is given by Gaussian functional integrals.

3.1.1 The FEuclidean functional integral

We begin by considering a real scalar field ¢ propagating on a manifold M with a
fixed external metric g,,. We keep the spacetime dimension d arbitrary for now.
The action is

1 1%
S(oi9) =~ [ d'ov/lglg" 8,00, (3.1)
and the functional integral, in the presence of a source coupled linearly to ¢, is
(d¢)ei(5(¢;g)+f d*az+/9li) ) (3.2)

To make the functional integral better defined one performs a Wick rotation.
We shall follow here the standard flat space procedure of continuing time in the
complex plane. For this we will assume that spacetime is globally static with a

metric of the form
goo 0
= 3.3
where gog < 0. We shall discuss in section 5.2 a more general procedure. We define
t = —itg, then

i8(6:9) = i3 [ dta' o /gl [9"(010)* - g0,0030]

_ %/dt};dd_lx 191 [9%°(0e0)* — 970:00;6] = —SE(d;98) (34)

where )
Se(oigr) = 5 [ d'orE 91 0,00,0 (35)
and
—4goo 0
(9B) = < ) (3.6)
E)H 0 Gij

is a positive definite metric on an analytically continued manifold Mg. Similarly

i/dtdd—lxmj'qs = /dde\/gT;qu, (3.7)
We shall henceforth always work on the Euclidean manifold and drop the subscripts
E. We will assume that the boundary conditions on the fields are such that it is
possible to perform integrations by parts without having any boundary terms left.
This is possible e.g. if M is compact and without boundary. With an integration
by parts the action can be rewritten in the form

1
S(di9) =15 / d'a\/g P0G, (38)
where A = —V,,V# is the covariant Laplacian and the partition function is
Z(j:g) = eW3s9) — /(d¢)e_s(¢;9)+f d'z/gjé (3.9)

The functional W is the generating functional of connected Green’s functions.
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3.1.2 Functional determinant

We begin by analyzing the functional W (0,g). It is not possible to use Fourier
analysis in curved space. Instead, one can use the spectral decomposition of the
operator A:

with eigenvalues \,, and eigenfunctions ¢,. It is convenient to assume that M is
compact and without boundary, in which case the spectrum is discrete. Then n is
an integer; each value of n labels a single eigenfunction and different values of n
could correspond to the same eigenvalue. The operator —V? acting on scalars on
a compact manifold has an eigenvalue zero with eigenfunction ¢y =constant. As
will become clear shortly, this mode would give rise to an undamped integral and
consequently to a divergent partition function. For this reason it has to be treated
separately. One can avoid this issue by adding a small mass term.

We take the eigenfunctions to be dimensionless and orthonormal with respect
to the natural inner product on C*°(M):

6y ) = 1 /M 0U2/G () () = b

where p is a constant with the dimension of mass. The eigenfunctions form a basis
in the space of functions on M, so we can decompose the field ¢ as

6(2) = 3 anén(a) .

This is the analog of the Fourier decomposition of the field in flat spacetime. Here
the coefficients a,, have the same dimension as ¢. The Euclidean action then be-
comes

1 1 o
S(¢:9) = Tudz)\nai = §Z>\nai 5
n n

where we defined dimensionless quantities a,, = a,/ ud/ -1 :\n =X/ uz. The path
integral measure can be written formally

da,

(dg) = N'1I

where A is an infinite, field-independent, dimensionless normalization factor such
that the Gaussian normalization condition holds:

u? .
1= /(dqs)e—dedlﬁ‘V . (3.11)
Explicitly this condition gives

1=NTI, </daneé&i> = NTL,V27 . (3.12)
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Then the path integral at zero source is seen to formally correspond to a functional

determinant:
. — W(O§g) — P 7l5‘n&2, — 2£ — A 71/2
Z(0;9) =e = NI, daye= 2% | = NI, )= (detA) ,
(3.13)
where A = A/p?.
If we take into account the nontrivial source term as in (3.9)), we find
Z(j;q9) = (detA)_l/Qe% JdleainTti (3.14)
Now we define the expectation value of the field in the presence of the source j as
ow
() =(d); = —— , 3.15
0s(®) = (¢ = 5 (315)
where ¢ is a c-number field, and the connected two point function
Glo.1); = (B(@)o) — (D) B = T — (3.16)
e 0§ (x)dj(y) '

The relation between the source j and the classical field ¢ in (3.15]) can be inverted.
We denote j, the source that is required to produce an expectation value ¢. The
effective action is a functional of ¢ that is defined via a Legendre transform:

L(e;9) = =W (jp; 9) +/dd$\/§j¢</>- (3.17)
For the Gaussian integral (3.14), j, = A, so we arrive at
1 1 ~
T(p;9) = 3 /ddx\/ggoAgo + 3 Trlog A . (3.18)

The first term is the classical action for ¢. Note that for ¢ = 0 the effective action
can be defined more directly without going through the Legendre transform

1 ~
I'(g)=T(0;9) = —logZ = 3 Trlog A . (3.19)

This functional is obviously ill-defined. We will now try to understand its properties.

3.1.3 Zeta function regularization

One way of making sense of the trace
1 - 1 ~
5 TrlogA = §znjlog)\n (3.20)

is zeta function regularization |[66-68]. In analogy to the definition of Riemann’s
o 5. we define a zeta function of the operator A by

zeta function Cr(s) = >, ;n~
Cals) =D A", (3.21)
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where ), are the dimensionless eigenvalues. (In this notation, degenerate eigenval-

ues have to be counted separately; otherwise, each different term in the sum would
have to be weighted by the multiplicity of the eigenvalue.) Using log z = — %z‘s
s=0
we have

1d

o = —§£CA(S) a0 . (322)

1 T N
“TrlogA = —= § L5
g 108 227;615%

A theorem of Weyl says that the number of eigenvalues that are less than x grows
like %2 for large z, so for large n the sum in the zeta function can be replaced by
[ d 217 |I| Therefore, the zeta function is convergent for Re(s) > d/2 and can
be defined on the whole complex plane by analytic continuation. In this way one
obtains a finite value for the effective action.

As an example of such a procedure we consider the partition function of the
scalar field ¢ at temperature T in a large cubic box of side L and volume V = L3,
The goal is to establish the dependence on the temperature and volume. This
is obtained by imposing on the field periodicity in Euclidean time with period
B = 1/T and Dirichlet conditions on the boundary of the box. With these boundary
conditions the eigenvalues of the Laplacian are

B

In the limit, L > 3, the Dirichlet condition can be replaced by periodicity in space
with period L. Then the density of eigenvalues is p = % f dk for n > 0 and half
that for n = 0. The zeta function is

00 oo 0o 2 -
Cals) = g;‘;,) /0 dkk2*25+22/0 dkk? ((22”) +k2> (3.23)
n=1

The first term is independent of 3 and therefore uninteresting. Integrating by parts,

2
) -
)‘n12:<7m> —|—k2, forn=—-00,...,0,...,00 .

the second integral becomes

1 o 2mn\ 2
— dk | | = k?
2542 /0 (( 153 ) + )
When Re(s) > 2, this is infrared divergent. It can be regulated by putting an IR
cutoff ¢ at the lower end of integration. When analytically continued to s — 0 this

—s+1

contribution can be neglected. Defining k = 2”7" sinh y, the zeta function becomes
Y A A e | o
N —— — —_— d hy)3=2 .

10ne can also arrive at this heuristically by arguing that at short distances the spectrum of
the Laplacian is the same as the spectrum of the flat Laplacian, so that the spectral sum can be
approximated by f dpp?=1, and then making the change of variables A = p?.
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The integral over y is equal to

I(s—3 . .
@ F((i_i)) and the sum over n yields a Riemann zeta

function:

8rV [2m\* % VT (s—3)
~—— (2 25 —3)X- 2/
als)~ — 5 ( 3 ) P LS al v Py
The logarithm of the partition function at zero field is
1 w2V
- T= = 73 .24
W SCA0) =" (324)

From this, using standard thermodynamic relations (with Boltzmann’s constant set
equal to one), one can obtain the energy, pressure and entropy of the radiation:

dW 2V
1dw 2
2 2
S=BE+W = Z5VT3 . (3.27)

This procedure has reproduced the correct dependence of the partition function
on the volume and on the temperature. Note that zeta function regularization is
actually a renormalization procedure: it automatically discards infinities and yields
finite results. For us, it is more interesting to understand what divergences were
present, and to study their dependence on the metric. For this we need to make a
little digression to discuss the heat kernel and some of its properties.

3.1.4 The heat kernel

Consider the “heat equation” for the covariant Laplacian A
dv

AT = 2
-+ 0. (3.28)

It describes a diffusion process on the manifold M with metric g, occurring in an
external “time” t. E| The heat kernel Ka(x,y;t) for the operator A is a function on
M x M x R satisfying the heat equation with the initial condition

Note that ¢ has dimension of length squared and KA has dimension of inverse
volume. Given ¥ at the initial time ¢t = 0, the solution of the heat equation is

given at any later time by ¥(z,t) = [ dy\/g(y)Ka(z y, 0). The heat kernel
can be written formally as KA(.,.,t) = tA, Using it has the spectral
decomposition

(z,y;t) Zd)n bn(y)e (3.30)

2The original heat equation describes the diffusion of heat in a conducting medium. In this case
M is three-dimensional Euclidean space, A is the ordinary Laplacian and it has a prefactor k/(cp),
where k is thermal conductivity, ¢ is specific heat, p is density, and ¢ is ordinary time.
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We shall be particularly interested in the trace of the heat kernel, which is the
dimensionless function

TrKa(t) = /ddx\/ﬁKA(x,x;t) = Ze*“‘" . (3.31)

In flat d—dimensional space the heat kernel can be easily calculated using Fourier
analysis. In this case we denote the coordinates by d-dimensional vectors, e.g.
Z. The Fourier transform of K on the first coordinate is a function K (q,7;t)
satisfying the equation

d

am(qﬁ §:t) + *Ka(q,4;t) = 0.

with the initial condition

. . > —_ = — 2 3T . . . .
The solution is Ka(q, 7;t) = e~4 '=%'¥. The inverse Fourier transform is a Gaussian
integral:

dq 2 e (F i 1 i
7 t) = —Ct+ig(F-y) — _ — = 3.32
Ka(7,5;t) = / (27r)de (47rt)d/26 i (3.32)

Therefore, in flat space the trace of the heat kernel is

TrKA(t) = WVW , (3.33)
where V' is the (infinite) volume.

Let us return to a general curved manifold. Since every manifold looks locally
like Euclidean space, in the limit ¢ — 0 the trace of the heat kernel must reduce
to the form it has in flat space, Eq. . The deviations from this form must
be proportional to the deviation of the metric from flatness, which is measured by
curvature invariants. One is led to expect that the trace of the heat kernel has, for
t — 0, an asymptotic expansion of the form

TeKa(t) ~ W [Bo(A) + tBa(A) + £2By(A) +...] (3.34)

where
B, (A) = / d*x\/gb,(A) (3.35)

and b, (A) are scalars constructed from the curvature and its covariant derivatives.
For dimensional reasons, b, (A) must contain n derivatives of the metric. Thus the
coefficient bs must be proportional to R, by must be a combination of the invariants
RyvpoRuvpo, RuvRuv, R? and V2R, and so on. There remains to determine the
numerical coefficients. The calculation of the heat kernel expansion coefficients is a
well-developed field of mathematics and many results can be found in the literature.
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In order not to break the line of reasoning some results will be derived in section
3.7. Here we just report the result for the first three coefficients:

1
bh=1: b=cR: (3.36)

1 vpo v 5
b4 = @ (Ryypo'RH po R#VRH + §R2 + GVHV“R>

The zeta function is related to the heat kernel by an integral transform. Using
the integral representation of the gamma function I'(s) = fooo dtt*~'e~* changing

variable ¢t = A\t we find .
A= —— [ dttsle™M .
T (s) / ‘

Inserting into (3.21) and using (3.31) we find that the zeta function is related to
the trace of the heat kernel by a Mellin transform:

Ca(s) = %8) /O h dtt* T TrKa(t) . (3.37)
1
)

For s — 0 we have 7 ~ s+ 52 4+ ... where v is the Euler-Mascheroni constant.
Then, inserting (3.37)) in (3.22) and ignoring that the integrals are divergent we
obtain the formal expression for the effective action

I'(g) = —% /Ooo dtt ' TrKa(t) . (3.38)

As mentioned earlier, small ¢ corresponds to short distances, so in the integral
the lower end of the integration range corresponds to the UV, while the upper
end corresponds to the IR. (This is also clear from the fact that the dimension
of ¢ is inverse squared length.) To exhibit the ultraviolet divergences we choose
an ultraviolet cutoff Ay and a finite reference mass u < Ayy, and we split the
ultraviolet-regulated integral into | 1O/OA$J = 11/ Xg . + flo/ouz. For t — oo the trace of
the heat kernel is dominated by the smallest eigenvalue; if A does not have negative
or zero eigenvalues, TrK(t) ~ e **1, so the second piece is convergent. In the
first piece we can use the asymptotic expansion ; the first three terms of the
asymptotic expansion will give rise to divergences at the low end of the integration.

The divergent part of the effective action is then
11 e ey .
T(g)=—>— [ d a [t g+ F by 4 | (339
(9) 2(47T)d/2/ NG e 1 0+t Zbo+. .+t b+ (3.39)

L1 /dd NG} A%Vb - AdUiV2b +...+1lo A%)Wb + finite terms
=== 1n1 T1X)
2(amyd | VI g T &2

As anticipated, we find divergent terms proportional to integrals of curvature. The

first term is proportional to the vacuum energy and can be absorbed in a renor-
malization of the cosmological constant. The second term is proportional to the
Einstein-Hilbert action and can be absorbed in a renormalization of Newton’s con-
stant. The third term contains four derivatives and leads to renormalizations of the
coefficients of the terms in the action that are of second order in the curvature. In
the zeta function method all these divergences are automatically eliminated in the
analytic continuation procedure by the addition of counterterms.
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3.2 Generalizations

We have used the heat kernel to calculate the divergences of a quantum scalar field
in an external metric. The same method can be applied to calculate the one-loop
divergences in any QFT, not just in a gravitational context. Before applying it to
quantum gravity, we shall further acquaint ourselves with this method by calculating
the one-loop divergences in the effective potential of a scalar field in flat space and
the one-loop divergences of a Yang-Mills theory in flat space.

Besides their didactical value, these calculations will serve the purpose of intro-
ducing other pieces in the heat kernel coefficients, all of which will be needed in the
application to quantum gravity. Let us state first the general result.

3.2.1 The master formula

Let ¥ be a quantum field carrying both spacetime and internal indices. Geometri-
cally, it should be thought of in the following terms. There is a metric g on spacetime
of signature (p, ¢) that defines a bundle of orthonormal frames OM; there is also a
principal G-bundle P over M with a connection A. At this level g and A can be
though of as fixed external fields, or as background fields. The field ¢ has a given
spin, i.e. it carries a representation o of the “Lorentz” group SO(p, ¢). It also trans-
forms under GG in some representation p. Then v should be thought of as a section
of the vectorbundle S ® V', where S is associated to OM by the representation o
and V is associated to P by the representation p. All the fields that are of interest
in particle physics fall in this very broad class.

The metric g defines a unique torsion-free connection I" in OM called the Levi-
Civita connection. It can be used to define the covariant derivative of sections of S.
The connection A can be used to define the covariant derivative of sections of V.
We will denote V the tensor product of these connections in S ® V. To make this
more explicit, let 8, = 0,0, be a local field of orthonormal frames on M and e; a
local field of frames in V. We use A, B, ... for the indices in the space carrying the
representation o. For example if ¢ is a spinor representation, A are spinor indices;
if o is a vector (fundamental) representation, A = a; if o is a spin-2 representation,
A = (a,b), symmetric in (a,b) and so on. The field ¢ has components 9% and its
covariant derivative is

Dby = 0y + It oap a® s + A 107 (3.40)
where o4, (antisymmetric in (a, b)) are the generators of SO(p, q) in the represen-
tation o and p,,’; are the generators of G in the representation p (m is an index
in the Lie algebra of G). One can then define the covariant Laplacian, mapping
sections of S ® V' to sections of the same bundle, by

-9""D,D, (3.41)
We assume that the action of the field ¢ is
1

2
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where G(v,¢") fdfo ¢g¢g is a local inner product of sections of S ® V'
and A is a general Laplace-type operators of the form
A=—-¢""D,D,+E (3.43)
where E is an endomorphism of S ® V, with index structure E5%;.
Following step by step the arguments of section 3.1, the divergences of the
effective action I'(0; g, A) coming from the functional integral over 1 are given by

1 1
ST |

The heat kernel coefficients of the operator A are given by [69-72]

d/2 4

bo(A) + A%VQbQ(A)+...+logA5]2Vbd(A)]. (3.44)

bgp= trl;
1
by = éRtrl —trE; (3.45)
1

by

vpo v 5
%0 (RW,MR“ P7 — R, R"™ + 532 + 6V2R) trl

1 5 1 1 5 1_,
—|—§trE — 6RtrE + EtrQ“ Quu — EV trE |
In these formulae 1 is the identity in S ® V, so trl is the dimension of the fiber of
S ®V (the product of the dimensions of the spaces carrying the representations o
and p). Q is the curvature of the connection in S ® V, defined by

[DIU Du]"/) = Q,uu ¢ . (346)
Note that the last terms of both lines of by are total derivatives; we will neglect
such terms in the following. These heat kernel coeflicients are independent of the
dimension; the dependence of the heat kernel on the dimension is entirely in the
prefactor in .

The terms proportional to 1 were already present in . They are due to
the background metric g. Equations contain new terms: terms due to the
endomorphism E, and a term proportional to 2 due to the covariant derivative
D. We will understand the origin and structure of these new terms by studying the
following two examples.

3.2.2 Effective potential

In the examples considered so far, the quantum field had no self-interactions: its
functional integral was purely Gaussian. In this and in the following example we
shall see how to use the same technique to compute the one-loop effective action of
a self-interacting theory.

We begin with the one-loop divergences in the effective potential of a real self-
interacting scalar field in four dimensions, with Euclidean action

/ e [;(8@2 + V(qbz)} . (3.47)
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The trick is to expand ¢ = ¢ + ¢, where ¢ is a constant background field and ¢ a
shifted quantum field. The action is highly non-Gaussian, but at one loop only the
part of the action quadratic in the fluctuation is needed. In this case it is

%/d‘*z o(—0* +E)p, with E=2V'(¢?) +46*V"(?) . (3.48)

The effective action T'(¢; @) is now a functional of two arguments: the “classical
field” (the Legendre conjugate of the source that couples linearly to ¢), which, by
a slight abuse of terminology, we will still denote ¢, and the background. The
one-loop effective action evaluated at ¢ = 0 is given by

'(0;¢) = S(¢) + %Trlog& .

The divergent part of the effective action is given by the master formula ,
where b,, are the heat kernel coefficients of the operator A = —9% + E. These
are given by the E-terms in . The effective potential V.¢s is defined by
[(0;¢) = [ d*aV.;(¢?), for constant ¢. Its divergent part is

L
2 (4m)?

1 1 A2
§A?JV — A}y E+ 3 log %EQ .
For example if
R IR Y
we have
1 -
E=m?+ §A¢2 )

In this case, neglecting field-independent terms,
Lo 19 1 Ay (1,54 272
—§AUV)\¢ + ilog 2 Z)\ @+ Im¢p ,
(3.49)

up to finite terms. We can define the renormalized coupling to be the coefficient of
¢)4/4' in Veff:

1 1
2 (4m)2

Vers(9?) = V(6%

3 Ayy
A =\- A log —— :
R(lu) 1672 0og 1 ) (3 50)
then, as a by-product of the preceding calculation, one obtains the familiar beta
function
OAR 3 9
—— = 3.51
K o 1672 (3.51)

Note that, up to a sign, the coefficient of the beta function is just the coefficient of
the logarithmic divergence.
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3.2.3 Yang-M:lls theory

Next we consider the one-loop divergences in a non-abelian gauge theory in four
dimensions. This will also be a useful preliminary example of background gauge
fixing, in preparation for use in gravity. E| The Euclidean action is

1
Sym(4) = i / d*zFg, Fre (3.52)

where Fj, = 0,A] — 0,Aj, + f“bcAZAf; and ¢ is the gauge coupling. As in the
previous example, we use the background field method and split A, = AZ + ay.
Denoting Fﬁy the curvature of the background field, we have

Fi,=F%,+ Dya; — Dyaj, + f"bcaZac (3.53)

|72

where D, a? = 0,a% + flz f%cal is the covariant derivative with respect to the
background field.
An infinitesimal gauge transformation with parameter € gives

e AS = Dye® = e + e Al . (3.54)

This can be split in different ways between background and fluctuation. One is to
keep the background fixed and attribute all the variation to the quantum field:

§DAL =0,
59a% =Dye" . (3.55)

These are called “quantum gauge transformations”. The other is to split the trans-
formation evenly so that the background transforms as a connection and the quan-
tum field as a matter field in the adjoint representation:

S AL = Dy = e + [ Abe”
§Bal = fcablel . (3.56)

e Yu
These are called “background gauge transformations”. Note that since the quantum
field aj; transforms homogeneously, we are in the general framework of section 3.2.1.
The Yang-Mills action is obviously invariant under both quantum and background
transformations. The gauge fixing term is meant to break the quantum gauge
transformations but it is possible, and in fact extremely advantageous, to choose
it in such a way as to to preserve the background gauge invariance. We choose
the covariant gauge condition D,a** = 0, which is implemented in the functional
integral by adding to the action the gauge-fixing term

Scr(a; A) = 29120z /d4x(Dua““)2 . (3.57)
The corresponding ghost operator is obtained by varying the gauge condition under
a quantum gauge transformation:

5D, a" = Agpe®

3Up to a point the discussion follows [73], section 16.6.
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which yields Ay, = D, D*. Then, one adds to the action the ghost term
Sgn = / d'z e, Ay - (3.58)

It is convenient to choose the Feynman gauge o = 1. Then, a straightforward cal-
culation shows that non-minimal terms of the form a,,D#D”a“ cancel out between
the Yang-Mills and the gauge-fixing actions. The quadratic part of the action is

(2) 1 4 . a APV b
Sym +Scr = 247 d*za ALy a, (3.59)
where
AR = —g" D2, + EY BN =2 fp M . (3.60)

The one-loop partition function is now a Gaussian integral
/ (da de dc)e™(S¥u+Sar+Sen) (3.61)

The effective action will be a functional of two fields: I'(a; A), where a denotes here
the classical field associated to the quantum field by the same name. This abuse of
notation should not cause any confusion. We shall be interested in the special case
when aj; = 0. Then, the effective action is

- - 1
(03 4) = Syar(4) + 5 Trlog A — Trlog Ay - (3.62)

Note that for @ = 0, D, = D,, and the ghost operator is simply A,, = —D?.
The divergences in this expression can be obtained from the master formula .
We neglect the field-independent quartic divergences. There are no quadratic di-
vergences, since trE = 0 and both by coefficients vanish. We are left with the
logarithmic divergence

1 1 A?
- d* ba(A) — 2b4(Agp)) log =LV
5707 | FVB(8) = 201 (8 ) log =
The heat kernel coefficients can be computed from (3.45). We have trE? =
4G Fg, o where Cy is defined by fucd foea = Cadab (e.g. C3 = N for G = SU(N)).
Furthermore tr2,, Q" = —4Cy F o where the factor 4 counts the number of

components of a,. Then

o [a oy
bi(A) = SCoF, F1 (3.63)
1 n nlng
ba(Agn) = — 5 CoF, P (3.64)
and
_ 1 11 Apv

I(0; A) = Sy (A) — Csylog o d*z Ff, e (3.65)

(4m)?2 6
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This is again of the form of a Yang-Mills action but with a renormalized coupling
defined by
1 1 111 Ayy
=— — ——5—C3log— . 3.66
4g%(n) 492 (M2 6 170 (3.66)

This can be rewritten

g
gr(p) = — — . (3.67)
V1 i 5 Cag?log 240
The beta function is then given by
dgr 1 11 3

H dp (4m)2 ?CZQR '

(3.68)

3.2.4 Other fields in an external metric

Before discussing the divergences of quantum gravity, we return to the problem of
the divergences due to an external metric, and we consider more general quantum
fields. All that has been said in the preceding sections about a scalar field can be
repeated for higher spin fields with only minor adjustments. The main difference is
in the wave operator and hence in its heat kernel coefficients. Let us list some of
the relevant operators. For spin 1/2 fields the square of the Dirac operator is (in
any dimension):

A2 — vy, v + % . (3.69)
The Laplacian acting on one-forms is:
AR — T, VASE + RV (3.70)
We will also need the following operator acting on vectors:
Appyt = —V,\V o4 — RE . (3.71)

and the following operator acting on symmetric rank-2 tensors, that we shall en-
counter in section 3.5:

Ao = =VaAVAGGT) + Wyo (3.72)
where
v v 1 v v v v v
W,o" = R (5&;50_; ~ 5909 >—|—g” Rpo+R"™ gpe —26' RY) —2R¥ (1) ) . (3.73)

The heat kernel coefficients for these operators are given by . Unlike the
case of a scalar field, considered in section 3.1.4, besides the terms due to the metric
they receive contributions also from the connection and from the endomorphism.

For example, in the case of a vectorfield 2 coincides with the Riemann ten-
sor, viewed as an endomorphism-valued two-form, and tr 2, Q" = —R,,, ,c R*"*°.
Likewise for covariant symmetric tensors

1
(0) a5 =~ (08 Ru s+ 7R 5 + 83 R"a + 65 Ry (3.74)
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Table 3.1 Heat kernel coefficients of several operators

Operator Field bo by Coefficients in 180b4 Coefficients in 180b4
RZ,, | RS, | R | C* | R?| E

v Scalar 1 % R 1 -1 g % % — %
-VvZ4+ B Scalar 0 1 -1 0 3 o | -1
A1/2) Diracsp. | 4 | —iR | -1 -4 s -9 | 0 a
—-Vv? Vector 2R —11 -4 | 10 | -24 | 5 13
AW Vector 4| -2rR | -1 86 | —20 | 21 5 | —32
Arp) Vector 4| 2R —11 86 | 40 | 21 | 65 | —32
-v? Sym. Tens. | 10 | 2R —-80 | —10 | 25 | —165 | =5 | 85
A Sym. Tens. | 10 | —33R | 190 | —550 | 295 | 105 | 175 | 85

The last three columns give the coefficients of by in the Weyl basis (as defined in section 2.2.1),
the preceding three columns in the Riemann basis, all multiplied by 180 for convenience of

presentation.
and
trQ,, Q" = —(d+ 2) R pe RM'P7 . (3.75)
For the endomorphism of the operator A;) we have the following traces:
d(d—1
aw = 2=V p (3.76)

2

d*> —8d+4 d3 — 5d> d+4
tI'W2 — 3RHVpO_R,U.Vpa' 4 L 5 + 8d +

1%

d—2 By B + 2(d — 2)
Since in all cases under consideration E is linear in curvature, the new terms can be
written as powers of curvatures. In particular by will have the general form
and can be rewritten as a linear combination of curvature squared terms. For such
terms there exist various bases that have been discussed in section 2.2.1. Table
(3.2.4) gives the heat kernel coefficients for the above-listed operators in d = 4. E|
For the b4 coeflicient, the result is given in two different bases of invariants.

The first three lines directly give the coefficients of one-loop divergences due to
scalar and fermion matter coupled to gravity. In the case of the electromagnetic
field one has to deal with the gauge invariance of the theory. The Faddeev-Popov
procedure follows the reasoning of section 3.2.3, but since the action is already
quadratic in the fields it is not necessary to use the background field method. Al-
ternatively, one can assume that the background field is Au = 0. The Euclidean
functional integral has the form

/ (dACAC e 5em(A9)=Sar(4,9)=5,1.(C.C.0) (3.78)

R* . (3.77)

4For a somewhat similar table for operators acting on arbitrary representations of the Lorentz
group, see [74].
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where Sy, is the Maxwell action, Sqr a gauge fixing action and Sy, a ghost ac-
tion. Upon integration by parts, the Euclidean action of an electromagnetic field
propagating in a metric g is

1 1
1 /d4x\/§FwF“” =5 /d4x\/§A# (=VPV,g"" + VFVY + R*™) A, .
To this one has to add the gauge-fixing term

fi 4 o 277i 4 nx7v
SGF,m/dx\/g(v A = 2a/dx\/§AuV VA, .

If we choose the gauge fixing parameter « = 1 (Feynman gauge) the gauge fix-
ing term cancels the middle term in the Maxwell action, and we remain with the
operator A(Y) defined in . For convenience we adopt this gauge choice. In
flat spacetime, the ghosts decouple and are usually not considered, but here we are
interested in the dependence on the metric, and since the ghosts do couple to the
metric we have to take them into account. The ghost operator is obtained from the
gauge fixing condition V#A, by replacing the gauge field A, by an infinitesimal
gauge transformation V e. This gives the ordinary laplacian on scalars, so

Syn = /d4x\/§C’(7V2)C. (3.79)

The functional integrations in (3.78)) are Gaussian, so the contribution of the elec-
tromagnetic field to the effective action is

1
iTr log AW — Triog A© (3.80)

The divergent part of this effective action is obtained by using the master formula
(3.44)) with the coefficients of Table 3.1:

1
2 3
A linearized Yang-Mills field consists of n abelian fields, where n is the dimension
of the gauge group. So the one-loop divergences due to a Yang-Mills field are given
by n times (3.81). (If the background Yang—Mills field is nontrivial there will also
be a divergence proportional to the Yang—Mills action, as discussed in the preceding

section.)

1 2 1 A?
i / iz /G {2A4UV - ERABy + g (8¢ —nE) o Y | )

We close with some remarks on Weyl invariance. In four dimensions a massless
scalar with the nonminimal coupling ﬁngR is Weyl invariant and has kinetic oper-
ator —V? 4 %. Also a minimally coupled massless spinor and a Maxwell field are
Weyl invariant. For all these fields the coefficient of the R? logarithmic divergence
is zero in the Weyl basis. For the first two fields this is seen directly from the second
and third rows of Table 3.1, while for the Maxwell field it results from a cancellation
between the vector and the ghost. Since in four dimensions the integrals of C? and
E are Weyl invariant, this implies that the logarithmically divergent part of the
effective action is Weylf invariant.
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The finite part is anomalous, however. This can be seen by considering a rescal-
ing of the metric by a constant factor Q2. It produces a change of the eigenvalues
by a factor =2 which, inserted in (3.19)), gives

1 02\,
(%) = S(Q%g) + 3 Zlog ( e >

. 1 )\n 1 -2
= S(g) + 3 zn:log <u2> +3 log(Q~3)Tr1

=TI'(g) —log2¢a(0) , (3.82)
where in the last step we used formally the definition . The last term is finite
when evaluated by analytic continuation from Re(s) > 2.

The physical meaning of this anomalous non-invariance of the effective action
can be understood by considering an infinitesimal rescaling 2 = 1 4+ w. Then, the
change in the effective action is

ol

5,1 = / iz [g;dd»ww (sgw(—%)g“] - _w/ d'z\/gg" (L) . (3.83)

where we have used the equation of motion for ¢. The trace of the energy-
momentum tensor is classically zero for Weyl-invariant actions, so the trace of the
VEV of the energy-momentum tensor is a measure of the breaking of Weyl invari-
ance by quantum effects. Comparing with we obtain the integrated trace
anomaly:

[dtavaiay =0 (3.84)

The trace anomaly can also be related to the heat kernel:
Ca(0) = @34@) . (3.85)
One can get some inkling for this by observing that formally we can also write
Trl = Tr KA (0). This can be evaluated using the small-¢ asymptotic expansion. All
the terms containing B,, with n > 4 vanish when ¢ — 0. If by renormalization we
get rid of By and Bs, then the remaining finite result is exactly Bj.

One can write the trace anomaly in the form [75]

2 T 2
(T",) = ﬁg’” ({;w =bC*+VE+ (b” + 3b> OR . (3.86)

The coefficients b and b’ for Ng conformal scalars, Np massless Dirac and Ny,
Maxwell fields can be read from Table 3.1:

b

1 1
= (Ns+6Np+12Ny) ; b =———— (Ns+11Np + 62Ny) .
120(ryz Vs + 6ND + 12Nu) 360(ary2 (Vs T 1ND + 62Ny)
(3.87)

These terms cannot be obtained as the variation of a local functional and therefore
are unaffacted by renormalization ambiguities. The last term of the anomaly can
be obtained from the variation of a local counterterm proportional to [ d4x\/§R2,
and therefore the coefficient b” is arbitrary.
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3.3 The gravitational path integral

Our task now is to (formally) define the gravitational path integral. One would like
to give some meaning to the expression

_ £is(la)) .
Z= /M(d[g” 7 (3.88)

where [g] are geometries, i.e. equivalence classes of metrics modulo diffeomor-
phisms, M is the space of all geometries, (d[g]) is some measure on M and S(g) is
a diffeomorphism-invariant action for the metric, which can therefore be viewed as
a functional S([g]) on M. Later we will specialize S to be the Hilbert action, but
the construction is general.

Although the space M can be given a mathematically precise definition, it is
unwieldy. We will therefore use the standard Faddeev-Popov procedure, which is
a way of defining the path integral indirectly via the space of metrics. It parallels
closely the analogous construction for Yang-Mills theories, with the following dif-
ference: in Yang-Mills theory there is no difficulty in talking of a “zero connection”
(which is just a representative of a flat connection in a particular gauge) and there-
fore the use of the background field method is optional. In the case of gravity it
is not clear how to make sense of the action for a “zero metric”, or more generally
for a degenerate metric. In fact it is even debatable whether such configurations
should be taken into account or not. As a consequence, the use of the background
field method is almost unavoidable. EI Let us therefore split

v = Guv + Py (3.89)
where g is the classical background and h the quantum field.
Under an infinitesimal gauge transformation e (defined by z'# = z# — "), the
metric transforms by
deGuv = LeGuw = Ve, + Ve,
where V is the Levi-Civita connection of g and the index of € has been lowered
with g,,. When the metric is divided in two parts as in , one can split the
infinitesimal variation in different ways between background and fluctuation. One
possibility is to assume that the background is invariant and all the change is in the
fluctuation:
8Dg, =0, (3.90)
5£Q)huu = Eeguu . (3-91)
Such transformations are called “quantum gauge transformations”. Alternatively,
one may evenly split the transformation between background and fluctuation, so
that each transforms separately as a tensor:
0BG, = LG = Ve, + Ve, (3.92)
6B h,,, = Lehy, , (3.93)

5There is one famous counterexample: three dimensional gravity formulated as a Chern-Simons
theory of the Poincaré group [76].
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where in the first line V is the Levi-Civita connection of the background metric
and the index of € has been lowered with the background metric. These are called
“background gauge transformations”.

The measure on the space of metrics will be denoted (dh) and is assumed to be
invariant under both transformations: in particular denoting h'*¢ = h + (5£Q)h,

(dh**€) = (dh) . (3.94)

Now we choose a gauge condition F,(h;g) = 0. It will prove very convenient to
assume that F is linear in h. A typical gauge condition of this type is of the form

E,=V,h*, — #?Hh 7 (3.95)
where indices are raised, lowered and contracted with the background metric. For
example, 8 = % — 1 corresponds to the de Donder condition. These are also called
“background gauges” and their virtue will become manifest later.

The “Faddeev-Popov trick” consists of inserting in the functional integral over
metrics the formal expression

1= W(h: ) / (dF)3(Fu(h':5) (3.96)

where 6 is a functional Dirac delta function and the integral is over the diffeomor-
phism group. The transform of h under the finite diffeomorphism f is defined as
h! = gf — . The measure on the group is assumed to be invariant, in the sense
that (df' f) = (df) for any fixed f’. In particular for an infinitesimal f' =1 + e,

JansE.mt 7)) = [+ ansE,mtig) = [@sEntia)
(3.97)
where we use multiplicative notation for the group composition and in the last step
we have just renamed the integration variable. There follows that also the quantity
U(h;g) is invariant:
U(h' T g) = U(hig) . (3.98)
The action is also obviously invariant under quantum and background transforma-
tions. We will henceforth write S(h; g) for S(g) to emphasize its dependence on two
arguments. Then

S(h'*<g) = S(h;g) - (3.99)
With the formal factor of “one” inserted, the integral over metrics reads
z= [ @nyving) [@)sEmfig)estn (3.100)
M

We can now interchange the f and h integrations and use the finite analogues of
(3.94113.9813.99) to change h to h/ in the measure, in ¥ and in the action, leading
to:

z= [ [ @ untai,ofia)e s (3.101)
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But now we can change the name of the integration variable from h/ to h and the
dependence on f disappears, in such a way that the integral over the diffeomorphism
group factors out and can be absorbed in the overal